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 Aquaculture is one of the most important industries worldwide, and most marine products 
are produced by aquaculture. On the other hand, the aquaculture farmers are faced on the 
challenge of damage to marine products due to abnormal seawater temperatures. Research 
on seawater temperature prediction have been conducted, but many of them require a large 
amount of training data. Collecting seawater temperature data is not easy, and it takes an 
enormous time to introduce in new aquaculture farms. Therefore, the purpose of this study 
is to predict seawater temperature even with a small amount of training data for about one 
year. In this paper, we propose a seawater temperature prediction model using transition 
learning. The proposed model also attempts to improve the prediction accuracy by 
considering the difference in water depth between observation points. The results of the 
evaluation experiment showed that the prediction accuracy can be improved by transfer 
learning when learning with a small amount of data. In addition, we also confirmed that 
adding water depth values to the input layer may not lead to improved prediction accuracy 
for transfer learning. 
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1. Introduction 

Aquaculture is one of the most important industries supporting 
the world's food supply. Since around 1990, fisheries production 
has been on a flat trend, while aquaculture production has 
continued to increase. As a result, the share of aquaculture in the 
total production of the seafood industry has increased. In 2021, the 
production from mariculture was approximately 70 million tons, 
accounting for about 32% of the total production of the fisheries 
and aquaculture industry [1]. This is due to growing demands for 
edible seafood in the world. Global consumption of edible seafood 
is increasing and has almost doubled in the last 50 years. Also in 
Japan, aquaculture is an important industry. The followings are 
statistical data on the aquaculture industry in Japan. In 2022, the 
production from mariculture was about 910,000 tons, accounting 
for about 23% of the total production of the seafood industry [2]. 
Its production value was 521.1-billion-yen, accounting for about 

33% of the total. These indicate that aquaculture is an 
indispensable industry in Japan. 

Under these circumstances, one of the problems facing 
aquaculture farmers is the damage caused by abnormal seawater 
temperatures. If seawater temperature is not properly controlled, it 
can increase the risk of fish disease infection [3] and decrease feed 
efficiency [4]. To prevent such damage, aquaculture farmers need 
to accurately predict seawater temperatures and protect marine 
products in advance by moving rafts. However, temperature 
prediction requires years of experience and a wealth of knowledge. 
Furthermore, it’s getting more difficult to predict seawater 
temperatures due to global warming and severe weather changes. 
From these, water temperature management is a heavy burden for 
aquaculture farmers. To make these temperature management 
more sustainable in the future, it is necessary to provide seawater 
temperature predictions based on collected temperature data that 
can be used by anyone. 

Although seawater temperature prediction is an active area of 
research, this is currently limited to prediction of sea surface 
temperature (SST) [5, 6]. One of the factors that SST prediction 
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has been actively conducted is the abundance of SST datasets 
provided by satellite imagery [7]. SST prediction is used in many 
fields, such as marine meteorology and weather forecasting, but it 
is not suitable for the seawater temperature prediction required by 
aquaculture farmers. In aquaculture, the depth at which fish are 
reared depends on the type of product and the size of the fish tank. 
It may be appropriate to keep at a depth of several 10 meters. As 
seawater temperature changes with depth, it is necessary to predict 
using seawater temperature data from each depth. This means that 
abundant sea surface temperature datasets are not available, and it 
is necessary to measure temperatures at several depths at each 
location. However, since these data are measured using dedicated 
observation equipment, it is not easy to collect sufficiently at each 
aquaculture farm. Therefore, in this study, we propose and 
implement a seawater temperature prediction model that provides 
sufficient prediction accuracy even with a small amount of data for 
about one year. 

2. Related Works 

In this chapter, we introduce related studies on the prediction 
of seawater using measured water temperature. 

In [8], the authors proposed a method based on an 
autoregressive model. In this method, each observation point is 
classified by cluster analysis, and a principal component analysis 
is conducted using the water temperature anomalies within each 
group. By autoregressive predicting using the calculated first 
principal component, the method enables prediction up to three 
months ahead. However, because they focus on a wide area such 
as the entire coastal area, it is difficult to predict water 
temperatures in a narrow area within an aquaculture farm.  

