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 This study addresses the need for improved prognostics in switch-mode power supplies 

(SMPS) that incorporate electromagnetic interference (EMI) filters, with a focus on 

aluminum electrolytic capacitors, which are critical for the reliability of these systems. The 

primary aim is to develop a robust model-based approach that can accurately predict the 

degradation and operational lifetime of these capacitors under varying environmental 

conditions. To achieve this, the research employs a generalized state space averaging 

technique to simulate a population of impending degradation trajectories for the 

capacitors. Environmental and degradation effects are modeled comprehensively. 

Frequency-based test features are derived from the gain, control, and impedance transfer 

functions of the filter and SMPS. These features are fitted with b-spline functionals for 

resampling and subsequently analyzed using functional principal component analysis to 

project the data onto the principal modes of variation. The extracted features serve as inputs 

to a fuzzy multi-task functional fusion predictor, which estimates the state of health at 

critical frequencies. The effectiveness of this model-based approach is validated through 

extensive experimentation, demonstrating its potential to significantly enhance the 

predictive maintenance strategies for SMPS with EMI filters. 
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1. Introduction  

Switch-mode power supplies (SMPS) are an integral part of 

modern electronic systems, known for their efficiency and 

providing stable power supply across a variety of output levels 

using high-speed switching of transistors to regulate voltage and 

current. This switching action introduces electromagnetic 

interference (EMI) that is becoming more significant with high 

frequency operation [1]. This has created the need for input EMI 

filters to protect both the power line and the switch mode power 

supply. This EMI arises conductive, radiated, and near-field 

coupling of the created by resonant peaks in the frequency 

response, as well as switching transients caused by the closed-

loop duty cycle corrections. In Figure 1, an LC-type filter is shown 

in-series with a buck-boost SMPS. 

EMI-filtered closed loop SMPS with constant power and 

controlled output voltage or current are susceptible to a condition 

called negative input resistance, where increases in input voltage 

lead to decreases in input current. This creates oscillations that can 

destabilize the system, dampened out by the input filter capacitors’ 

equivalent series resistance (ESR). Aging or variability in 

electrical parameters can cause a cross-over of the SMPS input 

impedance and EMI-filter output impedance suddenly under 

certain operating conditions [2]. It has been found that many SMPS 

devices currently being utilized in industry, due to their nonlinear 

behavior, would fail to meet EMC standards without extensive up-

stream filtering [3]. The Middlebrook criteria dictate that for a 

cascaded system, like that of an EMI-filtered SMPS, stability is 

maintained if the output of an upstream subsystem is less than the 

input impedance of the downstream subsystem, preventing 

oscillations and preserving electrical integrity. Typically, this 

cross-over occurs near the resonance frequency of the LC 

components of the filter, where the output impedance peaks, but at 

higher frequencies, with increased effects of the higher dv/dt and 

di/dt values, predicting the cross-over frequency range that leads 

to increased EMI using model-based becomes intractable. 

 The primary research objectives are to develop and validate 
parametric models for SMPS that integrate harmonic analysis and 
consider the degradation of both input and output filter capacitors. 
These models aim to precisely simulate the effects of aging and 
environmental variation on capacitor behavior, thereby enhancing 
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our understanding of how such factors influence degradation. 
Utilizing this data, the study seeks to improve prognostic 
capabilities for SMPS by predicting potential failure points and 
frequency vulnerabilities. The effectiveness of these prognostic 
models will be assessed through a comparative analysis with 
existing predictive maintenance strategies. This analysis aims to 
demonstrate early detection and preemptive management of 
failures by identifying frequency ranges with the largest variation 
tied to the system degradation.  

 

Figure 1: Buck-boost switch mode power supply with a general low pass LC-
input filter. 

1.1. Literature Review 

1.1.1. Methods of Assessing and Modeling Degradation and 

Reliability of EMI filtered SMPS 

There has been a large amount of research into the aging 

effects on SMPS components and their effects on the overall 

frequency response of the converter. It was found that the 

degradation trajectory of the rise and fall time of a MOSFET 

switch followed random variation as a result of induced thermal 

aging [1]. The main sources of electromagnetic emissions were 

the power MOSFETs, and leakage inductance from the main 

transformer [4]. The output diodes and output inductor can also be 

considered as emission sources; however, they provide a more 

secondary contribution. Sensitivities created from passives 

parasitics in the printed circuit board and sub-components that 

require targeted identification to systematically mitigate potential 

causes of noise. 

Several studies have found the output filter capacitor was 

identified as a main source of failure in SMPS that causes the 

increased noise and critically impacts the performance of the 

converter, resulting in increased stress on the peripheral 

components [5][6][7][8]. 

The studies have been conducted that provide in-depth 

insights into the degradation mechanisms of aluminum 

electrolytic capacitors under varying conditions, particularly 

highlighting their impact on the reliability of SMPS. A diagram of 

a typical Aluminum electrolytic capacitor can be found in Figure 

2. 

In [8], the author focused on the effects of thermal overstress 

noting that a reduction in electrolyte volume from evaporation 

directly decreases capacitance and increases ESR due to a shorter 

liquid path length. It showed that thermal overstress from storage 

beyond room temperature conditions significantly compromised 

their longevity and performance. 

In [9], the author explained that models were created to 

address that over half of SMPS failures are attributed to output 

smoothing electrolytic capacitors and proposes new models to 

incorporate temperature variations to forecast degradation, 

influenced by time, core temperature, and operation frequency. 

 

Figure 2: Exploded view of an Aluminum electrolytic capacitor, showing the 
different layers of the wound jellyroll which is immersed in the electrolytic 

solution. 

SMPS with EMI filters are increasingly analyzed with 

advanced mathematical modeling techniques and system 

optimization methods are often employed to understand system 

behavior comprehensively, leading to more effective design 

decisions. These traditional approaches can be extended from a 

holistic system perspective to optimize the overall system 

architecture [10]. These methods often require extensive 

modeling of each system component without necessarily focusing 

on reducing the experimental or simulation effort to only the most 

influential factors affecting system stability and performance. 

In [11], the author proposed a genetic algorithm-based method 

for designing front-end rectifier inductors, taking into account the 

effects of DC link capacitors. However, the computational 

intensity of genetic algorithms poses limitations. These 

algorithms require significant computational resources and time, 

particularly as system complexity increases, which can limit their 

practicality in iterative design processes. 

In continuous conduction mode, the switch remains closed 

long enough for the inductor current to never fall to zero, making 

the system's behavior more predictable and easier to model using 

linear approximations [12]. In contrast, discontinuous conduction 

mode is characterized by the inductor current reaching zero within 

each switching cycle, which introduces non-linearities that are 

critical for understanding the SMPS performance under light load 

conditions [12][13]. The integration of these modes into a unified 

model involves crafting state space analyses that capture the 

essential dynamics of the SMPS, including its susceptibility to 

noise and interference as influenced by the duty cycle variations. 

These state space models elucidate the intricate output to input 

relationships within an EMI-filtered SMPS device, highlighting 

how variations in the duty cycle affect the overall stability and 

efficiency of the power supply. The transfer functions derived 

from these models are instrumental in predicting the system's 

behavior in response to external disturbances and internal 

parameter changes. 
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To further refine these models and achieve a more generalized 

representation, generalized state space averaging (GSSA) 

methods are employed. GSSA is a technique that averages the 

various state equations over one switching period to produce a 

smoothed model, effectively managing the rapid switching 

characteristics of SMPS. This method simplifies the complex 

dynamics of switching power supplies into manageable forms, 

allowing for the integration of non-linear and dynamic aspects of 

the system into a coherent framework. By averaging the states, 

GSSA reduces the computational complexity and enhances the 

model's ability to predict long-term behavior under a broad range 

of operating conditions. 

1.1.2. Time and Frequency Stability Analysis Methods 

Non-invasive online condition monitoring techniques for 

capacitors often utilize the spectral content of voltage and current, 

employing various approaches estimating ESR and capacitance 

with minimal error. While comprehensive, this analysis requires 

sweeping through a broad frequency range, which can be time-

consuming and may not pinpoint the most critical frequencies 

causing instability in complex systems. 

Additionally, AC analysis methods provide a robust 

framework for assessing the global stability of closed-loop 

systems by exploring the system’s behavior across a broad 

frequency spectrum. This analysis is critical as it helps identify 

resonance peaks, phase shifts, and gain changes, offering valuable 

insights into how the system responds to different frequency 

inputs and highlighting potential instabilities. Understanding gain 

and phase margins is pivotal in ensuring global system stability. 

Gain margin refers to the amount by which the gain of a system 

can increase before the system becomes unstable, while phase 

margin is the amount of additional phase lag required to bring the 

system to the brink of instability. 

 In [14], the author used frequency and time-domain methods 

to assess conducted emissions, focusing on the signal 

characteristics of SMPS emissions, which include a mix of 

medium- and high-frequency components and significant 

spectrum leakage. The study found that there is a need to tune and 

optimize these analytical methods to achieve reliable results. The 

Prony method tracks changes in amplitude at specific frequencies 

using the least squares approach, but this method requires a 

complete understanding of the frequencies associated with 

degradation for a global population of units. It has been shown 

that by understanding the specific EMI profile to be mitigated, 

selective trade-offs can be made to reduce the filter footprint, 

weight, and cost while maintaining performance [3]. 

1.1.3. Prognostic and Health Management Techniques 

Accurately anticipating and addressing these shifts requires 

analyzing the impact of component degradation on the system's 

performance. The prognostic and health management (PHM) 

system optimizes maintenance processes based on diagnostic and 

prognostic outcomes to prevent failures and enhance lifecycle 

management [8][15]. For SMPS, capacitance was identified as a 

suitable failure precursor for system failure [8]. 

