
Advances in Science, Technology and Engineering Systems Journal
Vol. 9, No. 5, 1-8 (2024)

www.astesj.com
Special Issue on Computing, Engineering and Multidisciplinary Sciences

ASTES Journal
ISSN: 2415-6698

Web Application Interface Data Collector for Issue Reporting
Diego Costa*, Gabriel Matos, Anderson Lins, Leon Barroso, Carlos Aguiar, Erick Bezerra

SIDIA Institute of Science and Technology, Manaus, Brazil

A R T I C L E I N F O A B S T R A C T

Article history:
Received: 24 April, 2024
Revised: 01 August, 2024
Accepted: 03 August, 2024
Online: 14 September, 2024

Keywords:
Bug Reporting
Software Management
Web Application
Browser API

Insufficient information is often pointed out as one of the main problems with bug reports as
most bugs are reported manually, they lack detailed information describing steps to reproduce
the unexpected behavior, leading to increased time and effort for developers to reproduce and
fix bugs. Current bug reporting systems lack support for self-hosted systems that cannot access
third-party cloud environments or Application Programming Interfaces due to confidentiality
concerns. To address this, we propose Watson, a Typescript framework with a minimalist User
Interface developed in Vue.js. The objectives are to minimize the user’s effort to report bugs,
simplify the bug reporting process, and provide relevant information for developers to solve
it. Watson was designed to capture user’s interactions, network logs, screen recording, and
seamlessly integration with issue tracker systems in self-hosted systems that cannot share their
data to external Application Programming Interfaces or cloud services. Watson also can be
installed via Node Package Manager and integrated into most JavaScript or TypeScript web
projects. To evaluate Watson, we developed an Angular-based application along with two usage
scenarios. First, the users experimented the application without using Watson and once they
found a bug, they reported it manually on GitLab. Later, they used the same application, but
this time, whenever they detect another bug, they reported it through Watson User Interface.
Watson, as stated by the experiment participants and the evidences, is useful and helpful for
development teams to report issues and provide relevant information for tracking bugs. The
identification of bug root causes was almost three times more effective with Watson than manual
reporting.

1. Introduction

This paper is an extension of work originally presented at the 2023
IEEE 30th Annual Software Technology Conference (STC) [1].
Bug reports play a crucial role in software maintenance, enabling
developers to prioritize, reproduce, identify, and resolve defects [2],
[3]. Detailed information is expected from the reports, such as the
unexpected behavior, the steps to reproduce it, logs, or screenshots,
and others, so developers may recreate it to find a solution [2, 4, 5].

Insufficient information is often pointed out as one of the main
problems with bug reports, generally most bugs are reported manu-
ally by end-users or testers, the reports lack of details and sufficient
information describing the steps to reproduce the unexpected behav-
ior to allow the developers to find a solution [2, 6].

The most common way to report bugs is through issue tracking
systems, but in the majority cases, there is not any standard, which

causes misinformation for the development team due the unclear or
insufficient data [7]. Steps to reproduce the bug, stack trace errors,
test case scenarios, logs, and images are factors that impact the
quality of the bug reports [6, 8, 9, 10, 11, 12].

In this paper, we introduce Watson, a framework developed in
Typescript1 with an User Interface (UI) developed in Vue.js2. The
objective is to save time and effort for the person who is going to
report the bug, and standardize bug reporting by collecting funda-
mental information that will aid the developers to reproduce the
undesired behavior, as such as: user interaction on the page, network
requests, and screen video. The main points of Watson are that it
is a framework that can be installed via Node Package Manager
(NPM), it can be integrated into most Javascript3 or Typescript web
projects, and it is designed for self-hosted systems that cannot share
its data to external Application Programming Interfaces (APIs) or
cloud services.