In [9], the authors proposed a method for predicting water 
temperature in aquaculture areas. In this method, water 
temperature in the aquaculture area is obtained in real time by 
installing several small and inexpensive buoys, called ubiquitous 
buoys [10]. Nevertheless, it is necessary to install a large number 
of buoys because the prediction range covers a wide area of several 
kilometers. 

In [11], the authors proposed a method that uses meteorological 
data in addition to measured water temperature data. In this method, 
sea temperature at multiple depths and data provided by the Japan 
Meteorological Agency are collected. Using these data as features, 
a random forest is used to make predictions for each depth. In the 
evaluation experiment, it was shown that using not only 
temperature but also wind speed improves the accuracy of the 
prediction. However, they did not predict for the next day or later. 
According to authors in [12], aquaculture farmers need to predict 
water temperatures up to one week ahead within an error margin 
of 1℃. 

The authors in [13, 14] proposed a method that predicts over 
multiple time periods. In this method, in addition to a model that 
predicts up to the next day, a model that predicts daily mean water 
temperatures up to one week ahead is provided. These models are 
capable of long-term prediction using Gated Recurrent Unit 
(GRU) [15]. Evaluation experiments showed that the models were 
able to prediction with higher accuracy than existing methods. 
However, they required a large amount of training data, about 9 
years. It is not easy to prepare such data, and it will take time to 

introduce them to a new farm. To solve the above issues, we 
develop a seawater temperature prediction method that meets the 
needs of aquaculture farmers even with a short period of data. 

3. Proposed Method 

3.1. Subject Data 

In this study, we use measured sea water temperature data and 
meteorological data to create a prediction model. From previous 
studies [11, 13, 14], it is clear that in addition to seawater 
temperature data, it is effective to combine this data with 
meteorological data for learning. In this section, as an example of 
the seawater temperature and meteorological data used in the 
proposed model, details of the data collected in this study are 
described. 

First, the seawater temperature data is described. we prepare a 
dataset of seawater temperature collected at five points throughout 
Japan. Figure 1 shows the observation points of seawater 
temperature in this study. The latitude and longitude of Gokasho is 
(34.3461°N, 136.7050°E), Matoya is (34.8807°N, 136.8807°E), 
Ago is (34.3071°N, 136.8038°E), Goshoura is (32.2910°N, 
130.2370°E), and Otaru is (43.1904°N, 140.9951°E). As Japan is 
located in the Northern Hemisphere, it is generally hot in the south 
and cold in the north throughout the year. Similar trends are 
observed not only with air temperature but also with seawater 
temperature. To demonstrate that the proposed model can be used 
universally throughout Japan despite these trends, data from 
various locations are used.  

 

Figure 1: Five observation points of seawater temperature [16] 

Table 1 shows the water depths and periods for which seawater 
temperatures are measured at each point. Under the conditions 
shown in Table 1, seawater temperatures are measured hourly at 
each point. At Gokasho, Ago, and Matoya, data are available for 
about 16 years from 2007 to 2022. On the other hand, Goshoura 
and Otaru have only about 8 years of data from 2012 to 2020, 
which means that the amount of data at each point varies. Seawater 
temperatures are measured simultaneously at three or four depths, 
which vary point site to point. 
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Table 1: Measurement conditions for seawater temperature 

Point Depths (m) Period 
Gokasho 0.5, 2, 5, 8 07/02/28 ~ 22/02/28 

Ago 0.5, 2, 5, 8 07/03/20 ~ 22/02/28 
Matoya 0.5, 2, 5, 8 07/03/20 ~ 22/02/28 

Goshoura 1, 3, 10 12/04/01 ~ 20/01/20 
Otaru 1, 10, 20 12/04/01 ~ 20/03/02 

 
Next, the meteorological data is described. We prepare 

temperature and wind speed data from the meteorological 
database provided by the Japan Meteorological Agency [17]. We 
use these data measured at the nearest observation stations to the 
points shown in Figure 1. The periods of these data are set to be 
the same as the periods in which the seawater temperatures are 
measured at each point. 