Manufacturers often recommend a methodical approach for 

estimating the useful life of aluminum electrolytic capacitors 

using datasheet specifications. The rated ripple current, IAC, R at 

the capacitor's maximum specified temperature is identified and 

the actual operating ripple current IAC is used to calculate their 

quotient. This ratio and the ambient temperature are used to 

estimate the capacitor's remaining life by interpolating a given life 

expectancy graph and accounting for frequency variations from 

the standard test condition frequency, usually 100 Hz. [16]. 

A data-driven fault detection algorithm was introduced 

specifically designed for identifying failures in multilayer ceramic 

capacitors [17]. The algorithm utilizes regression analysis, 

residual detection, and prediction analysis to enhance the accuracy 

and reliability of fault detection. A key component of their 

methodology is the use of Mahalanobis distance for anomaly 

detection in the test data. 

In [18], the author used accelerated life testing for aluminum 

electrolytic capacitors to evaluate how conditions such as 

electrolyte leakage can affect capacitance, quality factor, and 

dissipation factor. The study utilized statistical time-domain 

feature extraction and correlation-based feature selection to 

accurately monitor capacitor health and predict failures.  

In [19], the author proposed a method that leverages 

noninvasive condition monitoring via time-frequency analysis of 

conducted EMI to evaluate the health of DC-link capacitors in 

three-phase inverters. This method involves a combined EMI 

filter and measurement board placed on the DC bus, which not 

only filters conducted EMI to comply with MIL-STD-461 G but 

also facilitates EMI measurements for condition monitoring. A 

continuous wavelet transform is used to create characteristic 

switching images, which are then used to train support vector 

machine (SVM) models to classify the health of DC-link 

capacitors into one of five stages with high accuracy. This 

approach uses broad-spectrum analysis, which may include 

frequencies that are not always relevant to condition monitoring. 

A PHM system was presented that is designed to preempt 

failures and enhance lifecycle management for insulated gate 

bipolar transistors [15]. This process is organized into three main 

stages: Observation, Analysis, and Action. The Observation stage 

involves monitoring and data processing, the Analysis stage 

includes health evaluation and future state forecasting, and the 

Action stage focuses on maintenance implementation based on 

assessments. To overcome challenges in detecting subtle 

degradation signals, Principal Component Analysis (PCA) is used 

for feature engineering to reveal hidden trends. These trends are 

then fed into a Deep Neural Network for classification, enhancing 

the system's ability to detect and predict failures accurately. 

A PHM framework was proposed to combine traditional 

model-based and data-driven approaches, utilizing extensive 

sensor data for remaining useful life predictions [11]. This 

approach is designed to analyze subtle time-series patterns in large 

datasets by treating sensor data as continuous random processes. 

These functional relationships can encapsulate a significant 

amount of variation information across different equipment in a 

compact, resamplable form. This capability to adapt to time-
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varying data makes the approach particularly useful for the EMI-

filtered SMPS usage case. 

Using multivariate functional relationships as predictors for 

state of health can alleviate big data concerns and can be further 

improved by sparsity-induced optimization methods, which learn 

multiple classification tasks while simultaneously performing 

feature selection. A method of multi-task feature learning, used for 

analyzing brain imaging data with varied functional data sets 

collectively, was developed to enhance predictability and 

accuracy [20]. This approach can be adapted to other domains, 

including the health monitoring of EMI-filtered SMPS, to 

improve the accuracy and efficiency of remaining useful life 

predictions.  

1.1.4 Identifying and Addressing Research Gaps  

Despite extensive research on degradation and failure 

mechanisms in SMPS, gaps remain in predicting system 

instabilities caused by frequency vulnerabilities. Traditional 

studies, which focus on component aging and electromagnetic 

emissions, often employ complex models that overlook critical 

frequency regions impacting system stability. Moreover, these 

models lack the interpretability necessary to identify how specific 

component degradations influence overall performance in 

frequency-sensitive scenarios. 

To address these deficiencies, we propose an approach that 

utilizes multivariate functional analysis and multitask least 

absolute shrinkage and selection operator (LASSO) regression. 

This method transforms complex, high-dimensional datasets into 

manageable, infinite-dimensional functionals conducive to 

resampling. It significantly enhances model accuracy and 

robustness, allows for the learning of multiple classification 

problems simultaneously, and focuses specifically on identifying 

critical frequency vulnerabilities in SMPS. 

By isolating specific EMI components and narrowing the 

analysis to essential frequencies, this approach not only reduces 

data complexity but also improves measurement precision and 

system stability. This targeted analysis streamlines research, 

boosts efficiency, and provides clearer insights into EMI 

behaviors, substantially enhancing system vulnerability 

assessments and predictive maintenance strategies. 

1.2. Fuzzy Multi-Task Functional Fusion Predictors 

This study aims to develop and validate an innovative 

prognostic framework that leverages discrete event simulation 

(DES) of the EMI-filtered closed-loop SMPS and degradation 

models of the EMI-filter input filter capacitor and SMPS output 

filter capacitor. The goal is to accurately predict the degradation 

and remaining useful life of aluminum electrolytic capacitors in 

electromagnetic interference filters of switch-mode power 

supplies, thereby significantly enhancing system reliability and 

performance. 

The developed SMPS system prognostic approach, termed 

Fuzzy Multi-Task Functional Fusion Predictor (FMT-FFP), is an 

advanced predictive model that combines fuzzy logic with 

multitask LASSO regression and B-spline convolutional-integral-

based cross-correlations, integrated through functional PCA for 

robust and precise state-of-health forecasting in complex systems, 

while preserving interpretability of the input features. For the 

given case study, the developed approach focuses on identifying 

the impact of critical frequency regions associated with the 

degradation trajectories of aluminum electrolytic filter capacitors 

within an EMI-filtered SMPS system. 

Generalized state-space averaging models of the LC-filtered 

buck-boost SMPS are developed early on in the prototyping 

design phase to express the k-th order harmonic content and 

derive the output voltage to input voltage gain frequency response, 

the frequency response for the output voltage to duty cycle control 

transfer function, and the frequency response for the EMI filter 

output and SMPS input impedance. 

Once frequency responses for each test are collected, they are 

extended using convolutional integrals for each combination. 

Functional Principal Component Analysis (FPCA) is then used to 

perform dimensionality reduction and feature engineering to 

restrict the functional data to the principal variational modes. 

Multitask LASSO regression is employed to make probabilistic 

State of Health (SoH) estimations while identifying a sparse set of 

features associated with frequency-response criteria and ranges. 

An outline of the prognostic approach can be seen in Figure 3 

below. 

 

Figure 3: Methodology to create the interpretable failure prognostics for the 
GSSA model of the buck-boost SMPS. 

This study introduces a refined modeling approach tailored to 

the unique operational characteristics of SMPS with EMI filters. 

The key contributions of our research are threefold. First, a 

generalized state-space averaging model was developed to 

effectively capture the dynamic interactions within the SMPS and 

the input EMI filter, facilitating a deeper understanding of system 

behavior across varying operational states and filter capacitor 

degradation. This model is particularly adept at identifying critical 

frequency regions that directly impact the stability and efficiency 

of SMPS. Finally, the application of these advanced modeling 

techniques has led to the establishment of an efficient testing 

scheme. This scheme enhances traditional maintenance strategies 

by providing precise diagnostic capabilities that can preemptively 

address potential failures, thereby significantly improving system 

reliability and operational lifespan. Through these contributions, 

our research offers substantial advancements in the predictive 
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maintenance and reliability assessment of EMI-filtered SMPS, 

ensuring more stable and efficient power supply systems. 

The remainder of the report outlines the prognostic approach. 

Section 2 lays the theoretical groundwork, detailing the derivation 

of the generalized state-space model for the buck-boost SMPS, the 

discrete event simulation methodology used to create the training 

data, and how the probabilistic SoH estimations are converted into 

remaining useful life estimates. This section also elucidates the 

technique for identifying frequency vulnerabilities using the 

results of the Multitask LASSO Regression. Section 3 presents a 

buck-boost SMPS test fixture, featuring a microcontroller with 

proportional integral derivative (PID) control and voltage-based 

current sensors for the input filter and SMPS inductor currents. 

These sensors use a high-impedance, time-constant matching 

network for accurate current measurement and are used to collect 

impedance information. Section 4 presents the research analysis 

of the results and discusses any wider implications. Finally, in 

Section 5, a summary of the research findings and conclusions is 

provided. 

2. Theory 

In this research, the intricacies of EMI filter and SMPS In this 

research, the intricacies of EMI filter and SMPS design are 

addressed utilizing the generalized state-space averaging (GSSA) 

model. This modeling approach decomposes the state signals 

using Fourier analysis to account for the harmonic content 

evolution related to the effects of the switching frequency 

harmonics and the degradation effects in aluminum electrolytic 

capacitors within the SMPS and input filters. The analysis 

employs a buck-boost DC-DC SMPS topology with a general 

input EMI LC-type low-pass filter, as illustrated in Figure 1 in 

Section 1. 

Parasitic resistances and losses, including the input filter 

inductor's parasitic resistance, the equivalent series resistance 

(ESR) of input and output capacitors, and the copper losses in the 

SMPS inductor, are assumed. Additionally, inputs associated with 

the input voltage, forward voltage drops across the switching 

transistor and diode, and load current perturbations are considered. 

