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 In healthcare, accurate communication is critical, and medical coding, especially coding 
using the ICD (International Classification of Diseases) standards, plays a vital role in 
achieving this accuracy. Traditionally, ICD coding has been a time-consuming manual 
process performed by trained professionals, involving the assignment of codes to patient 
records, such as doctor’s notes. In this paper, we present an automated ICD coding 
approach using deep learning models and demonstrate the feasibility and effectiveness of 
the approach across subsets of ICD codes. The proposed method employs a fine-grained 
approach that individually predicts the appropriate medical code for each diagnosis. In 
order to utilize sufficient evidence to enhance the classification capabilities of our deep 
leaning models, we integrate GPT-4 to extract semantically related sentences for each 
diagnosis from doctor’s notes. Furthermore, we introduce a hierarchical classifier to 
handle the large label space and complex classification inherent in the ICD coding task. 
This hierarchical approach decomposes the ICD coding task into smaller, more 
manageable subclassification tasks, thereby improving tractability and addressing the 
challenges posed by the high number of unique labels associated with ICD coding. 
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1. Introduction 

In healthcare, both structured and unstructured information is 
recorded and stored to ensure that all relevant healthcare processes 
and patient observations are properly documented. As a key 
element of the structured data associated with a specific hospital 
visit, medical codes, such as those in the ICD (International 
Classification of Diseases) standards [1], are used to accurately 
describe the visit and indicate the treatment and diagnoses of the 
patient. ICD coding has long been a labor-intensive manual 
process performed by trained professionals, requiring meticulous 
coding of patient records, including doctor’s notes. In this paper, 
we examine how medical codes can be automatically assigned to 
reflect the different medical diagnoses a patient may receive during 
a hospital visit. Due to the high complexity of healthcare and 
medicine, there are thousands of unique ICD codes reflecting a 
myriad of diagnoses. Among the globally prevalent standards 
currently used in healthcare and healthcare finance, the ICD codes 
assigned to a particular hospital visit are highly relevant to the 
patient’s healthcare. This code assignment allows healthcare and 
finance professionals to accurately communicate hospital visit 
information and avoid misunderstandings and inaccuracies in 

billing and treatment [2], [3], [4]. Therefore, medical coding, the 
process of assigning the appropriate ICD codes for a specific 
hospital visit, is an important step in healthcare.  

Typically, doctors write comprehensive notes that contain 
important information related to a patient’s visit. These notes, 
while containing crucial observations and diagnoses associated 
with the visit, are largely written in unstructured natural language. 
That is, these notes are kept in a traditional note-taking style, which 
is not conducive to communication when compared to highly 
specific and universally recognized medical codes. Professionals 
known as medical coders are employed to process the unstructured 
doctor’s notes into structured lists of medical codes, complete 
documentation, and improve record keeping and communication 
within the healthcare ecosystem. However, this task is non-trivial 
due to the complexity of healthcare, which involves dealing with 
countless diagnoses, many of which are highly similar and easily 
confused. Introducing automation into the medical coding process 
could enhance human performance and help allocate resources to 
more critical aspects of healthcare. Nonetheless, ICD coding 
automation faces several challenges [2]. As a classification task, 
ICD coding requires assigning a unique label to each relevant 
diagnosis. In practical scenarios, dozens of unique codes may be 
necessary to describe a particular visit, and appropriate codes must 
be selected from potentially similar codes that could lead to 
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confusion. In addition to the challenges of the classification task 
itself, doctor’s notes as input data typically exhibit a number of 
characteristics that further complicate the coding task. For 
example, the notes do not have a prescribed uniform structure and 
are written in natural language, which may vary significantly from 
doctor to doctor and from institution to institution. The writing 
may include jargon, abbreviations, and typographical errors such 
as misspellings. In addition, the notes often span several pages, 
listing a variety of information that may or may not be useful in 
assigning ICD codes. This means that there is often a large amount 
of raw input data, but much of it is not relevant to the specification 
of a particular ICD code to a diagnosis. 

In this study, we present an automated ICD coding method that 
employs a fine-grained hierarchical procedure to predict the ICD 
codes to be assigned to a given instance of doctor’s notes. Many 
existing approaches to automated ICD coding employ the 
following two main steps: first, a vector representation is generated 
for the natural language input of the doctor’s notes; second, the 
vector is fed into a multi-label classifier that outputs all predicted 
ICD codes at once. We refer to methods that employ this popular 
strategy as coarse-grained. Unlike the coarse-grained approaches, 
which attempt to code the entire doctor’s notes document in one 
shot, producing all predicted codes at once [5], [6], [7], we 
minimize the complexity of code prediction by performing fine-
grained assignments that locate and target diagnoses individually 
within the notes. Using a fine-grained approach, the various code 
predictions required to fully code an instance of doctor’s notes can 
be made separately, thus constituting a series of less complex 
individual classifications [8]. To further support the classification 
of a given diagnosis, we use GPT (Generative Pre-trained 
Transformer) to derive related concepts for a diagnosis and 
identify sentences in doctor’s notes that are semantically related to 
the diagnosis. The diagnosis is then combined with the related 
sentences to form a fine-grained data point that is now ready for 
classification. Since the classifier is responsible for classifying 
only one diagnosis at a time, the complexity of classification is 
reduced compared to classifying all diagnoses at once with 
multiple labels. Furthermore, each fine-grained data point is a 
human-understandable footprint that can be reviewed to determine 
the evidence used to arrive at the prediction for a particular ICD 
code. The proposed approach incorporates a hierarchical classifier 
that can further decompose the classification task of a single 
diagnosis into multiple steps or subclassifications. For example, 
the first subclassification can identify the disease family, and 
subsequent subclassifications can become more and more specific 
until they reach the ICD code prediction. Furthermore, the design 
of the hierarchical classifier is analogous to human decision-
making and ensures a higher level of understandability and 
explainability for users in healthcare. The main contributions and 
novelties of the paper are summarized as follows: 

• Implemented a fine-grained ICD coding approach that predicts 
one ICD code at a time, thus limiting the complexity of 
classification while improving human comprehensibility. 

• Demonstrated the feasibility and effectiveness of generative 
large language model (LLM) GPT-4 for sentence extraction, 
which greatly improves the performance of downstream ICD 
code classification. 

• Introduced a modular hierarchical approach that leverages 
existing ICD code organization to enable high performance of 
automated coding when many unique ICD codes must be 
considered and improve the human comprehensibility of the 
classification results. 

The rest of the paper is organized as follows. Section 2 
discusses related work. Section 3 presents the fine-grained ICD 
coding approach and deep learning architectures used. Section 4 
discusses the GPT-powered related sentence extraction technique 
used in the fine-grained approach. Section 5 details the automated 
hierarchical classification approach using deep learning. Section 6 
presents a case study and the analysis results. Section 7 concludes 
the paper and mentions future work. 

2. Related Work 

Prior to the popularization of public datasets such as Medical 
Information Mart for Intensive Care III (MIMIC-III) [9], 
researchers achieved automated medical coding primarily through 
the use of rule-based systems. These systems can leverage expert 
knowledge and reduce the need for large-scale training data. In [3], 
the authors introduced a rule-based system that assigns ICD codes 
by analyzing sentence elements in radiology reports. The system 
uses production rules that incorporate domain knowledge and 
simple logic to draw conclusions about the ICD codes that may be 
indicated by the reports. The increasing volumes of electronic 
healthcare records (EHR) over time have allowed the application 
of methods that require larger amounts of training data. In [4], the 
authors developed a method to automatically generate a set of rules 
from radiology report data to predict ICD codes. The automatically 
generated rules were found to be similarly effective to rule sets 
handmade by domain experts, which is an encouraging sign for 
medical coding automation. In [5], the authors introduced one of 
the first machine learning approaches to automated medical 
coding. They applied Naïve Bayes-based classifier and established 
the viability of machine learning approaches for the medical 
coding task.  