*Corresponding Author: Diego Costa, SIDIA Institute of Science and Technology, Manaus, Brazil, diego.costa@sidia.com
1https://www.typescriptlang.org/
2https://vuejs.org/
3https://developer.mozilla.org/en-US/docs/Web/JavaScript

www.astesj.com
https://dx.doi.org/10.25046/aj090501

1

http://www.astesj.com
https://www.astesj.com
https://dx.doi.org/10.25046/aj090501

D. Costa et al., / Advances in Science, Technology and Engineering Systems Journal Vol. 9, No. 5, 1-8 (2024)

Watson was evaluated empirically, using a test application devel-
oped in Angular4 and inviting developers and testers to use it with
Watson. The goal was to evaluate the participant’s perception of
Watson usefulness in comparison with manually reporting a bug on
GitLab5. Experienced web developers an testers judged Watson as
useful and Watson’s features to collect information proved helpful
in identifying the root cause of bugs reported.

The rest of this work is organized as follows: Section 2 provides
details about the problem and related work. Section 3 provides
details about the proposed software. Section 4 presents the results
of the use of Watson. Section 5 concludes by discussing the main
points found.

2. Related Works

Our research focused on bug reporting tools that provided relevant
and effective information for software maintenance, mainly for web
applications, but due to the lack of recent works, we expanded the
search for Android applications and approaches that are emerging,
such as machine learning.

The authors of [13] propose an automated bug reporting sys-
tem which serves as a foundation for testing frameworks in web
applications, generating failure reports based on the test cases. The
generated reports consist of the number of test cases executed, the
number of failed, passed and skipped tests, and the time it took to
perform the tests. When the report is ready, it is checked if it is a
duplicated bug report, then it is mailed to the development team.
The tool was used by the authors to simulate regression test cases,
resulting in an 8% reduction in test execution time. Additionally, it
summarized the bug report, reducing human effort and time spent
filtering duplicated bug reports.

In the work [14], they created a tool, Euler, that automatically
analyzes the written description of a bug report, evaluates the qual-
ity of reproduction steps, and provides feedback to users about
ambiguous or missing steps. Neural sequence labeling combined
with discourse patterns and dependency parsing identifies sentences
and individual steps to reproduce. It matches these steps to program
state and Graphical User Interface (GUI) in a graph-based execu-
tion model. An empirical evaluation was conducted to determine
the accuracy of Euler in identifying and assessing the quality of
reproduction steps for bug reports. The results indicated that Eu-
ler correctly identified 98% of the existing steps to reproduce and
58% of the missing ones, and 73% of its quality annotations being
accurate.

The work [2] presents Bee, an open-source tool that can be
integrated with GitHub6 and automatically analyzes user-written
bug reports using machine learning textual classification. It offers
insights into the system’s observed comportment, expected com-
portment, and reproduction steps for the reported bugs. As result
they achieved 87% recall, indicating the ability to correctly detect
and classify the described sentences.

In order to generate better bug reports for Android, CrashScope
[15] was created. It works by collecting system version and hard-
ware information, the application state, the user entry text descrip-
tion to reproduce the bug, the GUI events, and app’s stack trace error.
The purpose was to assess the reliability and comprehensibility of
reports generated by CrashScope relative to five current tools. To
evaluate this work, they used 8 real world open source applications
bug reports extracted from their corresponding issue trackers. They
invited 16 users to reproduce 4 bugs reported using CrashScope and
4 bugs reported manually. It was discovered that reports produced
by CrashScope were equally reproducible compared to those from
other tools, although it yielded more comprehensible and beneficial
reports for developers.

In [16], the author presented a chatbot that designed for Android,
combines dynamic software analysis, natural language processing,
and automated report quality assessment to assist users in writing
better descriptions and receiving issue reports. By inviting 18 end-
users to identify 12 bugs across 6 Android apps, we found that Burt
provides more accurate and complete reproduction steps than Itrac,
a template-based bug reporting system used by another 18 users.

The work [17] proposes an automated tool for integrating user
feedback into the testing process. In order to achieve this, they
collected datasets of mobile application issues reviews along with
user feedbacks to train a machine learning algorithm that would be
capable to link the user’s feedback to stack traces with the objective
to relate a feedback that might describe the cause of a failure to
a bug. By following this process, they concluded user feedback
is highly promising to integrate into the testing process of mobile
apps as it complements the capabilities of testing tools identifying
bugs that are not reveled in this phase of software development,
facilitating the diagnosis of bugs or crashes.