This comprehensive approach allows for a detailed 

understanding of how various parasitic elements and operational 

parameters influence the performance and stability of the SMPS, 

thereby providing a robust foundation for predictive maintenance 

and reliability assessment. 

2.1. State Space Averaging  

The development of a linearized model for a SMPS with an 

EMI filter employs Kirchhoff's Voltage Law across circuit loops, 

focusing on continuous conduction mode (CCM) operation. In 

CCM, the system oscillates between states of active switching 

transistor and conducting diode. By averaging these states, the 

model smooths out non-linear transitions due to the switch's high 

slew rate, simplifying the analysis. By performing the nodal 

analysis and solving for the state time derivatives, state space 

representation of the EMI filtered SMPS can be found below in 

(1). 

 
�̇� = 𝐴 ⋅ 𝑥 + 𝐵 ⋅ 𝑢
𝑦 = 𝐶 ⋅ 𝑥 + 𝐷 ⋅ 𝑢

  (1)

  

 𝑥 = [

𝑖𝐿𝑖

𝑖𝐿
𝑣𝐶𝑖

𝑣𝐶𝑜

], 𝑢 = [

𝑣𝑖𝑛

𝑣𝑀

𝑣𝐷

𝑖𝑂

], 𝑦 =

[
 
 
 
 
𝑣𝑜

𝑖𝐿𝑖

𝑖𝐿
𝑣𝐶𝑖

𝑣𝐶𝑜]
 
 
 
 

 

where x, u, y are the state, input, and output vectors, respectively, 

consisting of the input and SMPS inductor current, 𝑣𝐶𝑖  and 𝑣𝐶𝑖 , 

and input and output filter capacitor voltages, 𝑣𝐶𝑖   and 𝑣𝐶𝑜 , and 

input voltage, 𝑣𝑖𝑛, switch and diode forward bias voltages, 𝑣𝑀 and 

𝑣𝐷, and load current perturbations, 𝑖𝑂. 

2.2. Steady State 

The steady state behavior is derived by setting the state 

derivative to zero and solving for the steady state response as 

shown in (2). 

 �̇� = 0 → 𝑋 = −𝐴−1 ⋅ 𝐵 ⋅ 𝑈      (2) 

2.3. Linearization 

Linearization is used to create a small-signal model that 

accounts for duty cycle perturbations and their interactions with 

state variables: 

𝑥 = �̃� + 𝑋        𝑢 = �̃� + 𝑈 

2.4. Proportional integral derivative Control Laws 

The proportional integral derivative (PID) controller logic for 

the output voltage tracking objective can be below in (3).  

𝛿 = 𝐾𝑝(�̃�𝑟𝑒𝑓 − �̃�𝑜) + 𝐾𝑖∫ (�̃�𝑟𝑒𝑓 − �̃�𝑜)𝑑𝑡 + 𝐾𝑑
𝑑

𝑑𝑡
(�̃�𝑟𝑒𝑓 − �̃�𝑜) (3)      

The PID controller is formulated to manage output voltage 

deviations as follows in (4). 

 
𝑑

𝑑𝑡
𝛿 = 𝐾𝑝

𝑑

𝑑𝑡
�̃�𝑂 + 𝐾𝑖(�̃�𝑟𝑒𝑓 − �̃�𝑂) − 𝐾𝑑

𝑑

𝑑𝑡

𝑑

𝑑𝑡
�̃�𝑂   (4) 

where 𝐾𝑃 , 𝐾𝐼 , and 𝐾𝐷  are the respective proportional, integral, 

and derivative gains, the voltage reference input,  �̃�𝑟𝑒𝑓, and the 

output voltage, �̃�𝑂 . This differential form leverages linear 

relationships of state and input vectors to adjust the duty cycle 

dynamically. 

2.5. Generalized State Space Averaging  

Generalized state space averaging is applied to express the 

state as a sum of sinusoidal functions over one switching period, 

enhancing the model's ability to capture the dynamic interactions 

within the SMPS and input EMI filter: 

𝑥(𝑡) = ∫ 𝐴 ⋅ 𝑥(𝑡) + 𝐵 ⋅ 𝑢(𝑡)
𝑡0+𝑇

𝑡0

𝑑𝑡 + 𝑥(𝑡0) 

= ∑ < 𝑥 >𝑘 (𝑡) 𝑒𝑖𝜔𝑘𝑡

𝑛

𝑘=−𝑛
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where 𝜔 =
2𝜋

𝑇
 is the angular frequency in terms of switching 

period, T. From the nodal analysis of the LC filtered buck boost 

circuit depicted in Figure 1, the original state space had four-states 

associated with each inductor current and capacitor voltage.  

𝑥𝑖(𝑡) = 𝑥𝑖 + 2 ∗ 𝐶𝑜𝑠(𝜔𝑡)𝑥𝑖+4 − 2 ∗ 𝑆𝑖𝑛(𝜔𝑡)𝑥𝑖+5 + 2
∗ 𝐶𝑜𝑠(2𝜔𝑡)𝑥𝑖+12 − 2 ∗ 𝑆𝑖𝑛(2𝜔𝑡)𝑥𝑖+13 

The x-coefficients are found from the real and imaginary 

component for each Fourier coefficient, <x>k , represents the 

amplitude of the k-th harmonic frequency component. 

< 𝑥 >𝑘= ∫ 𝑥(𝑡)𝑒−𝑖𝜔𝑘𝑡
𝑡

𝑡−𝑇

𝑑𝑡 

Using product rule and the chain rule, the expression for the time 

derivative of the Fourier coefficient is seen below in (5). 

𝑑

𝑑𝑡
< 𝑥 >𝑘= −𝑗𝜔𝑘𝜏 < 𝑥 >𝑘 (𝑡)+<

𝑑

𝑑𝑡
𝑥 >𝑘 (𝑡)  (5) 

The k-th order convolution coefficient is found as the sum of the 

product of the Fourier coefficients of the two signals noting the 

ordering of the average subscript combinations. 

< 𝑥 ⋅ 𝑦 >𝑘   = ∑ < 𝑥 >𝑖 (𝑡) ∗< 𝑦 >𝑘−𝑖 (𝑡)

𝑛

𝑘=−𝑛

 

The negative k-th average harmonic relates the complex conjugate 

of the signal, seen below in (6). 

 < 𝑥 >−𝑘=< 𝑥 >𝑘
∗  (6)

  

2.6. Extracting Transfer Function Information 

The use of analyzing AC frequency response features has long 

been used in insuring global stability of closed loop dynamic 

systems [2]. From linear systems theory, the complete family of 

output-to-input transfer function relationships can be found for a 

linear time-invariant multi-input multi-output dynamic system in 

state space representation can be found below in (7). 

𝐺(𝑠) = 𝐶 ⋅ (𝑠 ∗ 𝐼 − 𝐴)−1 ⋅ 𝐵                    (7) 

The output voltage to input gain, 𝐺𝑔  = 𝑣𝑜 /𝑣𝑖𝑛   and control, 

𝐺𝑐 = 𝑣𝑜/𝑑𝑐  are used to provide information concerning the 

different gain and phase margins which are measures of system's 

stability. The EMI filter output impedance, 𝑍𝑓,𝑜𝑢𝑡 = 𝑣𝑓,𝑜𝑢𝑡/𝑖𝑓,𝑜𝑢𝑡, 

and SMPS input impedance, 𝑍𝑖𝑛 = 𝑣𝑖𝑛/𝑖𝑖𝑛 ≈ 𝑣𝑖𝑛/𝑖𝐿 ∗ DC , are 

also used to evaluate the system's dynamic stability relying on the 

Middlebrook criterion as a method to assess compatibility 

between the SMPS and the LC-input filter, taking into account the 

effects of negative incremental impedance on the constant power 

controller voltage buck-boost SMPS [2]. 

2.7. Aluminum Electrolytic Degradation Models 

The longevity of aluminum electrolytic capacitors is chiefly 

compromised by electrolyte evaporation, a consequence of 

elevated operating temperatures and heat from ripple currents 

[8][9]. A thermal model, as shown in Figure 4, simplifies the 

system by considering the hotspot (THS) and case temperature (TC) 

to be approximately equal. This model integrates ripple current, 

capacitor ESR, and case-to-ambient thermal resistance, offering a 

streamlined approach to evaluating capacitor thermal behavior.  

 

Figure 4: Testing configuration to measure case-to-ambient thermal resistance 

assuming a negligible difference between case temperature, TC vs hotspot 

temperature THS. 

𝑅𝐶𝐴 =
𝑇𝐶 − 𝑇𝑎𝑚𝑏

𝐼 
2 ∗ 𝐸𝑆𝑅

 

𝑇𝑚𝑎𝑥 = 𝑅𝐶𝐴 ∗ 𝐼𝑚𝑎𝑥
2 ∗ 𝐸𝑆𝑅 + 𝑇𝑎𝑚𝑏 

Models have been developed to account for the environmental 

and temporal degradation-based effects on an aluminum liquid 

electrolytic capacitor’s capacitance and ESR [9]. These models 

are contained in (8) and (9) below. 

 𝐶𝑎𝑝(𝑇, 𝑡) = 𝐶𝑎𝑝0 ∗ 𝑒
𝐵0
𝑇(𝑡) ∗ (1 − ∫ 𝐿[𝑇(𝑡)]𝑑𝑡

𝑡

0
) (8) 

 𝐸𝑆𝑅(𝑇, 𝑡) =
𝐸𝑆𝑅0

1+𝐷0∗𝑇(𝑡)
∗ 𝑒∫ 𝑀[𝑇(𝑡)]𝑑𝑡

𝑡
0  (9) 

where 𝐿[𝑇(𝑡)] = 𝐴0 ∗ 𝑒
𝐸𝑎1

𝜅∗𝑇(𝑡) and 𝑀[𝑇(𝑡)] = 𝐶0 ∗ 𝑒
𝐸𝑎2

𝜅∗𝑇(𝑡), are the 

different Arrhenius models that relate the temporal degradation 

rate to temperature for the device in terms of dimensionless 

parameters 𝐴0  and 𝐶0  and activation energies Ea1 and Ea2, are 

found using experimentation [9].  