More recently, the release of large-scale EHR datasets has 
enabled the use of deep learning models in automated medical 
coding. This increased data availability has motivated researchers 
to explore more resource-intensive methods. One generalized two-
step deep learning approach has been successful in automated ICD 
coding. In this generic approach, the language in a doctor’s notes 
document is first vectorized, and then the entire document is used 
as input by a multi-label classifier that predicts ICD codes from the 
resulting vector. In [6], the authors introduced a method that 
vectorizes the entire document, which is then passed to a 
convolutional neural network that outputs the predicted ICD code. 
In [10], the authors achieved high performance in the ICD coding 
task by exploring various options for the initial vectorization step 
and using a BERT-based deep learning classifier for final 
classification. However, the large amount of text in doctor’s notes 
poses a unique challenge, as the large input can confuse a deep 
learning classifier, especially if it is biased toward a limited portion 
of the input. To address this challenge, some research efforts have 
focused on developing classifiers that can build more complex 
representations at multiple levels of analysis, aiming to understand 
doctor’s notes in terms of overall conceptual or even sentence-
level complexity [6], [7], [8]. Other research efforts have addressed 
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this problem by introducing a labeling attention mechanism in 
deep learning methods to produce different document 
interpretations for each unique label [11], [12], [13]. While these 
methods demonstrated effectiveness and enhanced classification 
performance, they also come with limitations. In particular, these 
methods employ a two-step strategy known as the coarse-grained 
approach. In other words, given a report or doctor’s notes 
document, they treat the document as a single input and then 
predict all associated ICD codes together. Consequently, these 
methods confront a more complicated classification challenge, 
where all labels must be predicted from a single classifier input, 
and potentially output results that can be difficult for users to 
interpret. In contrast, we present a fine-grained ICD coding 
approach that targets and predicts one ICD code at a time. To 
achieve this, we decompose the automated coding task for doctor’s 
notes into a series of single-label classifications. This approach 
reduces the complexity of the medical coding process compared to 
the multi-label classification method. More specifically, our 
approach starts with a diagnosis from doctor’s notes and then uses 
GPT-enhanced sentence extraction to identify the sentences that 
are semantically related to the diagnosis. This information is 
grouped into a fine-grained data point for ICD code prediction, 
which can be examined to reveal evidence used by the classifier 
for medical coding, thereby improving the explainability and 
confidence of predictions. 

A number of existing studies have exploited the inherent 
relationships between labels, using hierarchical classifiers to make 
predictions through a series of classification steps. Hierarchical 
classifiers are characterized by specially designed subcomponents 
to handle the various decisions required to achieve a complete 
classification. These involved decisions are arranged into a 
hierarchical tree with each node representing a decision. One way 
to implement the hierarchy is to assign a separate subclassifier to 
each node of the hierarchy to process the decisions, which is 
known as the per-node local classifier approach. In this approach, 
the classifiers required for each decision or subclassification can 
be specially designed for their particular tasks, and the complexity 
of each subclassification can be much lower compared to the single 
step in a non-hierarchical classification approach. The per-node 
local classifier approach has been used with success in a variety of 
classification tasks. In [14], the authors used a local classifier per 
node hierarchy for the galaxy morphology classification task. 
Their approach used an established taxonomy of galaxy 
morphologies to design the local classifier hierarchy. In [15], the 
authors proposed a local classifier-based solution for genomic data 
classification. Their approach applied multi-label annotation of 
examples along several paths of the hierarchy and the results 
showed that deeper and more detailed hierarchies could produce 
better results. In [16], the authors used a local classifier hierarchy 
for the task of protein function classification. In their approach, the 
physical and chemical properties of proteins were used to predict 
their function in an organism. In [17], the authors employed local 
classifiers to classify natural language documents by topic. Their 
approach exploited the hierarchical relationships between related 
topics and used these relationships to design effective local 
classifier hierarchies. In [18], the authors studied the design of 
local classifiers at a higher level and investigated the impact of 
hierarchical design on classification performance. Their results 
showed that their hierarchical classification approach could 

significantly improve classification performance, but the 
performance gains would depend heavily on a good hierarchical 
design and training parameters. Unlike the above approaches, our 
approach is to design a classifier hierarchy by using a taxonomy of 
ICD codes to enable the automated coding of diagnoses. In our 
hierarchical approach, we first classify the disease type or family 
for a given diagnosis, and then attempt to classify specific ICD 
codes using subclassifiers in a hierarchical tree. 

There have also been some efforts to implement hierarchical 
components in a single classifier, which is known as a global 
hierarchical classifier. In [19], the authors compared the global 
Naïve Bayesian classification method with local methods and 
found that the global Naïve Bayesian classification method has a 
performance advantage in the protein function classification task. 
In [20], the authors tackled the face recognition task by combining 
several techniques, including global hierarchical classification. 
Their models included a convolutional component consisting of 
layers that could produce successively more complex classification 
features. Like hierarchical classification with local classifiers, 
using a global hierarchical classifier allows designers to address 
specific aspects of classification through hierarchical components. 
The resulting global classifier is highly cohesive and easy to train 
and apply. However, a global classifier lacks the modularity 
provided by the individuality and separability of local classifiers. 
Therefore, a global classifier can be difficult to design and it is not 
possible to train their hierarchical components in a highly specific 
manner to optimize their performance. In contrast, the modular 
design in our per-node local classifier approach allows local 
classifiers to be reused, repurposed, or rearranged in the hierarchy 
or other hierarchies without the need for extensive retraining. 
Depending on the nature of the classification task, efficiency can 
also be improved by parallelizing the training of multiple local 
classifiers. In addition, the use of local classifiers in a hierarchical 
architecture allows for more direct decision tracking through the 
explicit hierarchical decision tree, whereas the hierarchical 
components and decisions of a global classifier reside in the black 
box of a single classifier, and thus interpreting the behavior of the 
global classifier may be more difficult. 

One of the major performance bottlenecks in ICD coding is 
extreme labeling bias. That is, some ICD codes are so frequent that 
thousands of unique examples may appear in a given dataset, while 
other codes may represent rare diagnoses with only a few 
examples. Typical deep learning methods require many examples 
to learn a given label, and are therefore particularly vulnerable to 
label bias introduced by ICD codes. Several recent studies have 
specifically addressed the problem of label bias in an attempt to 
directly address this key challenge. In [21], the authors used a 
debiasing method that first statistically analyzes the model’s 
performance to detect bias. Once quantified, the model’s bias for 
each class is used to calculate a debiasing factor, which is utilized 
to adjust the confidence of the model’s output for each class before 
deciding on the final prediction. In addition to deep learning 
models, some researchers used fuzzy logic and string matching 
techniques to improve the performance of few-shot and zero-shot 
ICD coding [22]. After initially identifying the ICD code category 
through a deep learning classifier, fuzzy string matching was used 
to compute Levenshtein distances between sentences in the 
doctor’s notes and the various ICD codes included in the predicted 
category from which the final code predictions were selected. In 
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[23], the authors explored the use of transfer learning in a related 
unsupervised learning task to provide additional learning data for 
the deep learning classifier. In their approach, the classifier is 
trained not only on labeled examples that can be very scarce 
especially for underrepresented ICD codes, but also on completely 
unlabeled clinical texts using token-level similarity. In this paper, 
we take a hierarchical approach to the ICD coding problem, 
building labeling relationships (between different ICD codes) into 
the model architecture. This predefined hierarchical structure 
leverages the existing knowledge about labels and supports label 
classification, even if few examples can be trained. However, 
beyond this hierarchical structure and the application of class 
weights during training, the problem of label bias is not directly 
addressed. Therefore, the above strategies for mitigating label bias 
can be used as a complement to our approach in future research. 