3.2. Effects of Depth on Seawater Temperature 

In this section, we discuss the effects of different water depths 
on seawater temperature. Figure 2 shows the daily mean seawater 
temperature at each depth in Ago in 2015. From this graph, the 
difference in water temperature for each depth in Ago during the 
winter (December to February) is small. On the contrary, during 
the summer (June to August), the difference in water temperature 
for each depth is large. Seawater temperature tends to decrease 
with depth in summer. Specifically, the water temperature 
difference in winter is within 2℃, while that in summer ranges 
from 2 to 9℃.  

 

Figure 2: Mean daily seawater temperature at each water depth in Ago (2015). 

In summary, the water temperature difference with depth in 
summer is larger than that in winter, and the larger the water depth, 
the lower the water temperature in Ago. This tendency is also 
observed at the other four points. For example, in Gokasho, the 
water temperature difference in winter is within 2℃, while the 
water temperature difference in summer ranges from 1℃ to 8℃. 
In Otaru, the water temperature difference in winter is within 2℃, 
while the water temperature difference in summer can be as high 
as 5℃. 

As shown in the previous section, seawater temperatures were 
measured at different depths at each point. This is because the 
appropriate water depth for aquaculture is different at each point. 
The depth depends on the type of marine products to be raised and 
the surrounding climate.  

From the above, it is necessary to account for the difference in 
seawater temperature associated with the water depth between 
points. With this in mind, the proposed model is presented in the 
next section. 

3.3. Seawater Temperature Prediction Model 

The seawater temperature prediction model proposed in this 
study is an extension of the long-term prediction model proposed 
in [13,14] by using transfer learning [18], in which water depth 
values are included in the input layer. This approach aims to solve 
the problem of the huge amount of train data required by 
conventional models. In addition, it aims to consider differences in 
water temperature due to differences in water depth. 

Transfer learning is a machine learning approach which applies 
the knowledge obtained in the source domain to learn in the target 
domain [19]. In this study, the domain refers to the observation 
points of seawater temperature. A series of learning is performed 
in the source domain, and then the learned model is re-learned in 
the target domain. For this reason, transfer learning has the 
advantage that it can learn efficiently even if the amount of data in 
the target domain is small. 

Figure 3 shows an overview of the proposed seawater 
temperature prediction model. The structure of the proposed model 
is based on Recurrent Neural Network (RNN) [20], which is 
suitable for time-series forecasting. The proposed model has a 
three-layer structure consisting of an input layer, a hidden layer, 
and an output layer, each of which is described separately below. 

 
Figure 3: Overall diagram of the proposed model. 

In the input layer, two types of time-series data, seawater 
temperature data and meteorological data, and the water depth 
values at which seawater temperature measured are input. Since 
seawater temperature does not change rapidly in a short period of 
time, the most recent data for the prediction target date is important. 
Therefore, we use the daily mean seawater temperature and 
meteorological data for the last seven days. As meteorological data, 
we use daily mean air temperature and maximum and minimum 
wind speeds. To account for the effects of multiple depths, we also 
included seawater temperatures at depths other than the prediction 
target as an input. As mentioned in the previous section, the depths 
measured are different at each point, and water temperatures vary 
depending on the water depth. This means that when performing 
transfer learning, it is necessary to consider the difference in the 
water depths between the source and target domains. Therefore, in 

http://www.astesj.com/


 H. Murakami et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 9, No. 4, 01-06 (2024) 

www.astesj.com     4 

the proposed model, the water depth values are added to the input 
layer. 