In the study [18], the authors explored automating Android bug
replaying using Large Language Models (LLMs). Motivated by
the success of these models, they proposed AdbGPT, a method for
reproducing bugs from bug reports via prompt engineering. By
following this approach, they demonstrated 81.3% effectiveness and
efficiency to reproduce bugs from users’ reports, and in terms of
average time to reproduce bug reports, the AdbGPT outperformed
the average time of experiment participants.

Other studies on bug reporting tools for web applications
[19, 20] and commercial tools like Usersnap7, BugHerd8, and Bird
Eats Bugs9 utilize browser extensions or embedded scripts to cap-
ture Document Object Model (DOM) events, stack trace errors,
and screenshots. Data is sent to cloud services but lacks integra-
tion with self-hosted systems that restrict sending its private data
to external APIs. This issue is addressed by Watson, a framework
installable via NPM for JavaScript or TypeScript web projects. It
provides flexibility for development teams to integrate and utilize
self-hosted systems, enabling configuration of Watson to use en-
tirely their own systems while collecting crash report data without
external environments.

4https://angularjs.org/
5https://about.gitlab.com/
6https://github.com
7https://usersnap.com/
8https://bugherd.com/
9https://birdeatsbug.com/

www.astesj.com 2

http://www.astesj.com

D. Costa et al., / Advances in Science, Technology and Engineering Systems Journal Vol. 9, No. 5, 1-8 (2024)

3. Watson Framework

Watson was developed in Typescript, offering an API to help collect
important information. Watson collects information such as DOM
events related to the user’s interaction, when a user interacts with the
application, Watson interceptors will collect the web page events,
such as mouse clicks, network requests and screen video to capture
what the user sees on the page. This information will be passed to
the reporter class that implements the interface WatsonReporter to
attach the information to a bug report with a description provided
by the user and the Watson collected data, then it will send to the
chosen issue tracking system.

As presented in Figure 1, Watson acts in the native browser API,
injecting a collection of interceptors that will intercept data during
web application usage. When the user initiates the recording process
through the UI, Watson begins collecting data. Upon completion
of the recording, the gathered information can be transmitted to an
issue tracking system based on the preconfigured reporter imple-
mentation. This may involve utilizing a built-in reporter such as
GitLabReporter or implementing a customized reporter to facilitate
integration with alternative issue trackers or systems.

Figure 1: Watson Architecture

The UI workflow used to report bugs with Watson is shown
in Figure 2. Starting with the Watson UI start button (Figure 2a),
users can proceed as normal in their testing scenario or regular ap-
plication usage. Once Watson is running, it attaches interceptors
to the browser’s native API, listens for native events, collects data,
and redirects event parameters to the original event calls as proxies,

allowing it to intercept and save the user interaction with the web
page.

(a) Watson start

(b) Watson stop

(c) Create issue

(d) Issue created

Figure 2: Watson UI

After the data is intercepted, it gets transferred to the initial web
browser function API to perform its regular actions. To stop the data
collection, the user can use the stop button on Watson UI (Figure
2b), then, as shown in Figure 2c, a dialog message opens for users
to provide additional description about the bug and a title for the
issue, which will be sent to an external issue tracking system such
as GitHub10, Jira11 or another one which the developers may have

10https://github.com
11https://www.atlassian.com/software/jira

www.astesj.com 3

http://www.astesj.com

D. Costa et al., / Advances in Science, Technology and Engineering Systems Journal Vol. 9, No. 5, 1-8 (2024)

previously integrated Watson to it. As in this case, it was integrated
with GitLab, it returned the issue link in Figure 2d.

3.1. Implementation details

Figure 3 presents Watson’s class diagram. It is composed of four
components: Watson, WatsonConfig, WatsonReporter, and Wat-
son interceptors.