While LLMs and generative AI are best known for their 
generative capabilities through chatbot applications such as 
ChatGPT and Microsoft Copilot, they can also be used for more 
straightforward tasks like text classification [24], [25]. Most LLMs 
have a large internal network whose output is passed through a 
specially trained “head” to produce the final desired output. One 
way to adapt an LLM to perform classification is to replace the 
generative head with a classification head. The network can then 
be trained holistically to learn the classification task and fine-tuned 
using the existing knowledge to be applied to that task [26]. This 
approach has been used in Google’s BERT LLM and its many 
variants [27]. In [28], the authors applied several BERT-based 
models to influential text classification benchmarks and achieved 
state-of-the-art results. Some of the benchmarks involved include 
topic classification,  sentiment classification, and goods and 
services identification. Similar to these methods, we use BERT-
based classifiers with a multiclass classification head to perform 
classification tasks. In addition to being used directly for 
classification tasks, the generative capabilities of LLM can also be 
used to augment or enrich the input data points for other 
classification methods. In [29], the authors introduced GPT3Mix, 
a method that augments training data by using the generative 
ability of GPT-3. In GPT3Mix, GPT-3 combined multiple training 
examples to generate a hybrid synthetic training example, and 
downstream classifiers trained on GPT3Mix-enhanced data points 
showed significant improvement over the baseline model. In [30], 
the authors utilized LLM-based text augmentation to improve 
classification performance for grant proposal research topics. 
Their approach enhances imbalanced training data by targeting 
underrepresented classes and generating new training data points 
to populate them. In contrast to these methods, our medical coding 
approach enriches data points indirectly by using generative 
language models. Based on an initial diagnosis concept, we prompt 
the model for a set of semantically related terms. We then use these 
related terms to mine related sentences from the free text of 
doctor’s notes and combine them with the diagnosis to generate an 
enriched fine-grained data point to improve training and 
classification performance.  

3. Fine-Grained ICD Coding Using Deep Learning 

3.1. A Novel Approach for Automated ICD Coding 

During a hospital visit, healthcare professionals collect and 
record various data about the patient. One key record comes in the 

form of doctor’s notes, which are text-based records generated and 
maintained by hospital staff. Doctor’s notes typically cover the 
entire healthcare process and may involve anything from medical 
measurements and observations to patient medical histories and 
miscellaneous comments. Some parts of doctor’s notes are loosely 
structured, presenting information in bulleted or numbered lists; 
while others can be unstructured, presented in common sentences 
with agrammatic or misspelled language. Figure 1 shows a text 
snippet from a randomly sampled example of doctor’s notes.  

Cardiovascular: On telemetry, the patient was noted to have multiple 
premature ventricular contractions. These were asymptomatic and not 
treated. Due to the sudden episodes of pulmonary edema … 

Figure 1: Text snippet from sample doctor’s notes. 

The free-text format of doctor’s notes allows for flexibility and 
convenience in covering a wide range of information about the 
patient and their hospitalization, but this flexibility comes at a 
price. Because of the free-form nature of doctor’s notes, much of 
the data they encode is not sufficiently structured and organized to 
be used effectively. For example, a doctor may have to flip through 
pages of irrelevant patient history to find important details related 
to a specific diagnosis; and an external institution such as an 
insurance company may not be able to recognize information 
related to billing due to the peculiarities of the way it is written. 
For this reason, doctor’s notes must be annotated with a set of 
highly specific codes that show the exact diagnoses and course of 
treatment. This allows other healthcare professionals and external 
entities to quickly and directly assess critical information that has 
previously been obscured by the difficulties associated with 
doctor’s notes. The ICD international standard provides a robust 
and extensive set of medical codes used to identify a myriad of 
disease diagnoses in healthcare. A version of the standard, ICD-9, 
was widely used in modern healthcare, leading to the release of a 
number of datasets coded using the standard. Recently, the newer 
ICD-10 has been accepted and frequently used by hospitals in the 
United States and some other countries. There are several 
accessible datasets using the ICD-10 standard, which are used for 
a variety of machine learning tasks, including automated ICD 
coding. The latest standard, ICD-11, has not yet been widely 
adopted, thus the available data using this standard are limited. 
However, ICD-11, like its predecessors, greatly expands the code 
bases offered by the previous standards and provides an important 
research motivation for the topic of automated coding using a large 
number of unique ICD codes. Despite the importance of ICD 
coding in healthcare, identifying and assigning the appropriate 
codes for a given instance of doctor’s notes has been a non-trivial 
task. To maintain manageable classification complexity and 
enhance ICD coding accuracy, we introduce a novel approach to 
automated ICD coding of doctor’s notes using GPT-enhanced text 
mining. Figure 2 shows an overview of the key components and 
steps of the proposed automated ICD coding approach. As shown 
in the figure, we use a fine-grained method, which performs ICD 
code assignment as a series of single-label classifications rather 
than a single multi-label classification. This means that the 
classifier used is only responsible for predicting one ICD code 
from a given input, thus reducing the complexity of the ICD code 
prediction process. In order to construct the fine-grained data 
points used to code a given instance of doctor’s notes, a diagnosis 
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needs to be selected from the doctor’s notes and paired with related 
sentences from the free text of the doctor’s notes. To mine 
sentences related to a specific diagnosis, we derive a set of 
diagnosis-related concepts using GPT-enhanced text mining. 
Subsequently, we search the free text of the doctor’s notes to mine 
sentences that contain one or more of the derived related concepts. 
The extracted related sentences are then combined with the 
diagnosis to form a fine-grained data point, which is fed into the 
fine-grained classifier to generate an ICD code prediction. 

 
Figure 2: Overview of a fine-grained approach enhanced by GPT-4. 

3.2. Fine-Grained ICD Code Assignment 

Unlike the fine-grained approach used in this paper, existing 
methods typically use coarse-grained techniques for ICD coding. 
These methods perform ICD coding through multi-label 
classification. That is, given a single input, which is the entire 
contents of a doctor’s notes instance, the goal is to produce a set of 
outputs, i.e., all appropriate ICD codes for the doctor’s notes 
instance. The classification procedure performs only one operation 
to process the entire doctor’s notes as a whole and outputs the 
predicted ICD codes accordingly. Figure 3 shows an overview of 
a typical coarse-grained classification approach. 

 
Figure 3: Automated ICD coding using a coarse-grained approach. 

One of the main disadvantages of coarse-grained methods is 
that they can lead to very complex classifications. First, the 
classifier has to deal with a large amount of raw data, as the 
contents of doctor’s notes can be several pages long. Much of this 
information is not useful for a specific ICD code assignment, and 
some may be useless for any code assignments, essentially useless 
noise. Second, a multi-label classification is inherently difficult, 
especially when the number of unique labels to be assigned is 
large. The ICD standards currently in use contain thousands of 
unique codes, and the code base continues to grow as new versions 
are released. Therefore, large-scale ICD coding is considered to be 
a difficult classification task with a very large label space. That is, 
when the number of unique labels in a multi-label classification 

task is 𝑛𝑛 , then there exist 2𝑛𝑛  unique label combinations. The 
resulting complexity must be captured by the training data and be 
tractable for the classifier architecture, which becomes 
increasingly challenging. In contrast, we adopt a fine-grained 
approach to ICD code assignment that seeks to avoid the 
difficulties associated with a coarse-grained strategy. The key to 
the fine-grained approach is to subdivide the ICD code assignment 
process down to the individual code level. In other words, rather 
than predicting all codes at once, we predict one code at a time 
from some “starting point”, namely a diagnosis, in the doctor’s 
notes. This shifts the task from a multi-label classification to 
single-label classifications, thus limiting the inherent classification 
complexity. Since we are predicting one code at a time, there is 
also no need to overwhelm the classifier with the full text of the 
doctor’s notes, instead using only the text that we believe is 
relevant to the current code classification. Thus, fine-grained 
classification not only reduces the complexity of the classification 
step, but also provides the opportunity to trim or enrich the input 
data used to predict each individual code in the medical coding 
process.  

To facilitate the division of the ICD code assignment task for a 
doctor’s notes instance, we can utilize the diagnoses in the doctor’s 
notes to mark the presence of codes to be identified. A doctor’s 
notes instance typically contains a section of “Discharge 
Diagnoses,” which is a delimited list of the most important 
diagnoses at the time of a given patient’s visit. Figure 4 shows the 
discharge diagnoses from randomly sampled doctor’s notes.  