In the hidden layer, we use GRU, which was also used in the 
model by the authors in [13,14] Conventional RNNs have two 
problems: gradient vanishing problem and weight collision, which 
make it difficult to learn long-term features. On the other hand, 
GRU has a reset gate and an update gate, and can select a choice 
of information. This makes it possible to store old information, and 
thus it can be applied to problems that requires long-term 
dependence to be considered. In the proposed model, seawater 
temperature data and weather data are input into another GRUs to 
be learned separately. The results processed by each GRU and the 
water depth values are combined, and then passed to the output 
layer. 

In the output layer, the results from the hidden layer are 
converted to prediction results. As a prediction result, seven days 
of daily mean seawater temperatures up to one week ahead are 
output. In the proposed model, this series of learning is performed 
at points with sufficient seawater temperature data, and then the 
learned model is used to re-learn at the prediction target points with 
only a small amount of data. 

4. Experiment 

4.1. Common experimental setup 

In this study, we conducted two evaluation experiments to 
demonstrate the effectiveness of the proposed model. The first was 
a comparison experiment of accuracy with and without transfer 
learning (Experiment 1). The second was a comparison experiment 
of accuracy with and without the input of water depth values 
(Experiment 2). This section describes the experimental setup 
common to both experiments. 

Table 2 summarizes the details of the data used in the two 
experiments. Of the five observation points, we set Gokasho, 
Matoya, and Ago as the source domain, and Goshoura and Otaru 
as the target domain. Three different water depth values were set 
at each point. The period of train data for the source domain was 
eight years, the target domain was one year, and the test data was 
one year. Because the daily mean seawater temperature changes 
with a cycle of one year, we chose one year for the period of train 
data for the target domain. In addition, by setting the period of train 
data for source domain to eight years, the amount of train data used 
at the target domain reaches the amount of train data used by the 
authors in [13,14]. 

Table 2: Data used in evaluation experiments. 

Point Depth 
values [m] 

Period of  
train data 

Period of 
test data 

Gokasho 0.5, 2, 5 10/01/01 ~ 17/12/31  
Ago 0.5, 2, 5 10/01/01 ~ 17/12/31  

Matoya 0.5, 2, 5 10/01/01 ~ 17/12/31  
Goshoura 1, 3, 10 18/01/01 ~ 18/12/31 19/01/01 ~ 19/12/31 

Otaru 1, 10, 20 18/01/01 ~ 18/12/31 19/01/01 ~ 19/12/31 

As evaluation items in the two experiments, we calculated 
Mean Absolute Error (MAE) and the percentage of predictions 
with errors more than 1℃. In this study, the standard value was set 

to 1℃ to meet the needs of aquaculture farmers for an error less 
than 1℃. 

4.2. Experiment 1 

In this section, Experiment 1 concerning transfer learning is 
presented. The purpose of Experiment 1 is to evaluate whether 
transfer learning is valid for the seawater temperature prediction. 
Therefore, the proposed model with transfer learning compared 
with a model learned only with the train data for the prediction 
target points without transfer learning. The results of Experiment 
1 are shown in Tables 3 and 4. Table 3 shows the results when the 
prediction target point is Goshoura, and Table 4 shows the results 
when the prediction target point is Otaru. The vertical axis of the 
table represents the source domain, and the horizontal axis 
represents the prediction target water depth. The values on the left 
of the table represent MAE [℃] and the values on the right 
represent the rate of errors above 1℃ [%]. 

Table 3: Results of Experiment 1 in Goshoura 

Source 
domain 1m 3m 10m 

none 0.535℃, 14.5% 0.669℃, 23.3% 0.605℃, 21.1% 
Gokasho 0.293℃, 3.3% 0.256℃, 2.5% 0.258℃, 2.7% 

Ago 0.426℃, 7.7% 0.345℃, 4.4% 0.296℃, 3.6% 
Matoya 0.330℃, 3.3% 0.280℃, 3.3% 0.272℃, 3.3% 