2.8. Discrete Event Simulation 

A discrete event simulation (DES) was performed to model the 

degradation trajectories of aluminum electrolytic capacitors' 

capacitance and ESR. The simulation initialized circuit attributes 

and parasitic elements with a 10% variation to mimic real-world 

deviations. Throughout the simulation, the duty cycle was 

dynamically adjusted based on PID control logic, targeting a 15V 

output from a 12V input overlaid with 10% white noise to 

represent input perturbations. An overview of the DES is depicted 

in the directed graph in Figure 5. 
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Figure 5: Discrete event simulation routine used to simulate the small time scale 
responses and the large time scale capacitor degradation responses. 

The lifecycle of three sample SMPS was simulated by 

analyzing startup transient responses in 2-microsecond 

increments over a span of 600 increments, achieving a steady state. 

At this steady state, the ripple current through each capacitor was 

calculated for every time response. This data was then applied to 

incrementally update the temporal degradation. The degradation 

cycle was advanced every 200 hours, continuing up to a maximum 

of 3000 hours or until a failure condition occurred. Failure was 

defined as an event where the output experienced an overshoot or 

ripple voltage exceeding 2 volts. 

2.9. State of Health Prediction Methods 

The following sections cover the derivation of the different 

prognostic approaches. The three methods focus on 

dimensionality reduction routines and extracting tacit information 

from time-series data. 

2.9.1. Method 1: (PCA-DNN) 

The first method involves reducing the high dimensional data 

using principal component analysis for feature engineering and a 

deep neural network for classification of the state of health (SoH) 

into probabilistic fuzzy estimations. 

2.9.1.1. Feature Engineering with Principal Component Analysis 

The features from the AC analysis create a high dimensional 

data set that captures the underlying behavior but are too complex 

for efficient analysis. Principal component analysis (PCA) is a 

statistical technique that reduces the dimension of the data while 

preserving most of the variation by identifying correlations within 

the data using a covariance matrix, seen below. 

 𝛴 =
1

𝑛−1
𝑋𝑋𝑇 (10)

   

Eigen analysis is used to create synthetic variables that are linear 

combinations of the original features. 

 Σv = λv (11) 

These variables can be truncated to only include the most 

significant details of the variation in the original data.  

2.9.1.2. Neural Networks 

The reduced-dimension PCA output data serves as an input to 

the first layer of a deep neural network (DNN). A neural network 

is composed of layers of neurons that take a linear combination of 

inputs, x, assigns a respective weight to each input, w, and a bias, 

b, and applies an activation function, 𝑓(⋅). 

 𝑦 = 𝑓(Σ𝑖=1
𝑛 𝑤𝑖𝑥𝑖 + 𝑏) (12) 

A common activation function used for the hidden neurons is the 

ReLu function which adds non-linearities into the model to help 

learn complex patterns. 

𝑅𝑒𝐿𝑈(𝑥) = max(0, 𝑥)         (𝐻𝑖𝑑𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟) 

To create the binned state-of-health probabilities in the output, a 

SoftMax function is used which normalized exponentials to create 

a probability distribution. 

 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑥𝑖) =
𝑒𝑥𝑖

Σ𝑗=1
𝑛 𝑒𝑧𝑖

  (𝑂𝑢𝑡𝑝𝑢𝑡) (13) 

The PCA/DNN pipeline for the AC analysis feature data can be 

seen in Figure 6. 

 

Figure 6: Diagram of the PCA-DNN framework, where high dimensional 

frequency response data is projected using the truncated discrete principal 
components and used as inputs to a deep neural network.  

2.9.2. Method 2: CWT-SVM 

Continuous Wavelet Transforms (CWTs) are useful in 

analyzing time signals that exhibit non-stationary behavior. Such 

as state of health classification [19].  The time and frequency 

analysis capability of the CWTs make them ideal at analyzing 

state-of health effects from harmonics associated with the 

interactions between the output of the LC-type input EMI-filter 

and the input of the closed-loop SMPS. 

2.9.2.1. Continuous Wavelet Transform 

The CWT formula used in this report can be found below in 

(14).  

 CWT(𝑠, 𝜏) =
1

√|𝑠|
∫ 𝑥(𝑡)𝜓 (

  𝑡−𝜏

𝑠
) 𝑑𝑡

∞

−∞
 (14) 
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where, 𝜓(𝑡) is the wavelet function, s adjusts the wavelet’s width 

and 𝜏 translates the wavelet thereby affecting time resolution. 

2.9.2.2. Support Vector Machine 

The CWT is utilized to analyze the time-frequency 

characteristics of the system’s output voltage. This analysis 

generates a high-dimensional image array, capturing intricate 

time-scale variations within the signal. These image arrays serve 

as the input for a Support Vector Machine (SVM), a powerful 

machine learning technique used for classification tasks. SVM 

operates by identifying optimal boundary support vectors among 

the data points that represent different classes. It constructs a 

hyperplane that maximizes the margin, which is the distance 

between the nearest data point of each class and the hyperplane 

itself. This maximization is crucial as it contributes to the 

robustness of the classification against new data. The objective 

function of SVM is formulated to minimize: 

 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 =
1

2
||𝑤𝑑||

 

2
 (15) 

 
where wd is the normal to the hyperplane. SVM uses 

constraints to ensure that all data points correctly classify by 

maintaining a distance from the hyperplane: 

 𝑦𝑖(𝑤
𝑇𝑥𝑖 + 𝑏) ≥ 1,  ∀ 𝑖 (16) 

where 𝑥𝑖 are the CWT feature vectors, 𝑦𝑖  are the respective class 

labels ranging from +1 to -1 and 𝑤𝑇𝑥𝑖 + 𝑏  is a linear decision 

function.  

 

Figure 7: Diagram of the CWT-SVM framework, where high dimensional time-
frequency response data is projected using PCA and then used as input to a 

support vector machine algorithm used for classification of the state of health. 

To assist in creating separability in the data, a radial basis 

function is used, that measures the similarity between the data 

points. 

𝐾(𝑥𝑖 , 𝑥𝑗) =  𝑒−𝛾||𝑥𝑖−𝑥𝑗||
2

 (Radial Basis Function) 

Using the kernel trick changes the constraints to the following 

form: 

 𝑦𝑖(∑ 𝛼𝑗𝑦𝑗𝐾(𝑥𝑖 , 𝑥𝑗)
𝑛
𝑗=1 + 𝑏) ≥ 1,  ∀ 𝑖 (17) 

where 𝛼𝑗  are Lagrange multipliers, which are optimized during 

training. 

A diagram of the CWT-SVM methodology can be found in 

Figure 7, illustrating how time series data from the output voltage 

is processed into CWT image arrays. These arrays are then used 

as inputs to the kernel SVM, which classifies the system’s state 

based on learned patterns from the training phase.  

2.9.3. Method 3: Fuzzy Multi-Task Functional Fusion Predictors 

The fuzzy multi-task fusion predictor uses b-spline functional 

curves to form versatile low dimensional representations of the 

AC frequency features created from the transfer function 

representations. The method creates fusion between the signals by 

extending the features using convolution integral-based cross-

correlations and multi-task learning with LASSO regression to 

identify a sparse subset of test conditions conducive to increasing 

the performance of the prognostic. 

2.9.3.1. B-Spline Resampling 

B-spline interpolation resamples time series data to a standard 

temporal scale, utilizing piecewise polynomials defined over 

specific intervals as can be found below in (18). 

𝑓(𝑡) = ∑𝑃𝑖𝐵𝑖,𝑘(𝑡)

𝑛

𝑖=0

 

𝐵𝑖,1(𝑡) = {
1,    𝑖𝑓, 𝑡𝑖 ≤ 𝑡 ≤ 𝑡𝑖+1

0,    otherwise
   

𝐵𝑖,𝑘(𝑡) =
𝑡−𝑡𝑖

𝑡𝑖+𝑘−1−𝑡𝑖
𝐵𝑖,𝑘−1(𝑡) +

𝑡𝑖+𝑘 −𝑡

𝑡𝑖+𝑘−𝑡𝑖+1
𝐵𝑖+1,𝑘−1(𝑡)    (18) 

2.9.3.2. Extending the Features using Derivatives 

Derivatives of the gas path parameters are approximated 

using the forward finite difference method to enrich the feature set, 

enabling more detailed analyses. 

 𝑓′(𝑥) =
𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
 (19) 

2.9.3.3. Generating Cross-Correlated Features Expansions 

The individual AC features can be extended using polynomial 

expansion of the discrete AC waveforms and their derivatives 

using the expression below in (20) used to calculate the 

convolution integrals between two signals: 

 (𝑓 ∗ 𝑔)(𝑥) = ∫ 𝑓(𝑥) ⋅ 𝑔(𝑥 − 𝛿)
∞

−∞
𝑑𝛿 (20)

  

where f and g represent different AC transfer functions, 𝛿 

represents a shift in the frequency domain, and  𝑥 = 2𝜋𝑗𝑓𝑠, and 𝑓𝑠 

is the signal frequency. 