DISCHARGE DIAGNOSES: 
- Pulmonary edema 
- Congestive heart failure 
- Metastatic carcinoma 

Figure 4: An example of discharge diagnoses from doctor’s notes. 

While the diagnoses provide the initial concepts for assigning 
codes to the doctor’s notes, they often lack the specific details 
required to determine the assignment of individual ICD codes. 
These diagnoses may contain abbreviations, misspellings, or other 
incompleteness that preclude precise assignment. Therefore, while 
they cannot be used alone to draw conclusions about the ICD codes 
needed for a given doctor’s notes instance, they can serve as ideal 
starting points for fine-grained classifications. For each diagnosis 
in a discharge diagnoses section, we perform a single-label 
classification on a different subset of the notes to predict the 
corresponding code. After assigning a predicted code to each 
diagnosis, the resulting set constitutes the set of predicted codes 
for the entire doctor’s notes instance. Let Ffine be a fine-grained 
classifier defined as a function that outputs an array of confidences 
for the output classes. Let doctor’s notes D be a 2-tuple (DIAG, 
FTXT), where DIAG is a list of diagnoses and FTXT is the free text 
of the doctor’s notes, respectively. The procedure for classifying 
an instance D of doctor’s notes using a fine-grained classifier Ffine 
is described in Algorithm 1. As shown in the algorithm, each 
individual diagnosis in the discharge diagnosis section is combined 
with a set of semantically related sentences in the free-text of the 
doctor’s notes to form a fine-grained data point dp. The data point 
dp is then used as an input to the single-label multiclass ICD code 
classifier Ffine, which predicts a suitable ICD code. Once all 
diagnoses in the doctor’s notes have been processed, the generated 
ICD code set is returned as the predicted code set for the doctor’s 
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notes. Note that in our fine-grained approach, sentences in the 
doctor’s notes are appropriately ignored if they are not relevant for 
the classification of a diagnosis. Therefore, our approach utilizes 
targeted and useful information for each prediction, enabling the 
classifier to predict relevant ICD codes more accurately. In 
addition, since the amount of raw text in the doctor’s notes may 
pose a problem for a classifier architecture that is limited by the 
size of the input, sentence extraction provides yet another key 
benefit. By removing irrelevant information, we also limit the 
average length of the data points, thereby expanding the scope of 
applicable classifiers and training techniques, which were 
previously limited by potentially high data volumes. A key 
consideration when using a fine-grained approach is how to 
identify the subset of doctor’s notes that are relevant and useful for 
the classification of a particular diagnosis. Thus, it is critical to 
develop an effective method for the inclusion of specific text 
passages in doctor’s notes based on their usefulness. 

Algorithm 1: Automated ICD Code Assignment 

Input: an instance of doctor’s notes dNotes, a single-label  
   multiclass ICD code classifier Ffine 
Output: a set of m predicted ICD codes codeSet, where                  

m = |dNotes.DIAG| 

Initialize codes = ∅ 
for each diagnosis α in dNotes.DIAG: 
   Extract a set of sentences Ψ from dNotes.FTXT related to α 

  Let fine-grained data point dp be (α, Ψ) 
  confidences = Ffine(dp) 
  code = argmax(confidences) 
  codeSet = codeSet ∪ {code} 

end 
return codeSet 

3.3. Transformer-Based Deep Learning Models 

Deep learning models are one of the dominant tools in the field 
of Natural Language Processing (NLP) [31]. Deep learning utilizes 
deep neural networks to perform tasks that are often difficult to 
solve programmatically because they are complex and potentially 
poorly-defined. Neural networks are computational architectures 
composed of artificial neurons. As shown in Figure 5, an artificial 
neuron takes one or more values as inputs and transform these 
values to generate an output value. The output value is either sent 
to the next neuron or neurons for further computation or as the final 
output of the network. 

 
Figure 5: (a) A traditional neural network with one hidden layer. (b) A deep 

neural network with more than one hidden layer. 

During the passage through the neural network, the input 
values are transformed according to a set of learned parameters 

called model weights. These weights are learned during the 
training phase, which optimizes the weights according to some 
correctness criteria. For example, a neural network classifier is 
trained to predict the true class of a given example, which means 
that the network will be optimized towards correct classification. 
After training, the network should be able to predict classes with 
reasonable classification performance even for unseen examples. 
While traditional neural networks contain only one hidden layer of 
neurons, limiting the complexity of possible transformations and 
resulting performance, deep neural networks use any number of 
hidden layers, meaning that arbitrarily complex architectures can 
be developed to cope with difficult problems. A comparison 
between a traditional neural network and a deep neural network is 
illustrated in Figure 5 (a) and (b). 

One deep learning architecture that dominates in NLP is the 
transformer-based architecture. A transformer-based architecture 
is a deep neural network consisting of modules called encoders and 
decoders equipped with self-attention mechanisms. These self-
attention mechanisms allow the network to learn and express 
relationships between individual tokens (e.g., words) in a natural 
language input sequence. At a high level, transformer-based 
architectures provide the complexity necessary to capture the way 
language changes based upon its context. One example is 
homonymy, where the same pronunciation or spelling has different 
meanings. For example, “saw” can represent one of two meanings 
depending on context. Take this sentence for example: “Patient 
reported he saw black spots in his vision,” where “saw” comes 
from the verb “see.” In another sentence: “Patient admitted with 
injuries related to a power saw,” “saw” is referring to a power tool. 
While a more primitive NLP model may assign the same meaning 
to both usages of “saw,” the self-attention mechanisms in a 
transformer-based deep learning network allow the model to 
distinguish between the two uses, resulting in a more robust and 
accurate understanding of the language. In essence, self-attention 
mechanisms allow the model to process each token (e.g., word) in 
the input sequence considering its relations to the surrounding 
tokens. When found nearby the word “vision”, “saw” is likely to 
refer to eyesight. On the other hand, when “power” is located 
nearby, “saw” is likely to refer to power tools. Other words that 
may have different meanings include pronouns, i.e., “it,” “they,” 
“these,” “those,” and other non-specific nouns used to denote other 
nouns. Whereas a more primitive NLP model may make little use 
out of such words, self-attention models can decipher the meaning 
of pronouns and give them the proper treatment. Figure 6 shows 
how an attention-based model can characterize a pronoun that 
other models may not understand. 

 
Figure 6: An attention-based model considers a pronoun “them” using the context 
of the surrounding words. 

As shown in Figure 6, the word “them” should not be taken at 
face value. Instead, the attention mechanism uses the surrounding 
words to modify its meaning to give it a more specific and useful 
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characterization. The word “them” attends most strongly to the 
word “symptoms” because it is the actual word “them” refers to. It 
also attends weakly to “treatments,” a word related to “symptoms” 
and attends slightly to the verbs “reducing” and “eliminating,” 
both of which act upon the “symptoms” in the sentence. 
Transformer-based architectures are characterized by the presence 
of transformer encoders and decoders, which are special 
architectural modules containing self-attention mechanisms. 
Encoders are responsible for converting natural language inputs 
into vectors. These vectors, known as encodings, can be used for a 
variety of downstream tasks. Decoders work in the opposite 
direction, taking encoded vectors as input and converting them 
back into natural language tokens (e.g., words). For example, a 
question-answer model may first locate the correct answer to a 
given question in the semantic or meaning space before using 
decoders to generate the natural-language expression of the 
answer. In this paper, we explore the automated ICD coding task 
using the fine-grained approach described in the previous sections. 
In our approach, a fine-grained data point is formed using a 
diagnosis and its semantically related sentences. The fine-grained 
coding task takes one fine-grained data point (natural language 
input sequence) and outputs one ICD code. To accomplish this 
task, some essential pre-processing tasks need to be performed, 
including lowercasing all letters as well as removing specific dates 
and identifiers as they are not useful for the classification task. 
Figure 7 shows a fine-grained classifier used to complete the 
classification step of the fine-grained ICD coding method. 