Table 4: Results of Experiment 1 in Otaru 

Source 
domain 1m 10m 20m 

none 0.725℃, 27.1% 0.799℃, 31.8% 0.941℃, 38.6% 
Gokasho 0.608℃, 17.5% 0.493℃, 10.1% 0.497℃, 9.9% 

Ago 0.482℃, 9.3% 0.416℃, 6.8% 0.473℃, 10.1% 
Matoya 0.495℃, 10.1% 0.534℃, 12.9% 0.483℃, 10.4% 

First, Table 3 shows that when the source domain was 'none', 
meaning without transfer learning, MAE ranged from 0.535°C to 
0.669°C and the rate of errors above 1°C ranged from 14.5% to 
23.3%. In contrast, with transfer learning, MAE ranged from 
0.256°C to 0.426°C and the rate of errors above 1°C ranged from 
2.5% to 7.7%. These results indicate that the proposed model has 
better prediction accuracy than the model without transfer learning 
for both evaluation items. The average MAE for each depth was 
roughly halved for all source domains, and the average rate of 
errors above 1°C for each water depth was less than one-third for 
all source domains. 

Next, Table 4 shows that without transfer learning, MAE 
ranged from 0.725°C to 0.941°C and the rate of errors above 1°C 
ranged from 27.1% to 38.6%. In contrast, with transfer learning, 
MAE ranged from 0.416°C to 0.608°C and the rate of errors above 
1°C ranged from 6.8% to 17.5%. Compared with the model 
without transfer learning, the average MAE for each depth was 
about one-half for all source domains, and the average rate of 
errors above 1°C for each water depth was approximately one-third 
for all source domains.  

In conclusion, Experiment 1 indicated that the prediction 
accuracy can be improved by transfer learning, regardless of 
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whether the prediction target point is Goshoura or Otaru, where 
only about one year of seawater temperature data is available. In 
transfer learning, prediction accuracy is improved when data from 
the source and target domains have similar characteristics. As the 
accuracy increased in transfers to various regions of Japan, the 
proposed model has the potential to be used in a wide range of 
aquaculture farms of the country. 

4.3. Experiment 2 

In this section, Experiment 2 on inputting water depth values 
is presented. The purpose of Experiment 2 is to evaluate whether 
water depth values are effective features for improving accuracy in 
transfer learning. Therefore, the proposed model adding water 
depth values to the input layer compared with a model that does 
not use water depth values as input. The results of Experiment 2 
were shown in Tables 5 and 6. Table 5 shows the results when the 
prediction target point is Goshoura, and Table 6 shows the results 
when the prediction target point is Otaru. The vertical axis of the 
table represents the source domain and whether or not a 
bathymetric value was input, and the horizontal axis represents the 
prediction target water depth. The values on the left of the table 
represent MAE [℃] and the values on the right represent the rate 
of errors above 1℃ [%]. 

Table 5: Results of Experiment 2 in Goshoura 

Depth 
values 

Source 
domain 1m 3m 10m 

none 
Gokasho 0.312℃, 3.3% 0.260℃, 2.7% 0.276℃, 3.0% 

Ago 0.426℃, 9.3% 0.347℃, 4.9% 0.278℃, 3.6% 
Matoya 0.340℃, 3.8% 0.275℃, 3.0% 0.274℃, 3.3% 

input 
Gokasho 0.293℃, 3.3% 0.256℃, 2.5% 0.258℃, 2.7% 

Ago 0.426℃, 7.7% 0.345℃, 4.4% 0.296℃, 3.6% 
Matoya 0.330℃, 3.3% 0.280℃, 3.3% 0.272℃, 3.3% 

Table 6: Results of Experiment 2 in Otaru 

Depth 
values 

Source 
domain 1m 10m 20m 

none 
Gokasho 0.518℃, 13.2% 0.448℃, 8.8% 0.485℃, 9.9% 

Ago 0.467℃, 9.3% 0.504℃, 11.2% 0.577℃, 14.5% 
Matoya 0.422℃, 7.7% 0.429℃, 9.0% 0.545℃, 11.5% 

input 
Gokasho 0.608℃, 17.5% 0.493℃, 10.1% 0.497℃, 9.9% 

Ago 0.482℃, 9.3% 0.416℃, 6.8% 0.473℃, 10.1% 
Matoya 0.495℃, 10.1% 0.534℃, 12.9% 0.483℃, 10.4% 