Watson can be installed on a web project with NPM. After
installation, the Watson instance is a singleton and must be initial-
ized at application start-up, initializing and attaching its injectors
to the browser’s native API, functioning as proxies. The Watson
framework must be initialized and configured by adding the code
Watson.getInstance(config) on application startup code. The con-
fig paramter is object of type WatsonConfig that contains which
interceptors should be active and the reporter implementation of
WatsonReporter interface that has the responsibility to connect
Watson to an external issue tracking system. This enables reporting
of collected information alongside user description and issue title.

3.1.1. Watson

The Watson class connects all parts of the system and ensures the
data capture functions properly. It manages the start and stop of data
capture, stores the collected data, controls the event interceptors
activating and deactivating the capture and also uses the reporter
instance to send the collected data to issue tracker. With the config
parameter, it enables which event interceptors that will be attached
to native API and the event types that should be captured, and also
defines the WatsonReporter instance to send the collected data.

3.1.2. WatsonConfig

The configuration interface determines which event interceptors
should be activated. Currently, there are 3 event interceptors to
capture user interaction data: network interceptor, DOM events
interceptor, and the screen recorder. By default, all interceptors

are enabled, but the development team can define which of them
are active according to their requirements. For example, to dis-
able screen recorder by setting screenRecorder option to false.
Additionally, the implementation instance of the WatsonReporter
interface must be specified in the config. This can utilize either a
built-in implementation such as GitlabReporter or a custom report
class that implements the interface.

3.1.3. WatsonReporter

This is the interface implementation required for reporting to ex-
ternal issue tracking system. A method must be implemented to
send the collected data to an external issue tracking system like
Jira, GitLab, or others. The development team can write its code to
connect to the external system and implement this interface to send
data. For this experiment, Figure 3 presents the GitLabReporter
class designed to send the collected data to GitLab.

To implement this interface, the development team must first
obtain access to the required issue tracking system API and follow
its documentation to consume its API and have information about it
such as API key, authentication, and available endpoints. Following
this step, the developers can implement a class with this interface
containing the methods to communicate with the issue tracking
system and receive the data collected by Watson to finally transmit
them.

The WatsonReporter interface has a method called reportData,
accepting two parameters. The first parameter consists of the issue’s
basic information, including its title and description, while the sec-
ond one is the Watson collected data. This function is responsible
for generating issues within the issue tracker and returning an object
containing the issue’s ID and corresponding link, or null in case of
failure.

3.1.4. Watson Interceptors

Watson interceptors are built-in functions that will be attached on
native API, in order to listen network requests and DOM events

Figure 3: Watson Class Diagram

www.astesj.com 4

http://www.astesj.com

D. Costa et al., / Advances in Science, Technology and Engineering Systems Journal Vol. 9, No. 5, 1-8 (2024)

specified in the event types list, according to active event inter-
ceptors specified in the Watsonconfig when Watson is instantiated.
These functions will be added to a list of observables at Watson
states. Watson has three types of interceptors:

• Video recording: Watson utilizes the MediaStream API12 to
capture the user’s screen activity. By clicking the start button
within the Watson UI, the user initiates the recording process;
while stopping it requires clicking the stop button. Besides
bug reporting, this can be used to record test scenarios. The
recorded video will be attached in the issue report to be sent
along with the logs.

• Network requests: As represented in Figure 4, Watson in-
jects the ajax interceptor to the XMLHttpRequests API13

for collecting vital data about network requests. As soon
the application is in use, it sends Hypertext Transfer Protocol
(HTTP) requests based on user interactions. The native API is
proxied, allowing the interceptor to gather information about
the network requests such as headers, start and end time, sta-
tus codes, sent and received data, and request duration. All
collected information is stored and used to generate a JSON
log file, which will be attached on the issue report.

Figure 4: Watson - Network Interceptor

• Capturing DOM events: In order to collect the user’s inter-
action with the web application, such as mouse and keyboard

actions, Watson injects its interceptor into the native API14

of AddEventListener, gathering data on events such as clicks,
double clicks, mouse enter, mouse leave along with element
details including HyperText Markup Language (HTML) tag
name, node xpath, text content, as shown be seen in Figure 5.