 2.9.3.4. Functional Principal Component Analysis 

 It is possible to extract functional principal components from 

the functional b-spline representations of the extended states, 

paralleling how PCA extracts the primary variational modes from 

discrete multivariate cross-sectional data. This is achieved by 
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using the inner product to generalize the multivariate principal 

component eigen analysis problem. 

  
  ∫ 𝐶(𝑠, 𝑡)𝜙𝑘(𝑡)𝑑𝑡 = 𝜆𝑖𝜙𝑘(𝑠) (21) 

where 𝜙𝑖(𝑡)  are principle components selected from a selected 

from infinite set, 𝜆𝑖 are the sorted eigenvalues and  𝐶(𝑠, 𝑡) serves 

as an empirical covariance function given in the following form 

below. 

 𝐶(𝑠, 𝑡) =
1

𝑛
∑ (𝑋𝑖(𝑠) − 𝜇(𝑠))(𝑋𝑖(𝑡) − 𝜇(𝑡))𝑛

𝑖=1  (22) 

where 𝑋𝑖(𝑠) consists of a vector of observed functional data (i.e., 

curves and spectra), 𝜇(𝑠) is a mean function estimated from the 

data, and s and t are different points across the sample curves. 

2.9.3.5. Functional Data Projections 

The ith-observation within the data can be projected onto the 

most significant functional principal components, to summarize 

the principal variational aspects of the functional signal while 

preserving essential patterns and trends: 

 �̂�𝑖(𝑠) = 𝜇(𝑠) + ∑ ∫ (𝑋𝑖(𝑠) − 𝜇(𝑠))𝜙𝑘(𝑠)𝑑𝑠𝐾
𝑘=1 𝜙𝑘(𝑠) (23) 

2.9.3.6. Creating probabilistic State of Health Estimations 

State of health estimations are represented probabilistically, 

converting crisp inputs into a binned format to facilitate 

uncertainty analysis and enhance model explainability. The crisp 

inputs were converted to 10-bins that make up the sequential 

values between 0 and 1.  

 𝐵𝑖𝑛(𝑥) = ⌊𝑆𝑜𝐻 ∗ 𝑁𝑏𝑖𝑛𝑠⌋  (24) 

2.9.3.7. Predicting State of Health using Multi-Task LASSO 

Regression 

Multi-task LASSO regression is utilized to predict state of 

health by exploiting commonalities across tasks and applying L1 

regularization for effective feature selection. Shared information 

among different tasks is used to create SoH estimations that are 

robust to individual feature anomalies by minimizing the 

following cost function: 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 = min
𝑊,𝑏

1

𝑁
Σ𝑖=1

𝑁 ||𝑌 − (𝑊Θ + 𝑏)||𝐹
2 + 𝜆Σ𝑗=1

𝐷 ||𝑊||1  (25) 

Multitask LASSO regression employs L1 regularization to 

promote sparsity across different tasks by zeroing out certain 

predictor weights, ideal for handling high-dimensional datasets. 

This method computes the state of health by aligning predictor 

weights to minimize the root mean square error (RMSE) between 

the predicted and actual health states. The resulting predictions are 

then processed through a SoftMax function, in (26) below, to 

generate probability density functions, enhancing the 

interpretability of the model’s outputs. 

 𝑆𝑜𝑓𝑡𝑀𝑎𝑥(𝑥𝑖) =
𝑒𝑥𝑖

Σ𝑗=1
𝑛 𝑒

𝑥𝑖𝑗  
 (26) 

2.9.3.8. Developing Measure of Uncertainty using Shannon 

Entropy 

The Shannon entropy function is used to quantify the expected 

information contained in a random variable or distribution, with 

higher entropy values indicating more unpredictability or disorder 

within the distribution. Equation 27 below has the i-th samples 

entropy calculated using the state of health probabilities. 

 

Figure 8: Diagram of the FMT-FFP framework, where high dimensional 
frequency response data is smoothed using functional b-splines and extended 

using functional derivatives and polynomial expansion using convolution 

integrals. Multi-Task LASSO regression is used for feature selection and produce 
a probabilistic assessment of state-of-health. 

 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑥𝑖) = Σ𝑗=1
𝑛 𝑥𝑖𝑗 log (𝑥𝑖𝑗)  (27) 

A scaling is applied to the entropy function to create a more 

discernable measure of uncertainty,  

 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦(𝑥𝑖) =
𝑒1−𝜉∗𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑥𝑖)

𝑒1   (28) 

2.9.3.9. Predicting Remaining Useful Life from State of Health 

and Usage Time. 

A composite function in (29) is used to predict the remaining 

useful life of a system based on its current State of Health (SoH) 

and accumulated Usage Time (UT). 

 𝑅𝑈𝐿(𝑆𝑜𝐻, 𝑈𝑇) = 𝑎 ∗ 𝑒−𝑏∗𝑆𝑜𝐻 + 𝑐 ∗ 𝑈𝑇𝑑 + 𝑒  (29) 

2.10. Comparative Analysis of Methods Using Error-Based 

Performance Metrics  

In this study, we assess three distinct methods for predicting 

SoH and the remaining useful life (RUL). The primary metric for 

evaluating the accuracy of these predictions is the RMSE of the 

output voltage compared to the reference voltage, as defined in 

(30): 

 RMSE = √
1

n
Σi=1

n (Vout,i − Vref,i)
2
  (30) 

Additionally, uncertainty measurements play a crucial role in 

understanding the reliability of each method's predictions. Binned 
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probabilistic measurements of SoH have underlying uncertainty 

that can be used to compare the methods. By quantifying the 

probabilities of different SoH states, we can gauge the confidence 

level in the predictions made by each method. 

3. Simulation 

The simulation was run according to the diagram in Figure 5 

using the variables for the circuit, and degradation models found 

below in Table 1.  

Table 1: Simulation parameter values and ranges 

Initial Electrical Parameter Selections 

Parameter Ci, Co rCi, rCo Li L rM, rD, 

rLi, rL 

Value 0.1±0.02 

mF 

0.1±0.02 

mF 

10.0±2.0 

µH  

2.4±0.2 

mH 

0.1±0.04 

Ω 

Aluminum Capacitor Degradation Model Parameters [al elct testing 
report] 

Parameter A0 Ea1 Ea2 B0 C0 

Value 3.462M 0.773 0.694  -111.8 3.999M 

Parameter D0 Cap0 ESR0 RCA kb 

Value 0.407m Nominal 

Ci, Co 

Nominal 

rCi, rCo 

100°C 8.6173 

eV/K 

Simulation Parameter Selection 

Parameter ts tL Ts Tc TM 

Value 0.1±0.02 0.1±0.02 10.0±2.0 2.4±0.2  0.1±0.04  

The data was collected and assigned a state of health label. The 

output voltage time response for a sample unit can be seen in 

Figure 9 below. As the degradation in the input and output filter 

progresses it causes parametric shifts that affect the ripple 

characteristics of the SMPS device. 

 

Figure 9: Output voltage start-up transient response for the buck boost SMPS 

from the generalized state space average model with input EMI filter exhibiting 
aluminum electrolytic capacitor degradation over time. 

Using the state derivative information, the ripple current over 

the capacitors can be reconstructed, seen below in Figure 10, and 

used to calculate the estimated case temperature that is then used 

to dictate the degradation of the capacitors’ capacitance and ESR. 

The case temperature, ESR, and capacitance and ripple for the 

sample device can be seen below in Figure 11. The device is 

utilized in an ambient temperature of 105°C which creates 

environmental effects on the capacitance and ESR by causing the 

aluminum and film layers to be more closely packed with higher 

temperature. Over time degradation is associated with electrolytic 

liquid drying and temperature effects which causes capacitance to 

decrease and ESR to increase.  

 

Figure 10: Current waveforms input EMI filter exhibiting aluminum electrolytic 

capacitor degradation over time. 

 

Figure 11: Output voltage start-up transient response for the buck boost SMPS 

from the generalized state space average model with input EMI filter exhibiting 
aluminum electrolytic capacitor degradation over time. 

4. Results 

The following section presents visual representations of input 

feature samples for each of the three methods, followed by graphs 

illustrating the SoH and RUL estimates with calculated 

uncertainty. It concludes with a comparison of each method's 

performance through tabulated error metrics, providing a clear 

evaluation of their predictive accuracy. 

4.1 Visualization of Reduced Dimensional Features 

The PCA-DNN method employs Principal Component 

Analysis (PCA) to reduce high-dimensional data to three principal 

components, focusing on capturing the most critical variances. 

This streamlined data set forms the basis for further deep neural 

network analysis, ensuring that essential features are retained 

while excluding less informative variables. 

Figure 12 displays a 3D scatter plot of the reduced-

dimensional features. This visual representation plots each 

observation according to the three principal components, helping 

to elucidate the data’s underlying structure and highlighting 

potential patterns or anomalies within the reduced feature space. 

The CWT features are visualized through a set of heatmaps, 

representing the CWT magnitudes, ranging from 0 to 1600 hours, 

seen below in Figure 13. Each panel represents a distinct time 

slice showing the frequency content of the data evolves, revealing 

changes in signal properties due to operational impacts like aging 

or wear. By examining these patterns, you can detect critical 

events or degradation, aiding in predictive maintenance and 

system monitoring.  
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Figure 12: Current waveforms input EMI filter exhibiting aluminum electrolytic 

capacitor degradation over time. 

 

Figure 13: Sequential CWT heatmaps from 0 to 1600 hours, showing the 
evolution of signal frequencies over time. 