First, Table 5 showed that when the depth values were 'none', 
meaning without water depth values input, MAE ranged from 
0.260°C to 0.426°C and the rate of errors above 1°C ranged from 
2.7% to 9.3%. On the other hand, with depth values input, MAE 
ranged from 0.256°C to 0.426°C and the rate of errors above 1°C 
ranged from 2.5% to 7.7%. These results indicated that adding 
water depth values to the input layer led to almost no change in 
MAE and a slight improvement in the rate of errors above 1°C. 

Next, Table 6 showed that without water depth values input, 
MAE ranged from 0.422°C to 0.577°C and the rate of errors above 
1°C ranged from 7.7% to 14.5%. On the contrary, when depth 
values were input, MAE ranged from 0.416°C to 0.608°C and the 
rate of errors above 1°C ranged from 6.8% to 17.5%. Adding water 

depth values to the input layer resulted that the average MAE for 
each depth was smaller when the source domain was Ago, while 
larger when it was Goshoura or Matoya. However, whether these 
prediction accuracies improved or declined, the changes were 
slight. 

Experiment 2 indicated that some combinations improved 
prediction accuracy, adding water depth values to the input layer. 
However, regularity between source domains and the prediction 
target water depth could not be confirmed. Moreover, the degree 
of changes in accuracy was also marginal. From these results, it 
was not sufficient to add water depth values to the model input to 
learn the water depth differences between the source and target 
domains. 

At this point, Table 5 for Goshoura and Table 6 for Otaru were 
compared in the proposed model. Looking at MAE at the 
prediction target water depth of one meter, Goshoura is lower than 
Otaru by 0.056°C to 0.315°C. At other depths, similar results were 
found. These means that the prediction accuracy is higher when 
the target domain is Goshoura than Otaru. Focusing on the latitude 
of the five observation points, Gokasho, Ago and Matoya are about 
34°C and Goshoura is 32.2910°N, while Otaru is at 43.1904°N, 
which is significantly different from the other points. In addition, 
looking at the currents in the surrounding sea, Otaru is on 
Tsushima Current, whereas the other points are on Kuroshio 
Current. Thus, it was found that the two differences mentioned 
above changed the similarity of the data in the source and target 
domains. These differences in latitude and nearshore currents 
could have changed the similarity of the data in the source and 
target domains. The reason why the prediction accuracy did not 
improve with the addition of water depth input was thought to be 
due to the above two differences. Therefore, it is necessary to 
consider not only depth differences, but also differences in latitude 
and ocean currents between points in order to further improve 
prediction accuracy. 

5. Conclusion 

What is needed in the aquaculture industry is seawater 
temperature prediction from several meters down a few dozen 
meters. However, these data are not sufficient because they are not 
easy to collect. The objective of this study is to enable highly 
accurate prediction of seawater temperature even for points with a 
small amount of data. Therefore, we proposed and implemented a 
prediction model using transfer learning, in which a model that has 
been learned with data from other points is re-learned with data 
from the target point. In addition, to account for the depth 
differences between the two points used in the transfer learning, 
we added water depth values at which seawater temperature was 
measured to the input layer. 

In the evaluation experiment, it was shown that transfer learning 
improves the prediction accuracy even for points with only about 
one year of seawater temperature data. We also showed that the 
accuracy of transfer learning was not improved by simply adding 
water depth values to the input layer. 

In the future, to solve the above issue, we aim to improve 
prediction accuracy by considering factors such as differences in 
latitude and ocean currents. Then, we aim to improve the 
generalization performance of the model to provide seawater 
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temperature predictions that meet the demands of more types of 
aquaculture farmers in more regions. 
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