 
Figure 7: The transformer-based fine-grained deep learning classifier used to 
generate final ICD code predictions under the fine-grained approach. 

As shown in Figure 7, we tokenize the text by splitting the data 
point into a sequence of distinct tokens (e.g., words, suffixes). We 
then employ a fine-grained classifier that performs the following 
steps: first, tokens are given their initial vector representations or 
“embeddings” through an embedding layer. Once the original 

tokens have been converted to embeddings, they are ready to be 
encoded. In this case, they are fed into the first encoder, where self-
attention is applied, and the resulting vectors are fed into a feed-
forward neural network that further transforms the vectors. After 
passing through the neural network, the vectors are released from 
the first encoder and go to the next encoder. In this paper, we use 
a BERT-based model that contains a series of 12 encoders. After 
the 12 encoders have processed the vectors, the fully encoded 
vector is pooled and passed through a fully connected linear layer. 
The obtained values are then passed through a Softmax activation 
layer to output the final prediction. 

In addition to the advantages offered by transformer-based 
architectures, contemporary NLP models such as GPT-4 and 
BERT benefit greatly from pre-training. That is, they are 
extensively trained on very large datasets to gain general 
knowledge of the language and its meaning before being used for 
a specific application. After pre-training, users can extend or refine 
the general knowledge of the model for a specific task through 
further training (i.e., fine-tuning). We use MedBERT [32] as a 
fine-grained classifier, which is based on Google’s BERT 
architecture, a transformer-based model. In addition to the general 
pre-training of BERT on BookCorpus and the English Wikipedia, 
MedBERT was pre-trained on electronic medical record data, 
which means that it is particularly well suited for ICD coding. We 
fine-tuned MedBERT’s pre-training weights using the ICD coding 
task to maximize its performance. In addition to using MedBERT 
for classification, we use another transformer-based pre-trained 
model, GPT-4, to perform the sentence extraction step of the 
method. In the next section, we present a GPT-powered concept 
matching approach to support the extraction of semantically 
related sentences from doctor’s notes to a specific diagnosis. 

4. Sentence Extraction Using GPT-4 

To extract semantically related sentences from doctor’s notes, 
we introduce a mechanism for reasoning about the potential 
relationship between a given sentence and a given diagnosis. 
Briefly, a sentence can be viewed as a sequence of words referring 
to a set of concepts. In the most straightforward case, a sentence 
can directly refer to the concept of a diagnosis. In this case, it is 
easy to determine that the sentence is related to the diagnosis and 
can be useful for downstream classification. However, a sentence 
may also be indirectly related to a diagnosis. For example, a 
sentence talks about a certain symptom such as “runny nose”; 
although it never explicitly refers to a diagnosis such as “influenza 
virus”, it would certainly be related to the diagnosis through the 
mentioned symptom. Thus, in order to get good coverage of 
sentences that might be related to a diagnosis, we need to consider 
not only sentences that talk about the diagnosis, but also sentences 
that mention other concepts related to the diagnosis. Figure 8 
shows the process of sentence extraction using GPT-4. As shown 
in the figure, the first step in extracting semantically related 
sentences from doctor’s notes is to generate a set of concepts 
related to the selected diagnosis. These related concepts can be 
used in a subsequent search for related sentences in the free text 
portion of doctor’s notes. Thus, our approach is to identify a set of 
sentences related to the original diagnosis by one or more related 
concepts. In previous work, the sentence extraction step was 
carried out using a set of related concepts generated through an 
ontology, a knowledge representation that encodes concepts and 
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relations in a directed graph [2]. Ontologies offer a number of 
advantages for this part of the ICD coding procedure. First, 
ontologies provide a suitable knowledge base for reasoning about 
medical concepts and their relationships, which is critical to the 
sentence extraction step. Furthermore, ontologies can be 
handcrafted by experts and adapted to the ICD coding process. 
However, the need for manual design of ontologies can be seen as 
a weakness, as it incurs development costs and requires expert 
domain knowledge. In this paper, we present an alternative 
approach that utilizes the Chat Completions API of GPT-4 to 
generate a list of related concepts to be used in the sentence 
extraction step. Unlike ontologies, GPT-4 is a pre-trained LLM 
that works out-of-the-box; while its use and performance may 
require expert monitoring and validation, it does not incur the 
initial cost of ontology design specifically for ICD coding tasks.  

 
Figure 8: The process of sentence extraction using GPT-4. 

GPT-4, the latest available version of OpenAI’s LLM, was 
trained on a large text dataset mined from online documents. It has 
demonstrated capabilities extending beyond standard language 
processing tasks. In one study, GPT-4 outperformed expected 
human scores on the official United States Medical Licensing 
Examination (USMLE), demonstrating its understanding of 
healthcare and medical concepts [33]. The approach outlined in 
this paper utilizes the GPT-4’s ability in the healthcare domain to 
generate a list of related concepts for use in the sentence extraction 
step. In our approach, we use a diagnosis to generate prompts for 
GPT-4 designed to elicit a list of related concepts. The prompts are 
then fed into GPT-4 through its Chat Completions API, which is 
an interface for the generative features of OpenAI models. Similar 
to a typical chatroom scenario, the interface accepts an incomplete 
chat log as an input, from which GPT-4 predicts how the chat will 
continue by generating the subsequent message.  

Since the performance of our approach depends on the quality 
of the related concepts used to perform sentence extraction, we 
focused a great deal of attention on designing Chat Completions 
prompts to elicit appropriate behaviors and concepts from GPT-4. 
Two main factors were considered when designing the prompts. 
First, some prompt needs to be designed to direct GPT-4 to 
properly organize the outputs because we need a list of text strings 
that correspond to the concepts associated with a given diagnosis. 
For this reason, we want our Chat Completions prompts to elicit 
text outputs that are listed, bulleted, or numbered so that we can 
easily separate the different concepts. To this end, we devise a 
“system” message specifying that GPT-4 should respond with a 
dashed list. In this way, the text output by GPT-4 can be reliably 
separated into individual concepts, which we can then use to 

extract related sentences. In addition to this generic “system” 
message, we must design multiple prompts, each including a “user 
message” representing a query for each subset of related concepts. 
Table 1 shows several examples of user messages used to elicit 
concepts related to “Asthma”. Another important requirement for 
the Chat Completions prompt is that it only elicit concepts related 
to the diagnosis. Therefore, when extracting related sentences from 
the free text of doctor’s notes using the related concepts, they can 
provide useful information or context for predicting the 
corresponding ICD code for the given diagnosis.  

Table 1: Examples of Prompts for Deriving Related Concepts to “Asthma.” 

User Message (Prompt) Related Concepts (Output) 
“List the different ways a doctor may 
indicate the diagnosis ‘Asthma’ in 
healthcare documentation.” 

asthmatic condition, chronic 
asthmatic, reactive airway disease, 
asthmatic disorder, … 

“List the treatments associated with 
the diagnosis ‘Asthma’.” 

inhalers, steroids, bronchodilators, 
leukotriene modifiers, … 

“List the symptoms associated with 
the diagnosis ‘Asthma’.” 

shortness of breath, chest tightness, 
wheezing, coughing, … 

“List the body parts and organs that 
may be affected by the diagnosis 
‘Asthma’.” 

lungs, air passages, bronchial tubes, 
respiratory tract, … 

 
Since the purpose of sentence extraction is to generate a fine-

grained data point for the classification step, it is desirable to derive 
related concepts and related sentences to support optimal 
classification results. To this end, we prompt the LLM to generate 
several classes of concepts related to the diagnosis in different 
ways (e.g., synonymy, treatment, symptom, etc.). Algorithm 2 
describes the detailed steps to extract a set of semantically related 
sentences Ψ from free text ξ of doctor’s notes dNotes for a given 
diagnosis α. 