The FMT-FFP method sample input features are shown in 

Figure 14 showing amplitude and phase responses for gain and 

control transfer functions and EMI Filter output, and SMPS input 

impedances. The magnitudes are standardized and domain 

normalized, ranging from 0 to 1. Each colored line represents 

variable conditions, highlighting the dynamic interactions within 

the system. 

The state of health (SoH) classification methods outlined in 

Section 2 were applied to the data and the results can be seen 

below in Figure 15. For inputs into the respective method, 

extended AC features were used for the PCA-DNN and FMT-FFP 

routines and the raw output voltage time-response features were 

used for the CWT-SVM method. The predictions for the binned 

state of health outputs were turned into probability density 

functions (greyscale in the plot) using the SoftMax function and 

the uncertainty formula was used to create a set of empirical 

confidence intervals for each of the SoH estimates (in red). 

 
Figure 14: Current waveforms input EMI filter exhibiting aluminum electrolytic 

capacitor degradation over time. 

 

 

Figure 15: State-of-health prediction from the multi-task LASSO regression for the testing data. 
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Figure 16: Remaining useful life prediction from the composite model 

contained in (30). 

The SoH estimates were used as inputs into the RUL 

calculation given in Section 2, and the results can be seen for 

each method in Figure 16. The plot compares three methods for 

predicting RUL of components: FMT-FFP, PCA-DNN, and 

CWT-SVM. Each model’s predicted RUL is plotted against the 

actual RUL over time.  

The FMT-FFP method shows decent trend following with 

moderate prediction uncertainty that increases as RUL 

decreases. The PCA-DNN method exhibits tighter confidence 

intervals close to the end of life for each component but suffers 

from misalignments during mid-life usage predictions. The 

CWT-SVM has the widest confidence intervals indicating 

higher uncertainty and shows considerable fluctuation, 

suggesting sensitivity to noise. 

All methods struggle with long-term predictions, reflected 

by widening confidence intervals over time, but the FMT-FFP 

has the most predictable temporal behavior which resulted in a 

monotonically decreasing SoH estimate and bounds. The 

variability in prediction accuracy at different life stages 

suggests that combining models or refining calibration might 

yield better results. No single method consistently outperforms 

the others across the entire lifecycle. The RMSE error for both 

the SoH and RUL estimate can be found in Table 2 below.  

Table 2: RMSE values for the separate methods found in the literature 

compared to the proposed method. 

 
SoH (%) 

Training 

SoH (%)  

Testing 

RUL (Hrs) 

Training 

RUL (Hrs) 

Testing 

Ref 

FMT-

FFP 

0.176±0.032 0.108±0.047 395.6±29.5  366.3 ±37.7 8 

PCA-

DNN 

0.098 ±0.047 0.129±0.414 377.9±55.26 388.2±56.6 8* 

CWT-

SVM 

0.181±0.029 0.250±0.014 4501.7 

±23.0 

569.8 

±14.12 

3* 

 

Each method has its own benefits that are difficult to 

compare quantitatively. The PCA-DNN method can establish 

nonlinear trends in the data that provides superior predictive 

capability but would be difficult to interpret without additional 

approaches to interrogate the activated weight paths that lead to 

predictions with low uncertainty, and increased performance. 

The CWT-SVM method benefits from the fact that it uses an 

output voltage signal for feature generation and requires 

minimal testing compared to using the AC response features. 

This led to increased uncertainty in the SoH estimations that 

translated to misalignments in the RUL curves.  

The performance of each method generally improves with 

more data, however the PCA-DNN is subjected to the vanishing 

gradient phenomena where over training causes initial weights 

to trend towards zero, and the CWT-SVM has hyperparameters 

associated with the chosen kernel that could lead to overfitting. 

The FMT-FFP method has a 𝜆  regularization parameter 

associated with the MTLR objective functions that was found 

via grid search and 𝜉-hyperparameter that scales the entropy in 

the uncertainty function that was found using k-fold cross 

validation, the results of which are in Figure 17.  

 

Figure 17: k-fold cross validation results used to find an optimal value of 
ξ=0.04 for the entropy scaling parameters in the SoH uncertainty calculation. 

The FMT-FFP method provides the most explainable results 

in that the selected features are associated with specific 

frequency points in the AC-response information, found in 

Figure 18.  

These points are found to be in line with the second 

harmonic of the switching frequency (10 kHz) and a value of 

15.8 kHz which is consistent across several of the features. This 

allows for a targeted data sampling routine that that does not 

require data collection over the full frequency range. 

4.2. Data Validation using the test circuit 

To validate the developed prognostic, a test circuit apparatus 

was built shown in Figure 19 was used to simulate degradation. 

The results of the output filter capacitor ESR degradation 

trajectories show a mean response of 0.1-0.3 ohms over the 

lifetime of the component and for the input filter and mean ESR 

degradation trajectory going from 0.05 to 0.15. Using parallel 

circuit arrangements, a digital potentiometer to vary a resistance 

in-series with each capacitor. This effectively created a means 

of simulating the ESR degradation, ignoring the effects of the 

diminished capacitance seen in the simulation results.  
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4.3. Using a test circuit for validation 

The FMT-FFP method was validated using a test circuit, 

designed with features selected via multi-task LASSO 

regression. The circuit components include a 2.7mH inductor, a 

220µF capacitor with 7.6 ohms series resistance, an IRLZ44N 

NPN MOSFET, and a 1N5109 Schottky diode. An MCP602 

operational amplifier is also employed in a differential topology 

for voltage scaling. 

 

 

Figure 18:  Feature importance visualizations for the down selected features 
identified in the FMT-FFP method. 

 

Figure 19: A schematic of the test circuit topology, a 3D model and actual 
image of the test circuit. 

The frequency features for the validation were taken from a 

subset of AC features identified from simulation results and 

used to train and validate the prognostic method. ESR 

degradation trajectories where modelled using a 15Ω rheostat 

modulates ESR degradation from the nominal 7.6 Ω to 22.6 Ω 

using a similar exponential relationship to that identified in 

Figure 10. The procedure generated a comprehensive dataset 

for testing. 

A power voltage divider circuit was used to generate the AC 

response features, by exciting the input signal at specific 

frequencies identified through simulation. The process was 

streamlined by limiting measurements to control amplitude 

gains, derived by dividing the output voltage gain by the duty 

cycle gain for a given input disturbance. This was chosen 

because only a reading of the output voltage, and a readily 

available duty cycle value are required. The control amplitude 

measurements were enhanced with numerical derivatives at 

±2kHz and further extended via polynomial expansion. The 

overall approach to generating the features can be seen in the 

diagram in Figure 20. 

 

Figure 20:. Test circuit results using the down selected features identified in 
the FMT-FFP method. 

The data were standardized and split into training and 

testing subsets and multi-task LASSO regression was used 

with grid search on the λ-value to derive state-of-health 

probabilities and uncertainty measures, seen in Figure 21. 

The training state of health RMSE error was found to be 

1.99 +/- -0.07 and the testing RMSE error was 1.61 +/- 0.05. 

The state of health and usage time where combined using 

equation 30 to form the following RUL predictions seen in 

Figure 22. The training remaining useful life RMSE error was 

found to be 68.55+/- 0.73 and the testing RMSE error was 

224.96+/- 1.89. 
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Figure 21: Test circuit results using the down selected features identified in the FMT-FFP method. 

 

Figure 22: Test circuit results using the down selected features identified in the FMT-FFP method. 

 

5. Discussion 

This This research introduces a novel Fuzzy Multi-Task 

Functional Fusion Predictor (FMT-FFP) method for predicting 

Remaining Useful Life (RUL) that takes into account prediction 

uncertainty and incorporates multivariate functional fusion of the 

AC analysis raw data. The accuracy of the FMT-FFP method is 

improved by using functional principal component projections to 

handle noise that would otherwise reduce the model’s 

effectiveness. The method can be generalized across different 

systems and conditions to account for specific failure scenarios. 

The FMT-FFP method is not as sensitive to the choice of 

hyperparameters compared to more black-box methods, making it 

conducive to practical implementation across varied contexts to 

provide domain knowledge of impending failure modes. 

Experimental validation has shown that the FMT-FFP framework 

can be used to monitor systems in real time, providing timely 

insights into system health and potentially averting failures before 

they occur. 

Comparison analysis shows that the FMT-FFP method 

performs well against more black-box methods of prediction, such 

as the PCA-DNN and CWT-SVM approaches. This comparative 
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analysis highlights the robustness and practical applicability of 

the FMT-FFP method in diverse operational scenarios. 

6. Conclusion 

This research aims to advance model-based design strategies 

for power electronics by developing a framework that reduces 

EMI in SMPS, with a particular focus on mitigating conducted 

emissions and their subsequent effects on radiated emissions. A 

key achievement of this study is the utilization of multitask 

LASSO regression to define data-driven stability regions, which 

enables the sparse mapping of design parameters directly linked 

to EMI sources. Employing a strategy that integrates low-

dimensional feature mapping with sparsity-induced optimization, 

the method extracts and utilizes extended frequency-based 

features from the transfer functions and impedance characteristics 

of input filters and SMPS to create a sparse linear model. This 

method establishes AC frequency test criteria and addresses 

complex degradation behaviors associated with higher-order 

harmonics and specified stability criteria under high-EMI 

conditions. 

The models have been validated through LTSPICE 

simulations and a test circuit, demonstrating their adaptability to 

diverse operational conditions and confirming their real-world 

feasibility and effectiveness. 

