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The solar photovoltaic (PV) power generation industry has experienced substantial, ongo-
ing growth over the past decades as a clean, cost-effective energy source. As electric grids
use ever-larger proportions of solar PV, the technology’s inherent variability—primarily due
to clouds—poses a challenge to maintaining grid stability. This is especially true for geo-
graphically dense, electrically isolated grids common in rural locations which must maintain
substantial reserve generation capacity to account for sudden swings in PV power production.
Short-term solar PV forecasting emerges as a solution, allowing excess generation to be kept
offline until needed, reducing fuel costs and emissions. Recent studies have utilized networks of
light sensors deployed around PV arrays which can preemptively detect incoming fluctuations in
light levels caused by clouds. This research examines the potential of such a sensor network in
providing short-term forecasting for a 575-kW solar PV array in the arctic community of Kotze-
bue, Alaska. Data from sensors deployed around the array were transformed into a forecast at
a 2-minute time horizon using either long short-term memory (LSTM) or gated recurrent unit
(GRU) as base models augmented with various combinations of 1-dimensional convolutional
(Conv1D) and fully connected (Dense) model layers. These models were evaluated using a novel
combination of statistical and event-based error metrics, including Precision, Recall, and Fβ.
It was found that GRU-based models generally outperformed their LSTM-based counterparts
along statistical error metrics while showing lower relative event-based forecasting ability. This
research demonstrates the potential efficacy of a novel combination of LSTM/GRU-based deep
learning models and a distributed sensor network when forecasting the power generation of an
actual solar PV array. Performance across the eight evaluated model combinations was mostly
comparable to similar methods in the literature and is expected to improve with additional
training data.

1. Introduction

Solar photovoltaic (PV) power generation is an increasingly attrac-
tive method for expanding global carbon-free power generation
capacity, growing from around 39 GW in 2010 to over 1.2 TW in
2022 [1, 2]. Despite the technology’s competitive cost and relative
ease of installation, continued solar PV expansion is challenged by
the fact that PV systems can experience significant variability in
generation potential throughout the course of a day due to shading
from weather events such as clouds, with sudden losses or gains in
production of over 70% of maximum capacity per minute regularly

observed [3, 4, 5]. This variability poses a challenge from a grid-
integration standpoint due to the potential for a mismatch between
electrical generation and demand [6]. This is especially true for
smaller, electrically isolated grids or ”microgrids” with high pro-
portions of geographically concentrated solar PV generation since a
single cloud event could quickly and dramatically impact total grid
production [7].

Communities with microgrids typically rely on diesel generators
as a major component of their total generation capacity. These gener-
ators also serve as a convenient source of fast-response generation or

*Corresponding Author: Henry Toal, 1764 Tanana Loop, Suite 420, Fairbanks, AK 99775, ehtoal@alaska.edu

www.astesj.com
https://dx.doi.org/10.25046/aj090302

12

http://www.astesj.com
https://www.astesj.com
https://dx.doi.org/10.25046/aj090302


H. Toal et al., / Advances in Science, Technology and Engineering Systems Journal Vol. 9, No. 3, 12-28 (2024)

”spinning reserve” which allows the grid to absorb sudden changes
in solar PV generation due to cloud events. Unfortunately, diesel
generators are not an ideal solution to this problem [8]. For one,
the grid-scale generators used by these communities typically re-
quire between 1 to 2 minutes to start and become grid-synchronized,
meaning that they cannot be left off until needed to compensate for
a loss in PV production. Additionally, these generators typically
must be operated at or above 30% capacity. This means that, even if
a grid’s total PV production exceeds demand, the generators must
be kept running at minimum capacity to provide reserve, increasing
costs from additional fuel burn and maintenance as well as increas-
ing emissions [9, 10]. The relevance of this problem is not limited
to small, rural communities without electrical connection to a wider
grid. There is substantial and growing evidence that developing
self-sufficient microgrid capabilities within existing grid networks
could increase grid resiliency by reducing centralized dependence
on electrical generation and also by allowing critical infrastructure
to more easily transition to backup generation sources in the event of
a grid disruption [11, 12]. Thus, the problem of sudden changes or
”ramp” events in solar PV production within high solar penetration
grids is likely to only grow in importance over the coming years.

A potential solution to this problem is to forecast short-term
ramp events caused by clouds. If grid operators were to have access
to accurate and reliable forewarning of incoming sharp ramp events
at a 1-to-2-minute horizon, diesel generators could potentially be left
off and started only when needed. Additionally, as energy storage
systems become more widespread, both in microgrids and beyond,
these forecasts have the potential to increase storage efficiency by
providing grid control systems with advanced knowledge of when
energy storage should start and stop.