Algorithm 2: Extract Related Sentences for a Given Diagnosis 

Input: a given diagnosis α, free text ξ of doctor’s notes dNotes. 
Output: a set of related sentences Ψ 

 Initialize a set of related concepts Γ_α = { α }  
 Initialize a set of related sentences Ψ = ∅ 
 Define a list of prompts Π to elicit related concepts for α  
 Let delimiter be delimiting symbols (e.g., ‘,’, ‘;’, ‘\n’, …) 
 for each prompt in Π: 

   Receive a response σ from GPT-4 Chat Completions API 
  Derive a set of concepts Γ_ σ by tokenizing σ on delimiter 
  Γ_α = Γ_α ∪ Γ_ σ 

 end 
 Split the free text ξ into a list of sentences Σ 
 for each sentence β in Σ: 
   Derive a set of concepts Γ_β mentioned in β 

  if Γ_β ∩ Γ_α ≠ ∅: 
   Ψ = Ψ ∪ { β } 

   end 
 end 
 return Ψ 

As shown in Algorithm 2, we first initialize the set of related 
concepts Γ_α so that it contains the original diagnosis concept α, 
which serves as the starting point for deriving related concepts. 
The set of related sentences Ψ is also initialized to an empty set. 
We then define a list of prompts to elicit concepts related to α and 
receive responses using GPT-4 Chat Completions API. These 
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responses are tokenized into related concepts and included in Γ_α. 
After deriving the related concepts using GPT-4, we divide the free 
text ξ into a list of sentences, tokenizing each sentence to derive 
the set of concepts discussed in the sentence. If any concept 
discussed in a sentence also appears in Γ_α, the sentence is 
considered relevant and is therefore included in Ψ. Finally, Ψ is 
returned and combined with the diagnosis text to form a fine-
grained data point. 

5. Automated Hierarchical Classification Using BERT 

Traditionally, classification problems are solved by monolithic 
or “flat” classifiers, which process inputs and make predictions in 
a linear path through a single classifier or module. Monolithic 
classifiers are easy to implement and provide good performance in 
a variety of classification tasks, especially if the number of unique 
labels is kept reasonable. However, monolithic classification 
methods are not scalable within a given classifier architecture; as 
more unique labels are added to the classification task, the 
complexity required to model the extended label space eventually 
becomes too great, compromising classification performance. In 
this paper, we introduce a hierarchical classification approach that 
predicts the corresponding ICD code for a fine-grained data point 
through a series of classification steps of increasing specificity. 
Depending on the design, a hierarchical classifier can first identify 
the general type of disease and then narrow it down for more 
precise classification until a specific ICD code classification is 
derived. In our hierarchical classification approach, additional 
subclassifiers or classification modules are added, each of which 
is responsible for a certain step in the overall classification process. 
We refer to these classification steps as subclassifications. For 
example, the first subclassification of a given instance of doctor’s 
notes might be a binary determination of whether it is a respiratory 
disease or a circulatory disease, while the second subclassification, 
which is more specific, might be to determine which individual 
disease to code for. Figure 9 compares a monolithic classification 
architecture with a hierarchical classification architecture that 
consists of three subclassifiers A, B and C, where A is the root 
subclassifier for the hierarchical classification. 

 
Figure 9: Comparison of hierarchical and monolithic classification approaches. 

In a hierarchical classification architecture, the organization of 
subclassifiers forms a classification hierarchy, where data points 
flow from the root subclassifier to a leaf subclassifier. The main 
benefit of using a hierarchy of subclassifiers is that it scales to the 
large label spaces associated with the ICD coding task. When 
greater code coverage is required, the classification can be split 
into individual subclassifications of lower complexity. Each 

subclassification can then be covered by a separate subclassifier. 
As long as the  subclassifications are sufficiently tractable, 
classification performance remains high at every step, and the 
overall performance can be maintained despite the additional 
complexity introduced by the ever-expanding label space. We 
define a single-label multiclass subclassifier Fsub as a 2-tuple 
(FSUB, CHID), where FSUB is the prediction function of the 
subclassifier, which outputs an array of confidences for the output 
classes, and CHID is an array of children subclassifiers, or the 
empty set ∅  if the classifier has no further children. A special 
subclassifier Froot is defined as the root subclassifier for 
hierarchical classification. Algorithm 3 describes the detailed 
procedure of hierarchical classification. As shown in the 
algorithm, using a hierarchical classification approach, a fine-
grained data point dp is first processed by the root subclassifier 
Froot. Based on the confidence level of the output classes, the child 
subclassifier corresponding to the class with the highest 
confidence level is selected for further subclassification. This 
process is repeated until a leaf subclassifier with no child 
subclassifiers is reached. In this case, the ICD code corresponding 
to the class predicted by the leaf subclassifier is returned as the 
matching code for dp. 

Algorithm 3: Hierarchical Classification  
Input: a fine-grained data point dp, the root subclassifier Froot for  
   the hierarchical classification 
Output: the predicted ICD code code 
Let Fcurrent be the current single-label multiclass subclassifier 
Initialize Fcurrent = Froot 
while Fcurrent  ≠ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛: 
   confidences = Fcurrent.FSUB(dp) 

  class = argmax(confidences) 
  if Fcurrent.CHID ≠ ∅ then Fcurrent = Fcurrent.CHID[class] 
  else Fcurrent = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 

End 
Set code to the ICD code corresponding to the predicted class 
return code 

It is worth noting that the hierarchical implementation also 
allows for a degree of modularity in the classification 
methodology, which can be used for multiple purposes in ICD 
auto-coding applications. The introduction of hierarchical 
organization divides the overall classification into discrete 
subclassification steps designed by domain experts. These 
divisions and the resulting subclassifications necessarily have 
human-understandable meanings. Thus, our hierarchical approach 
has the advantage that even users unfamiliar with the details of 
deep learning can have some understanding of the various 
decisions made by the final classification. In other words, it is 
possible to examine and study the order of the subclassifications 
or the decision path that led to the final classification. This 
enhances the trustability that code assignments are made in a 
coherent and consistent manner and adds to the overall 
interpretability and credibility of the method. Finally, the modular 
design of the hierarchical classification facilitates performance 
analysis, and in cases where classification is difficult or unclear, 
users or developers can track the subclassifications involved to 
gain clarification or identify erroneous features. During training 
and testing, the errors caused by each subclassifier can be 
examined on a case-by-case basis to identify areas where the 
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problem is particularly severe and where there is significant 
potential for improvement of system performance. 

6. Case Study 

In this section, we conduct a case study to demonstrate the 
feasibility and effectiveness of our approach using the MIMIC-III 
dataset, a publicly available healthcare dataset containing medical 
data from over 50,000 hospital visits [9]. We conducted a smaller 
experiment with 7 classes (ICD codes) and a larger experiment 
with 40 classes (ICD codes) to emphasize the advantages of the 
method with different numbers of classes. For our fine-grained 
classifier, we adopt MedBERT, a variant of BERT trained on 
EHR data, previously introduced in Section 3.3. Table 2 presents 
the complexity matrix and architecture parameters of the 
MedBERT classifier. For both experiments, we split the collected 
data into 80% training dataset and 20% test dataset. In the training 
data, we use 5-fold cross-validation to track model performance 
and select the best performing checkpoints. To avoid overfitting 
the classifier and take full advantage of MedBERT’s pre-trained 
knowledge, classifiers were trained with a low learning rate of 5e-
5 for 5 epochs, after which the best performing model is selected. 
In addition, the classifiers were trained using cross-entropy loss.  
All training and testing processes were performed on a machine 
with 16 GB of main memory, an Intel Core i7-9700 CPU, and an 
NVIDIA GeForce RTX 2060 SUPER (8 GB VRAM) GPU. 

Table 2: Complexity matrix and parameters of the MedBERT classifier. 