Figure 5: Watson - Event Interceptor

3.1.5. GitlabReporter

It is a concrete implementation of interface WatsonReporter, it can
create an issue on Gitlab through its Web API and upload the col-
lected information to the created issue.

The components of the reporting system: GitLabClient, GitLab-
Config, and GitLabIssue. Each component is detailed below:

GitlabConfig serves as the interface to represent the minimum
information necessary to identify the project and access it through
the Gitlab API. It requires the server API url, as it may be a self-
hosted server, and a valid access token registered to a Gitlab bot
authorized to create issues within the project. These information
are necessary during the configuring of the GitlabReporter as a Wat-
sonReporter instance at application launch, all those configuration
must be provided and setting up by the development team.

GitlabClient is responsible to use the Gitlab Web API use the
GitlabConfig information. It is able to create issues and upload
attachments to an issue.

12https://developer.mozilla.org/en-US/docs/Web/API/MediaStream
13https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
14https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener

www.astesj.com 5

http://www.astesj.com

D. Costa et al., / Advances in Science, Technology and Engineering Systems Journal Vol. 9, No. 5, 1-8 (2024)

GitlabIssue Is a representation of represents a created issue on
Gitlab. It contains basic issue details like issue ID, project ID, title
and description.

4. Test Case

A web application was developed with Angular to evaluate the
Watson framework. Watson was set up through NPM, configured
and incorporated into the application accordingly. As previously
mentioned, a GitLab reporter class that implemented the interface
for Watson reporter was created to integrate and report the issue to
Gitlab.

As in the works of [3, 14, 15, 16, 21], an empirical experiment
was conducted in two parts to evaluate if the users enjoyed Watson’s
functionalities and if these would be relevant for debugging and
solving issues.

As described in Table 1, an online questionnaire was created
for the users to answer after completing the tests. This question-
naire aimed to assess user perceptions of Watson’s features and
effectiveness in resolving bugs relative to manual reporting. Quan-
titative and qualitative questions were included, with participants
able to respond on a scale of 0 to 5, providing feedback on areas for
improvement and suggestions.

Table 1: Questionnaire

1 Considering the manual method of creating an issue, how
error-prone do you think this method is?

2 Considering the Watson method of creating an issue,
how error-prone do you think this method is?

3 What would be the main reasons to use the manual method?
4 What would be the main reasons to use Watson?

5 Considering the method using Watson, how much would
the network log be relevant to debug?

6 Considering the method using Watson, how much would
DOM events be relevant to debug?

7 Considering the method using Watson, how much would
the video be relevant to debug?

8 How relevant would Watson be to your project’s issue re-
port?

9
If you use or know other issue trackers. How much value
would Watson add as a library compared to other issue
trackers?

10 Do you have any suggestions for improvement? If yes,
which one?

Six web developers and six testers were invited to try the ap-
plication, discover, and report bugs. Some bugs were found in the
web application, including issues with the network connection to
database, visual elements, and behavior. The participants were not
told about which bugs were incorporated into the application, and
Watson was installed and configured by us.

In the fist part of the experiment, the users tried the web appli-
cation without Watson installed, and once they noticed a bug, they
manually reported it on GitLab, describing and attaching anything
they judged necessary to solve the bug. In the second part, they
tried the application with Watson installed. As in the first part, they

explored the system until they found a bug, but this time, with Wat-
son available in the application, they used Watson’s UI to report the
bug.

Upon completion of testing the application across both sce-
narios, participants responded to an online survey assessing their
satisfaction with Watson’s functionalities and the relevance of data
gathered by Watson towards addressing reported bugs.

The purpose of the first and second questions was to evaluate
how error-prone manual report and the Watson report were. For
these two questions, the lower value is better because it indicates less
error-prone than a higher value. For Watson method, the average
grade was 2.22, and the manual method was 3.11.

The third and fourth questions were about the motives to use one
method over another. The distribution about the main reasons the
participants considered using the manual method was three votes
for duplicate issue report prevention, two votes for organization,
one vote for quickly generating evidences, one vote for using a
text editor, and one vote for less-error prone, indicating that the
participants noticed the prevention of duplicate issues more. For
Watson, the results were of 5 votes for taking less time to report an
issue, two votes for more bug evidences and two votes for less-error
prone, indicating that the participant’s preferred Watson because
they took less time to report an issue.