Future research should focus on further validating these 

methods across a broader range of SMPS device topologies and 

operational conditions. Additionally, incorporating more 

comprehensive signal observations could further enhance the 

predictive accuracy and robustness of the model. Comparative 

analyses with existing methods have underscored the unique 

interpretability and practical effectiveness of our approach, 

highlighting its significant potential for industry adoption. This 

study not only demonstrates a significant step forward in the field 

of power electronics but also emphasizes the critical role of 

advanced analytics and modeling in boosting the reliability and 

efficiency of power systems amidst rapidly evolving technology 

demands. 

Conflict of Interest 

The authors declare no conflict of interest. 

References 

[1] S. Douzi, M. Tlig, J.B.H. Slama, 2015. “Experimental investigation on the 
evolution of a conducted-EMI buck converter after thermal aging tests of 

the MOSFET,” Microelectronics Reliability, 55(9-10), 1391-1394, 2015, 

doi:10.1016/j.microrel.2015.07.009. 

[2] J. I. Corcau, L. Dinca, "Stability Studies of Power Systems for More 

Electric Aircraft," in 2022 International Symposium on Power Electronics, 

Electrical Drives, Automation and Motion (SPEEDAM), Sorrento, Italy,  

861-864, 2022, 10.1109/SPEEDAM53979.2022.9842040. 

[3] D. Nemashkalo, N. Moonen, F. Leferink, "Practical consideration on power 

line filter design and implementation," 2020 International Symposium on 
Electromagnetic Compatibility - EMC EUROPE, Rome, Italy, 1-6, 2020, 

doi: 10.1109/EMCEUROPE48519.2020.9245777. 

[4] R. Trois, G. Viscillo, G. F. Volpi, S.A. Pignari, "Accurate prediction of 
conducted emissions in switch-mode power supplies for space 

applications," in 2020 International Symposium on Electromagnetic 

Compatibility - EMC EUROPE, Rome, Italy, 1-6, 2020, 

doi: 10.1109/EMCEUROPE48519.2020.9245814. 

[5] L. Eliasson, “Aluminium electrolytic 
capacitor’s performance in Very High Ripple 

Current and Temperature Applications,” in CARTS Europe, 2007. 

[6] D. Goodman, J. Hofmeister, J. Judkins, "Electronic prognostics for 
switched mode power supplies," Microelectronics Reliability, 47(12), 

1902-1906, 2007. 

[7] R. F. Orsagh, D. W. Brown, P. W. Kalgren, C. S. Byington, A. J. Hess and 
T. Dabney, "Prognostic health management for avionic systems,"  in 2006 

IEEE Aerospace Conference, Big Sky, MT, USA, p. 7, 2006, doi: 

10.1109/AERO.2006.1656086. 

[8] C.S. Kulkarni, J.R. Celaya, K. Goebel, G. Biswas, "Physics based 

electrolytic capacitor degradation models for prognostic studies under 

thermal overstress." in  PHM Society European Conference, Vol.1, No. 1, 

2012, doi:10.36001/phme.2012.v1i1.1423 

[9] B. Sun, X. Fan, C.A. Yuan, C. Qian, G. Zhang, "A degradation model of 

aluminum electrolytic capacitors for LED drivers," in 2015 16th 
International Conference on Thermal, Mechanical and Multi-Physics 

Simulation and Experiments in Microelectronics and Microsystems, 

Budapest, Hungary, 1-4, 2015, doi:10.1109/EuroSimE.2015.7103124. 

[10] M.M. Jovanović, "Power supply technology–past, present, and future," 

in Power Conversion and Intelligent Motion China Conf. for Power 

Electronics (PCIM China) Shanghai, China, 3-15, 2007.  

[11] Z. Wang, Conducted EMI Noise Prediction and Filter Design Optimization, 

Ph.D Dissertation, Virginia Tech, 2016. 

[12] Z. Li, K.W. E. Cheng, J. Hu, "Modeling of basic DC-DC converters," in 

2017 7th International Conference on Power Electronics Systems and 

Applications - Smart Mobility, Power Transfer & Security (PESA), Hong 

Kong, China, 1-8, 2017, doi: 10.1109/PESA.2017.8277782.  

[13] A. Ghosh, K. Mayank, State-space average modeling of dc-dc converters 

with parasitic in discontinuous conduction mode (dcm), Bachelor’s Thesis, 

National Institute of Technology, Rourkela, 2010.  

[14] L. Sandrolini, A. Mariscotti, "Waveform and spectral characteristics of 

supraharmonic unsymmetrical conducted EMI of switched-mode power 

supplies," Electronics, 11(4), p. 591, 2022, 

doi:10.3390/electronics11040591. 

[15] A. Ismail, L. Saidi, M. Sayadi, M. Benbouzid, “A new data-driven approach 
for power IGBT remaining useful life estimation based on feature reduction 

technique and neural network,” Electronics, 9(10), p.1571, 2020, 

doi:10.3390/electronics9101571.  

[16] A.G. EPCOS, "Aluminum electrolytic capacitors – general technical 

information’. White Paper, 2014.  

[17] J. Gu, M. Pecht, "Prognostics and health management using physics-of-
failure," in 2008 Annual Reliability and Maintainability Symposium, Las 

Vegas, NV, USA, 481-487, 2008, doi: 10.1109/RAMS.2008.4925843. 

[18] A.B. Kareem, J.W. Hur, “A feature engineering-assisted CM technology 
for SMPS output aluminium electrolytic capacitors (AEC) considering D-

ESR-QZ parameters,” Processes, 10(6), p. 1091, 2022, doi: 

10.3390/pr10061091. 

[19] T. McGrew, V. Sysoeva, C.H. Cheng, C. Miller, J. Scofield, M. J. Scott, 

"Condition Monitoring of DC-Link Capacitors Using Time–Frequency 

Analysis and Machine Learning Classification of Conducted EMI,"  IEEE 
Transactions on Power Electronics, 37(10), 12606-12618, 2022, doi: 

10.1109/TPEL.2021.3135873. 

[20] A. Altmann, B. Ng, "Joint Feature Extraction from Functional Connectivity 
Graphs with Multi-task Feature Learning," in 2015 International Workshop 

on Pattern Recognition in NeuroImaging, Stanford, CA, USA, 29-32, 2015, 

doi: 10.1109/PRNI.2015.17 

Copyright: This article is an open access article distributed under 
the terms and conditions of the Creative Commons Attribution (CC 
BY-SA) license (https://creativecommons.org/licenses/by-sa/4.0/). 

http://www.astesj.com/
http://dx.doi.org/10.1109/SPEEDAM53979.2022.9842040
https://doi.org/10.1109/EMCEUROPE48519.2020.9245814
https://doi.org/10.36001/phme.2012.v1i1.1423
http://dx.doi.org/10.1109/EuroSimE.2015.7103124
https://doi.org/10.3390/electronics11040591
http://dx.doi.org/10.3390/electronics9101571
http://dx.doi.org/10.3390/pr10061091
https://creativecommons.org/licenses/by-sa/4.0/


D. Mallamo et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 9, No. 4, XX-YY (2024) 

www.astesj.com     50 

Appendices 

Appendix A. Linearized Closed Loop State Space Matrices for an 

LC-Filtered Switch Mode Power Supply 

State Space Result 

The state matrices associated with the plant, 𝐴, input, 𝐵, Output, 𝐶, and 

feed-through response, 𝐷, are found below. 

𝐴 =

[
 
 
 
 
𝐴11 𝐴12 𝐴13 0 𝐴15

𝐴21 𝐴22 𝐴23 𝐴24 𝐴25

𝐴31 𝐴32 0 0 𝐴35

0 𝐴42 0 𝐴44 𝐴45

𝐴51 𝐴52 𝐴53 𝐴54 0 ]
 
 
 
 

 

𝐴11 = −
𝑟𝐶𝑖

+𝑟𝐿𝑖

𝐿𝑖
; 𝐴12 =

𝐷 𝑟𝐶𝑖

𝐿𝑖
; 𝐴13 = −

1

𝐿𝑖
; 𝐴15 =

𝐼𝐿𝑟𝐶𝑖

𝐿𝑖
;    

𝐴21 = −
𝐷 𝑟𝐶𝑖

𝐿
; 𝐴22 = 𝐾1;  𝐴23 =

𝐷

𝐿
; 𝐴24 =

𝑅(𝐷−1)

𝐿(𝑅+𝑟𝐶𝑜)
; 

 𝐴25 =
1

𝐿(𝑅+𝑟𝐶𝑜)
(𝐼𝐿(𝑅 𝑟𝐶𝑜

+ 𝑅 𝑟𝐷 + 𝑅 𝑟𝐿 + 𝑟𝐶𝑜
𝑟𝐷 + 𝑟𝐶𝑜

𝑟𝐿 − (𝑅 +

𝑟𝐶𝑜
)(𝑟𝐶𝑖

+ 𝑟𝐿 + 𝑟𝑀)) + 𝑅(𝐼𝑂𝑟𝐶𝑜
+ 𝑉𝐶𝑜

) + (𝑅 + 𝑟𝐶𝑜
)(𝐼𝐿𝑖

𝑟𝐶𝑖
+ 𝑉𝐶𝑖

− 𝑉𝐷 +

𝑉𝑀); 

𝐴31 =
1

𝐶𝑖
; 𝐴32 −

𝐷

𝐶𝑖
; 𝐴35 = −

𝐼𝐿

𝐶𝑖
; 𝐴42 =

𝑅(1−𝐷)

𝐶𝑜(𝑅+𝑟𝐶𝑜)
;  𝐴44 = −

1

𝐶𝑜(𝑅+𝑟𝐶𝑜)
; 

𝐴45 =
𝑅(−𝐼𝐿+2 𝐼𝑂)