Layer # Layer Name Input Size Output Size 
1 Embedding 512 (512, 768) 
2 Encoder 1 self-attention (512, 768) (512, 768) 
3 Encoder 1 feed-forward net (512, 768) (512, 768) 

4-21 Encoders 2-12 (512, 768) (512, 768) 
22 Linear pooling layer (512, 768) 768 
23 Dropout (p = 0.1) 768 768 
24 Fully connected linear 768 # of ICD codes 
25 Softmax activation # of ICD codes # of ICD codes 

6.1. Automated Medical Coding Process 

Our fine-grained approach performs the medical coding task 
for one diagnosis at a time. In this experiment, we examine the 
complete automated medical coding process for predicting the ICD 
code for a single diagnosis. Suppose the diagnosis to be considered 
is “Asthma.” The first step in the automated medical coding 
process is to generate a set of concepts that are semantically related 
to the diagnosis. In our approach, we generate a list of related 
concepts by prompting GPT-4 through its Chat Completions API. 
We send multiple prompts to GPT-4 to guide it in generating 
categories of related concepts for the diagnosis “Asthma.” 
Examples of prompts for the diagnosis  “Asthma” can be found in 
Table 1. Figure 10 shows the procedure for promoting GPT-4 and 
collecting the related concepts for sentence extraction. The 
prompts listed in Table 1 are sent through the Chat Completions 
API, which communicates with and receives responses from GPT-
4. Each response contains a partial list of related concepts (e.g., 
symptoms, treatments, etc.). These outputs from GPT-4 are parsed 
and collected into a complete list of related concepts, which is then 
passed to the Sentence Extraction module (as shown in Figure 10). 
The Sentence Extraction module segments the free text in doctor’s 
notes into sentences and iterates over each sentence. If the current 

sentence mentions one or more related concepts, the sentence is 
extracted; otherwise, the sentence is discarded. 

 
Figure 10:  Procedure for prompting GPT-4 and collecting the responses. 

After extracting all related sentences from the doctor’s notes, 
they are combined with the original diagnosis “Asthma” to form a 
fine-grained data point. Figure 11 shows a portion of the fine-
grained data point generated for the “Asthma” diagnosis. 

DISCHARGE DIAGNOSIS: 
-Asthma 
# Pulmonary/Asthma/OSA: The patient inially had a 2L O2 requirement 
and was weaned to room air after fluid removal at … Pulmonary:  The 
patient was initially admitted with a chronic obstructive pulmonary 
disease exacerbation andinitially treated with … 

Figure 11: Example fine-grained data point generated for diagnosis “Asthma”. 

In addition to sentences directly referring to asthma, sentences 
discussing related terms such as “pulmonary” (lung-related) 
conditions and “O2” (oxygen) requirements, should also be used 
to enrich the fine-grained data point, providing additional details 
that can help with classification. With the generated fine-grained 
data point, we can now pass it to the hierarchical classifier for ICD 
code prediction. The hierarchical classifier does not immediately 
classify the data point, but instead generates the final prediction 
through a series of subclassifications. Figure 12 shows a 
hierarchical classification pathway that leads to a medical code for 
the “Asthma” diagnosis.  

 
Figure 12: Classification pathway for the diagnosis “Asthma.” 

As shown in Figure 12, the fine-grained data point d created 
for diagnosis “Asthma” is sent to the root subclassifier. This root 
subclassifier predicts the broad disease category to which the data 
point belongs. In this example, the root subclassifier recognizes 
data point d as belonging to the respiratory (breathing-related) 
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disease category and sends d to the Respiratory subclassifier. Then 
the Respiratory subclassifier further recognizes d as belonging to 
the chronic disease category and sends d to the Chronic 
subclassifier. Finally, the leaf Chronic subclassifier recognizes d 
as ICD code 493.2 (chronic obstructive asthma). 

Unlike conventional two-step coarse-grained approaches, the 
fine-grained approach presented in this section follows several 
explicit human-understandable steps, including diagnosis 
selection, sentence extraction, and stepwise hierarchical 
classification. This information can be provided to the user at any 
point in the medical coding process to illustrate and justify the 
method’s medical coding decisions. This additional information 
maintains a high level of explainability, thereby eliminating the 
“black box effect” that occurs when a system with a complex 
architecture focuses solely on deep learning, thus depriving the 
regular user of important decision-making information. 

6.2. Medical Coding with a Small Code Set 

 In this section, we establish the viability of the approach and 
examine its performance with a reduced set of medical codes. For 
this purpose, we employ a set of 7 ICD codes corresponding to 
closely related heart diseases. In addition, a comparison with a 
two-step coarse-grained approach was made to demonstrate the 
improved performance of the proposed method. Although the code 
set selected contains only a small number of unique codes, the 
similarities between the various heart diseases poses difficulties for 
automated ICD coding. In a typical classification task, similar 
classes are difficult to distinguish, which greatly increases the 
overall difficulty of classification. Due to class similarities, the 
classifiers are more likely to confuse the classes, which reduces 
performance. This is common in ICD coding, as many of the 
unique codes involved often refer to variants of the same disease. 
Among the 7 codes examined in this experiment, two of them refer 
to hypertension, but they do not refer to the same type of 
hypertension. Code 401.1 refers to benign hypertension, which can 
be determined by measurement or testing, but without any 
apparent problematic symptoms. On the other hand, code 401.9 
refers to essential hypertension, which can also be determined by 
measurement and testing, but may be a dangerous condition that 
requires some form of medical treatment or lifestyle adjustment. 
Clearly, keeping these two medical codes separable and correctly 
identifying each is critical to accurate record keeping and effective 
patient care. Given this particular difficulty, in order to improve 
coding performance, we opt for a hierarchical classifier design 
despite the small number of unique codes. That is, we include an 
additional classification step responsible for separating potentially 
difficult instances that fall into one of the hypertension classes. 
Figure 13 shows the hierarchical design of the fine-grained 
classifier to predict one of the 7 unique ICD codes. As shown in 
the figure, going through the root subclassifier, a fine-grained data 
point d may be immediately assigned a final classification and 
receive the label corresponding to one of the 5 non-hypertension 
codes in the set. Otherwise, it is assigned to the Hypertension 
subclassifier in order to differentiate whether the hypertension is 
benign (code 401.1, “Benign hypertension”) or essential (code 
401.9, “Unspecified essential hypertension”). Since the root 
subclassifier does not need to distinguish the types of suspected 
hypertension, its classification task becomes simpler and can 
identify non-hypertension classes more effectively. On the other 

hand, the Hypertension subclassifier is defined as a dedicated 
subclassifier trained specifically for separating the two 
hypertension codes, so it is more capable of predicting one of the 
two hypertension classes. Under this approach, we split a 
potentially complex classification task into a series of two less 
complex subclassification tasks. As a result, each subclassification 
task has low complexity and high performance, helping to improve 
the overall classification performance. 

 
Figure 13: Hierarchical classification with a small code set. 

Table 3 shows the performance metrics for processing a dataset 
with 7 ICD codes using the monolithic and hierarchical 
approaches. As shown in the table, for this smaller code set, both 
the monolithic and hierarchical approaches are viable, with an 
accuracy of over 94.9% and a macro average F1-score of over 
87.6%. However, the hierarchical design gives the classifier a 
slight advantage as it is better able to distinguish between two 
highly similar hypertension codes. 

Table 3: Performance metrics for processing a dataset with 7 ICD codes. 

Method Accuracy F1-score Precision Recall 
Monolithic 0.949 0.876 0.938 0.851 
Hierarchical 0.956 0.894 0.972 0.856 

The ROC (Receiver Operating Characteristic) curves and 
epoch vs. validation accuracy plots are presented in Figure 14. The 
ROC curves in the figure show that the AUC (Area Under the 
Curve) for both methods is very high, approaching 1.0. As shown 
in the epoch vs. validation accuracy graphs, both models start out 
with relatively high performance (thanks to effective pre-training 
with MedBERT). With fine-tuning, both models showed moderate 
improvement in accuracy, but neither model demonstrated a 
significant advantage in validation accuracy. 

  
Figure 14: ROC curves and training epoch vs. validation accuracy plots for 

hierarchical and monolithic classification approaches on the 7-code set.  