The fifth, sixth, and seventh questions are about the relevance
of Watson features: network logs, DOM events, and screen records
collected by Watson. The average rates for these features were 4.11,
5 and 4.78, respectively.

The eighth question asks about the relevance of Watson for the
participant’s project issue report. The average rate for it was 4.89.
The ninth question asks to compare Watson’s reports to other tools
if the participant used another one. The average rate for it was 4.22.

The tenth question asks for suggestions. The suggestions the
participants cited were to add a text editor for the Watson’s descrip-
tion field, an option to download the logs and generated video, an
option to choose which project they would like to report the issue
and label it, and mainly the history search to avoid duplicate issues
before sending the new issue.

To evaluate the efficiency of Watson compared to manual report-
ing, all the bug reports were evaluated and analyzed for its potential
to identify the root cause of the issue. This evaluation involved
utilizing videos and user descriptions to recreate the bug scenario,
as well as examining the collected stack traces to trace the faulty
functionality.

Based on evidence provided by participants through manual
bug reporting, it was found the bug root cause on 18.75% of the
manually reported issues. In contrast, using Watson’s reports con-
taining stack traces and video, the number of issues that could be
determined the bug root cause increased to 63.63%.

The recorded video helped to reproduce all of the bug reported
with Watson. Additionally, the event and network logs were used to
investigate the application’s behavior during the occurrence of these
bugs.

5. Conclusion

This work presented Watson, a software program developed to stan-
dardize the bug report process. Its main purposes are to reduce the

www.astesj.com 6

http://www.astesj.com

D. Costa et al., / Advances in Science, Technology and Engineering Systems Journal Vol. 9, No. 5, 1-8 (2024)

effort to collect bug evidences and provide relevant information for
developers to solve it.

Experienced web developers and testers tried Watson and per-
ceived it as useful and relevant for crash reports. Watson scored
an average rate of 4.89 out of 5 from the participants questionnaire
when asked about its impact on issue reporting in their web projects.

Watson’s features for collecting event and network stack traces
proved useful in identifying the root cause of bugs in 63.63% of
cases when using Watson, against to only 18.75% of the issues
reported manually.

This study focused on Watson’s ability to gather necessary data
for bug reports and make easier for user to report bugs with evi-
dences. Unlike from many other reporting tools, Watson operates
independently of any browser plugins and does not require sending
data to external servers.

The results of the analysis provided by this article are limited
and defined by the test case performed. To interpret the knowledge
obtained as a general approach, additional use cases in different
projects are needed. Therefore, our proposal suits the need to use
a bug reporting tool without using a third-party cloud, which is a
requirement for scenarios where highly confidential projects are
developed.

As points of improvement mentioned by the participants, most
of them were related to the user experience, such as the text editor,
options to download collected information, and the recorded screen.
It was also suggested to Watson block duplicated bugs.

The main achievement of this project was creating a framework
using TypeScript, which can be easily incorporated into web applica-
tions and various issue tracking systems. This enables development
teams to conveniently obtain standardized bug reports and user feed-
back. Projects can benefit from this solution as it allows them to
bypass third-party servers and incorporate a reporting tool within
their self-hosted system, especially when handling sensitive data.

As future work, besides the already mentioned user experience
suggestions, we plan to develop a mechanism to prevent duplicate
bug reports using Watson and machine learning techniques.

Acknowledgment This work is the result of the R&D project
Projeto de Engenharia de Software e Ciência de Dados aplicados
ao Desenvolvimento de Sistemas, performed by Sidia Instituto de
Ciência e Tecnologia in partnership with Samsung Eletrônica da
Amazônia Ltda., using resources from Federal Law No. 8.387/1991,
and its disclosure and publicity are under the provisions of Article
39 of Decree No. 10.521/2020. Rodrigo José Borba Fernandes,
Isabelle Maria Farias de Lima Teixeira, and Thiago Cruz Ferraz
former members.