𝐶𝑜(𝑅+𝑟𝐶𝑜)
; 

𝐴51 =
𝐷𝐾𝑑𝑅 𝑟𝐶𝑖

𝑟𝐶𝑜
(1−𝐷)

𝐿 𝐿𝑖(𝑅+𝑟𝐶𝑜)
+

𝐷𝐾𝑝𝑅 𝑟𝐶𝑖
𝑟𝐶𝑜

(1−𝐷)

𝐿(𝑅+𝑟𝐶𝑜)
+

𝐷𝑟𝐶𝑖

𝐿 
(
𝐾𝑑𝐾1𝑅 𝑟𝐶𝑜

(1−𝐷)

(𝑅+𝑟𝐶𝑜)
+

𝐾𝑑𝑅2(1−𝐷)

𝐶𝑜(𝑅+𝑟𝐶𝑜)
2) +

𝐷𝐾𝑑𝑅 𝑟𝐶𝑜
(1−𝐷)

𝐶𝑖 𝐿𝑖(𝑅+𝑟𝐶𝑜)
; 

 𝐴52 =
𝐷2𝐾𝑑𝑅 𝑟𝐶𝑖

2 𝑟𝐶𝑜
(1−𝐷)

𝐿 𝐿𝑖(𝑅+𝑟𝐶𝑜)
+

𝐾𝑖𝑅 𝑟𝐶𝑜
(1−𝐷)

(𝑅+𝑟𝐶𝑜)
+

𝐾𝑝𝐾1𝑅𝑟𝐶𝑜
(1−𝐷)

(𝑅+𝑟𝐶𝑜)
+

𝐾1 (
𝐾𝑑𝐾1𝑅 𝑟𝐶𝑜

(1−𝐷)

(𝑅+𝑟𝐶𝑜)
+

𝐾𝑑𝑅2(1−𝐷)

𝐶𝑜(𝑅+𝑟𝐶𝑜)
2) +

𝐾𝑝𝑅2(1−𝐷)

𝐶𝑜(𝑅+𝑟𝐶𝑜)
2 +

𝑅(1−𝐷)(
−𝐾𝑑𝑅2 𝑟𝐶𝑜

(1−𝐷)2

𝐿(𝑅+𝑟𝐶𝑜)
2 −

𝐾𝑑𝑅

𝐶𝑜(𝑅+𝑟𝐶𝑜
)
)

𝐶𝑜(𝑅+𝑟𝐶𝑜)
−

𝐾𝑑𝐷2𝑅 𝑟𝐶𝑜
(1−𝐷)

𝐶𝑖𝐿(𝑅+𝑟𝐶𝑜)
2 ; 

𝐴53 =
𝐷𝐾𝑑𝑅 𝑟𝐶𝑖

𝑟𝐶𝑜
(1−𝐷)

𝐿 𝐿𝑖(𝑅+𝑟𝐶𝑜)
+

𝐷𝐾𝑝𝑅 𝑟𝐶𝑖
𝑟𝐶𝑜

(1−𝐷)

𝐿(𝑅+𝑟𝐶𝑜)
+

𝐷(
𝐾𝑑𝐾1𝑅 𝑟𝐶𝑜

(1−𝐷)

(𝑅+𝑟𝐶𝑜)
+

𝐾𝑑𝑅2(1−𝐷)

𝐶𝑜(𝑅+𝑟𝐶𝑜)
2)

𝐿
; 

 𝐴54 =
𝐾𝑖𝑅

𝑅+𝑟𝐶𝑜

−
𝐾𝑝𝑅

𝐶𝑜(𝑅+𝑟𝐶𝑜)
−

𝐾𝑝𝑅2𝑟𝐶𝑜
(1−𝐷)2

𝐿(𝑅+𝑟𝐶𝑜)
2 −

−
𝐾𝑑𝑅2𝑟𝐶𝑜

(1−𝐷)2

𝐿(𝑅+𝑟𝐶𝑜)
2 +

𝐾𝑝𝑅

𝐶𝑜(𝑅+𝑟𝐶𝑜)
2

𝐶𝑜(𝑅+𝑟𝐶𝑜)
 +

𝑅(𝐷−1)(
𝐾𝑑𝐾1𝑅 𝑟𝐶𝑜

(1−𝐷)

(𝑅+𝑟𝐶𝑜)
+

𝐾𝑑𝑅2(1−𝐷)

𝐶𝑜(𝑅+𝑟𝐶𝑜)
2)

𝐿(𝑅+𝑟𝐶𝑜)
 ; 

 𝐵 =

[
 
 
 
 
𝐵11 0 0 0 0

0 𝐵22 𝐵23 𝐵24 0

0 0 0 0 0

0 𝐵42 0 0 0

𝐵51 𝐵52 𝐵53 𝐵54 𝐵55]
 
 
 
 

 

𝐵11 =
1

𝐿𝑖
;𝐵22 = −

𝑅 𝑟𝐶𝑜(1−𝐷)

𝐿(𝑅+𝑟𝐶𝑜)
;𝐵23 = −

𝐷

𝐿
; 𝐵24 = −

1−𝐷

𝐿
;  

𝐵42 =
𝑅 (1−2𝐷)

𝐶𝑜(𝑅+𝑟𝐶𝑜)
; 𝐵51 =

𝐷𝐾𝑑𝑅 𝑟𝐶𝑖
𝑟𝐶𝑜(1−𝐷)

𝐿 𝐿𝑖(𝑅+𝑟𝐶𝑜)
; 

 𝐵52 =
𝐾𝑖𝑅𝑟𝐶𝑜

(1−2𝐷)

𝑅+𝑟𝐶𝑜

+ 𝐾𝑝𝑅
2𝑟𝐶𝑜

2 ⋅
(1−𝐷)(𝐷−1)

𝐿(𝑅+𝑟𝐶𝑜)2
+

𝑅

𝑟𝐶𝑜
(𝐷−1)(𝐾𝑑𝑅

𝑟𝐶𝑜
(1−𝐷)(−𝐷(𝑅+𝑟𝐶𝑜)(𝑟𝐶𝑖

+𝑟𝐿+𝑟𝑀)+(𝐷−1)(𝑅𝑟𝐶𝑜+𝑅𝑟𝐷+𝑅𝑟𝐿+𝑟𝐶𝑜𝑟𝐷+𝑟𝐶𝑜𝑟𝐿))

𝐿(𝑅+𝑟𝐶𝑜)
2   +

𝐾𝑑
2𝑅(1−𝐷)

𝐶𝑜(𝑅+𝑟𝐶𝑜)
2 )

𝐿(𝑅+𝑟𝐶𝑜)
+

𝐾𝑝𝑅2(1−2𝐷)

𝐶𝑜(𝑅+𝑟𝐶𝑜)
2

 

−

𝑅(1−2𝐷)(
𝐾𝑑𝑅2𝑟𝐶𝑜

(1−𝐷)2

𝐿(𝑅+𝑟𝐶𝑜
)
2 −

𝐾𝑑𝑅

𝐶𝑜(𝑅+𝑟𝐶𝑜
)
2)

𝐶𝑜(𝑅+𝑟_𝐶𝑜)
;   

𝐵53 = −
𝐷 𝐾𝑝𝑅 𝑟𝐶𝑜

(1−𝐷)

𝐿(𝑅+𝑟𝐶𝑜)
−

𝐷

𝐿
(

𝐾𝑑𝑅𝑟𝐶𝑜
(1−𝐷)(−𝐷(𝑅 𝑟𝐶𝑜)(𝑟𝐶𝑖

+𝑟𝐿+𝑟𝑀)+(𝐷−1)(𝑅𝑟𝐶𝑜+𝑅𝑟𝐷+𝑅 𝑟𝐿+𝑟𝐶𝑜𝑟𝐷+𝑟𝐶𝑜𝑟𝐿))

𝐿(𝑅+𝑟𝐶𝑜)
2 +

𝐾𝑑𝑅2(1−𝐷)

𝐶𝑜(𝑅+𝑟𝐶𝑜)
2);  

𝐵54 = −
𝐾𝑝𝑅 𝑟𝐶𝑜

(1−𝐷)2

𝐿(𝑅+𝑟𝐶𝑜)
−

(1−𝐷)

𝐿
 (

𝐾𝑑𝑅𝑟𝐶𝑜
(1−𝐷)(−𝐷(𝑅 + 𝑟𝐶𝑜)(𝑟𝐶𝑖

+𝑟𝐿+ 𝑟𝑀)+(𝐷−1)(𝑅𝑟𝐶𝑜+𝑅𝑟𝐷+𝑅 𝑟𝐿+𝑟𝐶𝑜𝑟𝐷+𝑟𝐶𝑜𝑟𝐿))

𝐿(𝑅+𝑟𝐶𝑜)
2 +

𝐾𝑑𝑅2(1−𝐷)

𝐶𝑜(𝑅+𝑟𝐶𝑜)
2);  

𝐵55 = −𝐾𝑖; 

 𝐶 =

[
 
 
 
 
 0

𝑅𝑟𝐶𝑜(1−𝐷)

𝑅+𝑟𝐶𝑜

0
𝑅

𝑅+𝑟𝐶𝑜

𝑅𝑟𝐶𝑜(−𝐼𝐿−2 𝐼𝑂)

𝑅+𝑟𝐶𝑜

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0 ]

 
 
 
 
 

  

 𝐷 =

[
 
 
 
 
 0

𝑅𝑟𝐶𝑜(1−2𝐷)

𝑅+𝑟𝐶𝑜

0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0]
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