In addition to these models, we trained and evaluated an 
approach that employs the conventional two-step or coarse-grained 
strategy of first vectorizing doctor’s notes documents and then 
feeding the vectors into a coarse-grained multi-label classifier for 
ICD code prediction. For comparison, we implemented a coarse-
grained multi-labeling approach without a sentence extraction step 
and fine-grained data point formation to exemplify the advantages 
offered by these novel components of our proposed approach. We 
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used the same deep learning architecture (MedBERT) to 
implement this coarse-grained solution with the performance 
metrics shown in Table 4. 
Table 4: Performance metrics for the conventional two-step coarse-grained 
approach with 7 ICD codes. 

Method Accuracy F1-score Precision Recall 
Conventional 0.539 0.460 0.375 0.644 

Due to the different nature of multi-label and single-label 
classification and classification metrics, accurate comparison of 
specific values is not feasible. However, it is clear from the metrics 
that there is a significant performance difference between the 
coarse-grained approach and the two fine-grained approaches. The 
coarse-grained approach demonstrates more difficult and lower 
performance classification tasks while the deep learning 
architecture remains the same. On the other hand, the same deep 
learning architecture was able to keep up and provide excellent 
performance when working on the same task in a fine-grained 
manner. In the next section, we will investigate a larger code set 
where the performance difference between the two fine-grained 
approaches (monolithic and hierarchical) is demonstrated. 

6.3. Medical Coding with a Large Code Set 

Since modern standards such as ICD-9 and ICD-10 contain 
thousands of unique medical codes, useful automated coding tools 
must be scalable and able to handle large numbers of codes. In this 
section, we explore how to apply our fine-grained hierarchical ICD 
coding approach to a dataset containing 40 unique ICD codes. The 
expanded code set leads to a more complex label space and a more 
complex hierarchical classification. Despite the difficulties, an 
effective automated ICD coding approach should remain robust 
and usable in terms of classification performance. Our approach 
employes a hierarchical classification method that divides the 
complex classifications into multiple subclassifications. Figure 12 
shows the design of a hierarchical fine-grained classifier for 
processing a dataset containing 40 ICD codes. As shown in the 
figure, predictions are made only after two or three steps of 
subclassifications. The root subclassifier first accepts the fine-
grained data point d and decides which disease family it may 
belong to. In this experiment, the 40 codes belong to five families, 
each affecting a different organ system. These five families are 
cardiovascular, respiratory, endocrine, digestive, and mental. 
Once the root subclassifier predicts the family of a fine-grained 
data point, that data point is passed down through the predicted 
branch. For example, if a data point is classified as an endocrine 
disease by the root subclassifier, it is passed down to the Endocrine 
subclassifier for further classification. At this point, some classes 
can be predicated immediately, resulting in a final ICD code 
prediction in code set {E1, E2, …, E7}. However, for endocrine 
diseases associated with body fluids, the data point is sent to the 
Fluid subclassifier for further classification before an ICD code in 
code set {F1, F2, …, F8} can be predicted. Table 5 shows the 
performance metrics for processing a dataset with 40 medical 
codes using the monolithic and hierarchical approaches. As shown 
in the table, the hierarchical classification approach remains 
effective even when the number of unique labels increases 
significantly. In the case where 40 unique ICD codes need to be 
predicted, the hierarchical classification method achieved an 
accuracy and a macro average F1-score of 91.8% and 88.9%, 

respectively. This successful classification performance provides 
support for the proposed GPT-enhanced automated coding 
approach as a potentially useful tool for ICD coding. On the other 
hand, the performance metrics of the monolithic classifier 
decreased significantly, with accuracy and macro average F1-score 
dropping to 73.8% and 70.2%, respectively. This is due to the fact 
that the subclassifiers of the hierarchical approach have much 
lower subclassification complexity and correspondingly higher 
accuracy, whereas the flat or single classifier of the monolithic 
approach eventually becomes overwhelmed by the increased 
complexity of the ICD code label space, leading to a degradation 
of its classification performance. 

Table 5: Performance metrics for processing a dataset with 40 ICD codes. 

Method Accuracy F1-score Precision Recall 
Monolithic 0.738 0.702 0.733 0.696 
Hierarchical 0.918 0.889 0.905 0.876 

Figure 15 shows the ROC curves and epoch vs. validation 
accuracy plots for both models. As shown in the figure, the same 
advantages are demonstrated by the ROC curves and the plots of 
epoch vs. validation accuracy. Both models gained the base 
performance from pre-training with MedBERT; however, unlike 
the previous experiments with a small code set, the hierarchical 
classifier had a significant performance advantage after the first 
training epoch (validation accuracy ~0.82 vs. ~0.61). In addition, 
the ROC curves and AUCs are quite different from previous 
experiments, which further demonstrates the clear advantage of the 
hierarchical approach as the number of unique ICD codes (number 
of classes) increases. 

 
Figure 15: ROC curves and training epoch vs. validation accuracy plots for 
hierarchical and monolithic classification approaches on the 40-code set.  

7. Conclusions and Future Work 

Despite the many advances in language processing and 
classification techniques, medical coding remains a challenging 
task in healthcare. As a classification task, medical coding poses a 
number of unique challenges that are addressed by the various 
techniques presented in this paper. Since medical coding is a multi-
label classification task, processing doctor’s notes using a fine-
grained code assignment method helps limit the label space for 
individual classifications while still producing an appropriate set 
of codes. In our approach, we classify only one diagnosis at a time; 
consequently, individual classifications are simpler and 
performance is correspondingly higher, even if a large number of 
unique ICD codes must be considered. Furthermore, we split the 
prediction process of ICD codes for a given diagnosis into a 
hierarchical procedure consisting of multiple subclassification 
steps, thus limiting the complexity of the classification process. 
Improvements in the hierarchical classifier suggest that 
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classification tasks like ICD coding with related labels (for 
example, multiple diseases belonging to a shared family) may 
benefit from having these relations built into the model 
architecture, as in ICD code hierarchies. To support a fine-grained 
approach and provide more informative input to the hierarchical 
classifier used, we have implemented GPT-enhanced sentence 
extraction, which prompts GPT-4 for related concepts to be used 
for locating related sentences in doctor’s notes. Unlike previous 
approaches that use ontologies to generate the related terms used 
in the sentence extraction step, an approach using GPT-4 provides 
a useful solution to avoid the additional overhead required to 
develop a formal medical ontology. The proposed fine-grained 
hierarchical approach to automated ICD code assignment has 
yielded promising results in the experiments and provides a basis 
for effective classification using GPT-enhanced text mining. In 
addition, the flexibility and effectiveness of GPT-4 in extracting 
semantically related sentences suggests that there could be further 
unexplored uses for ICD coding and feature engineering beyond 
sentence extraction. 

While GPT-4 has been used to provide a list of concepts 
required for our sentence extraction step, the LLM is best known 
for its wide range of capabilities in a variety of complex tasks. 
Future work may explore the capabilities of the LLM in 
automating the various steps of ICD code assignment. For 
example, GPT-4 could be responsible for the entire sentence 
extraction step, rather than just generating related concepts. GPT-
4 could even be used to perform the entire ICD code prediction, 
although its performance would need to be carefully examined and 
characterized. Another potential usage of the generative model is 
to provide a human-friendly interface for medical coders to answer 
questions and resolve queries related to predicted codes. Future 
work could also explore the design and definition of more complex 
and modular hierarchical classifiers. In particular, improved 
hierarchical classifiers could employ a variety of decision 
processes, including decision trees, rule-based reasoning, and deep 
learning, to produce final classification results. Heterogeneous 
hierarchies of this type can be designed to be more specific in order 
to deal with each step of the classification according to the most 
efficient method. For example, it is usually simple to distinguish 
between heart disease and eye disease. In most cases, a relatively 
simple decision-making process can handle this distinction. On the 
other hand, distinguishing between many highly correlated eye 
diseases is much more difficult and may require a more powerful 
decision process, such as the deep learning classifier used in this 
paper. Since any classification task involving labels can somehow 
be meaningfully arranged into a hierarchy or taxonomy, future 
work may explore the application of this hierarchical classification 
approach not only in ICD coding, but also in different 
classification tasks such as object recognition, anomaly detection, 
and topic classification. 
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