References

[1] G. Matos, D. Costa, A. Lins, E. Bezerra, L. Barroso, C. Aguiar, T. Ferraz,
I. Teixeira, “Watson: Web Application Interface Data Collector for Feed-
back Reporting,” in 2023 IEEE 30th Annual Software Technology Conference
(STC), 3–6, 2023, doi:10.1109/STC58598.2023.00007.

[2] Y. Song, O. Chaparro, “Bee: A tool for structuring and analyzing bug reports,”
in Proceedings of the 28th ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering,
1551–1555, 2020, doi:10.1145/3368089.3417928.

[3] K. Moran, “Enhancing android application bug reporting,” in Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering, 1045–
1047, 2015, doi:10.1145/2786805.2807557.

[4] M. Erfani Joorabchi, M. Mirzaaghaei, A. Mesbah, “Works for me!
characterizing non-reproducible bug reports,” in Proceedings of the
11th working conference on mining software repositories, 62–71, 2014,
doi:10.1145/2597073.2597098.

[5] M. Soltani, F. Hermans, T. Bäck, “The significance of bug report elements,”
Empirical Software Engineering, 25, 5255–5294, 2020, doi:10.1007/s10664-
020-09882-z.

[6] T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A. Schroter, C. Weiss,
“What makes a good bug report?” IEEE Transactions on Software Engineering,
36(5), 618–643, 2010, doi:10.1109/TSE.2010.63.

[7] D. Huo, T. Ding, C. McMillan, M. Gethers, “An empirical study of the
effects of expert knowledge on bug reports,” in 2014 IEEE International
Conference on Software Maintenance and Evolution, 1–10, IEEE, 2014,
doi:10.1109/ICSME.2014.22.

[8] J. Wang, M. Li, S. Wang, T. Menzies, Q. Wang, “Images don’t lie: Duplicate
crowdtesting reports detection with screenshot information,” Information and
Software Technology, 110, 139–155, 2019, doi:10.1016/j.infsof.2019.03.003.

[9] N. Cooper, C. Bernal-Cárdenas, O. Chaparro, K. Moran, D. Poshyvanyk,
“It Takes Two to Tango: Combining Visual and Textual Information for
Detecting Duplicate Video-Based Bug Reports,” in 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE), 957–969, 2021,
doi:10.1109/ICSE43902.2021.00091.

[10] M. Bheree, J. Anvik, “Identifying and Detecting Inaccurate Stack Traces in
Bug Reports,” in 2024 7th International Conference on Software and System
Engineering (ICoSSE), 9–14, IEEE Computer Society, Los Alamitos, CA,
USA, 2024, doi:10.1109/ICoSSE62619.2024.00010.

[11] Y. Noyori, H. Washizaki, Y. Fukazawa, K. Ooshima, H. Kanuka, S. No-
jiri, “Deep learning and gradient-based extraction of bug report features re-
lated to bug fixing time,” Frontiers in Computer Science, 5, 1032440, 2023,
doi:10.3389/fcomp.2023.1032440.

[12] R. Krasniqi, H. Do, “A multi-model framework for semantically enhancing
detection of quality-related bug report descriptions,” Empirical Software Engi-
neering, 28(2), 42, 2023, doi:10.1007/s10664-022-10280-w.

[13] Y. Sharma, A. Dagur, R. Chaturvedi, et al., “Automated bug reporting
system in web applications,” in 2018 2nd International Conference on
Trends in Electronics and Informatics (ICOEI), 1484–1488, IEEE, 2018,
doi:10.1109/ICOEI.2018.8553850.

[14] O. Chaparro, C. Bernal-Cárdenas, J. Lu, K. Moran, A. Marcus, M. Di Penta,
D. Poshyvanyk, V. Ng, “Assessing the quality of the steps to reproduce in
bug reports,” in Proceedings of the 2019 27th ACM Joint Meeting on Euro-
pean Software Engineering Conference and Symposium on the Foundations of
Software Engineering, 86–96, 2019, doi:10.1145/3338906.3338947.

[15] K. Moran, M. Linares-Vásquez, C. Bernal-Cárdenas, C. Vendome, D. Poshy-
vanyk, “Automatically discovering, reporting and reproducing android applica-
tion crashes,” in 2016 IEEE international conference on software testing, verifi-
cation and validation (icst), 33–44, IEEE, 2016, doi:10.1109/ICST.2016.34.

[16] Y. Song, J. Mahmud, Y. Zhou, O. Chaparro, K. Moran, A. Marcus, D. Poshy-
vanyk, “Toward interactive bug reporting for (android app) end-users,” in
Proceedings of the 30th ACM Joint European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering, 344–356,
2022, doi:10.1145/3540250.3549131.

[17] G. Grano, A. Ciurumelea, S. Panichella, F. Palomba, H. C. Gall, “Exploring the
integration of user feedback in automated testing of Android applications,” in
2018 IEEE 25th International Conference on Software Analysis, Evolution and
Reengineering (SANER), 72–83, 2018, doi:10.1109/SANER.2018.8330198.

[18] S. Feng, C. Chen, “Prompting Is All You Need: Automated Android
Bug Replay with Large Language Models,” in Proceedings of the 46th
IEEE/ACM International Conference on Software Engineering, 1–13, 2024,
doi:10.1145/3597503.3608137.

www.astesj.com 7

https://doi.org/10.1109/STC58598.2023.00007
https://doi.org/10.1145/3368089.3417928
https://doi.org/10.1145/2786805.2807557
https://doi.org/10.1145/2597073.2597098
https://doi.org/10.1007/s10664-020-09882-z
https://doi.org/10.1007/s10664-020-09882-z
https://doi.org/10.1109/TSE.2010.63
https://doi.org/10.1109/ICSME.2014.22
https://doi.org/10.1016/j.infsof.2019.03.003
https://doi.org/10.1109/ICSE43902.2021.00091
https://doi.org/10.1109/ICoSSE62619.2024.00010
https://doi.org/10.3389/fcomp.2023.1032440
https://doi.org/10.1007/s10664-022-10280-w
https://doi.org/10.1109/ICOEI.2018.8553850
https://doi.org/10.1145/3338906.3338947
https://doi.org/10.1109/ICST.2016.34
https://doi.org/10.1145/3540250.3549131
https://doi.org/10.1109/SANER.2018.8330198
https://doi.org/10.1145/3597503.3608137
http://www.astesj.com

D. Costa et al., / Advances in Science, Technology and Engineering Systems Journal Vol. 9, No. 5, 1-8 (2024)

[19] B. Burg, R. Bailey, A. J. Ko, M. D. Ernst, “Interactive record/replay
for web application debugging,” in Proceedings of the 26th annual ACM
symposium on User interface software and technology, 473–484, 2013,
doi:10.1145/2501988.2502050.

[20] J. Hibschman, H. Zhang, “Unravel: Rapid web application reverse engineering
via interaction recording, source tracing, and library detection,” in Proceedings
of the 28th Annual ACM Symposium on User Interface Software & Technology,
270–279, 2015, doi:10.1145/2807442.2807468.

[21] J. Johnson, J. Mahmud, T. Wendland, K. Moran, J. Rubin, M. Fazz-

ini, “An Empirical Investigation into the Reproduction of Bug Reports
for Android Apps,” in 2022 IEEE International Conference on Soft-
ware Analysis, Evolution and Reengineering (SANER), 321–322, 2022,
doi:10.1109/SANER53432.2022.00048.

Copyright: This article is an open access article distributed under
the terms and conditions of the Creative Commons Attribution (CC
BY-SA) license (https://creativecommons.org/licenses/
by-sa/4.0/).

www.astesj.com 8

https://doi.org/10.1145/2501988.2502050
https://doi.org/10.1145/2807442.2807468
https://doi.org/10.1109/SANER53432.2022.00048
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
http://www.astesj.com

	 Introduction
	Related Works
	Watson Framework
	Implementation details
	Watson
	WatsonConfig
	WatsonReporter
	Watson Interceptors
	GitlabReporter

	Test Case
	Conclusion