A wide range of technologies exist for producing solar PV fore-
casts. These include numerical weather prediction (NWP) models,
satellite imagry, total sky imager (TSI) systems (sometimes called
”sky cameras”), and networks of distributed light sensors, with the
latter two being most effective for the time horizon presented by this
problem [13]. Deep learning neural network models have also seen
substantial advancement in solar PV forecasting across a wide range
of data collection methods and time horizons. While the majority
of studies have utilized TSI systems, there is growing evidence that
distributed sensor networks have a number of distinct advantages,
including lower cost and improved forecast accuracy [10, 14]. A
variety of models have been proposed for use in conjunction with
distributed sensor networks, including matching local production
peaks and examining covariance between sensors [15, 16], but there
has been very limited exploration into sensor networks combined
with deep learning models, especially of those deployed around
an actual solar PV in the type of environment where this type of
forecasting is likely to be particularly valuable. This study aims
to fill the gap in the established body of work by developing and
deploying a distributed sensor network around a utility-scale solar
PV arraying a remote, electrically isolated community and using
data from these sources to train a variety of deep learning model
architectures. This study also aims to advance the field of solar PV
forecasting by evaluating the performance of these models using
both standard error metrics such as root-mean-square error (RMSE)
but also quantifying their ability to detect individual ramp events
and examining the impact of location-specific variability on forecast

quality.
This study was part of an ongoing collaboration with the Kotze-

bue Electric Association (KEA) in Kotzebue, Alaska, USA. Kotze-
bue, a community of just over three thousand people located just
above the arctic circle at 66.9 °N, provides an excellent reference for
a study examining the intersection of distributed sensor networks,
deep learning models, and harsh, isolated environments. With over
1.2 MW of solar PV capacity across two co-located arrays, Kotze-
bue is an ideal example of a community which relies heavily on its
diesel generators to absorb ramp events from high-penetration solar
PV. This study uses high-resolution inverter data collected directly
from one 72-kW sub-array of the 575-kW eastern KEA solar PV
plant as a target forecast variable along with data from the sensors
as model inputs.

In this paper, we review the current state of short-term solar
PV forecasting and examine why the combination of deep learning
models and distributed sensor network is of particular importance.
We go on to provide an in-depth overview of our data collection and
processing methodologies, the mechanism behind the various deep
learning models used and our specific implementation as well as
our chosen performance metrics and their relative advantages. We
conclude with an analysis of model performance both in terms of
the standard error metrics used throughout the literature as well as
relative ramp detection performance across a range of ramp magni-
tudes.

2. Related Work

2.1. Solar PV Forecasting

The methodologies employed for solar forecasting are highly de-
pendent on the amount of time into the future one wishes to predict
(otherwise known as the ”forecast horizon”) as well as the sources
and availability of local weather data. Forecast horizons can gen-
erally be thought of in four timescale categories: (1) day-ahead
(more than 1 day), (2) intra-day (1-24 hours), (3) intra-hour (10-60
minutes), and (4) very-short-term, sometimes called ”nowcasting”
(less than 10 minutes) [13]. There are also four primary types of
data sources used for solar PV forecasting: NWP models, satellite
images, TSI systems, and distributed sensor networks. NWP uses
regional weather data and complex weather simulations to forecast
cloud cover over wide areas and, due to its computational intensity,
is primarily used for day-ahead forecasts. Prediction using satellite
images is generally best for intra-day horizons since the images
typically lack the spatial and temporal resolution for more refined
forecasting [17]. TSI systems use a specialized camera to take hemi-
spheric images of the sky around the solar PV array from which
cloud coverage and relative motion information can be transformed
into a power production forecast. The majority of the research into
intra-hour and nowcasting forecasts uses TSI systems but there is
evidence that, for horizons shorter than 5 minutes, these systems
may suffer from reduced accuracy due to a protective element inside
the imager called a ”shadow band” which shields the sensor from di-
rect sunlight but also obscures cloud cover information in the region
directly around the sun, the exact zone needed for quality very-short-
term forecasting [18, 19]. In an attempt to produce more accurate
forecasts in the 1-to-5-minute range, a handful of studies over the
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past decade have investigated the use of networks of inexpensive
solar irradiance sensors placed far enough around the PV array to
detect ramp events before they impact the array [10, 15, 16, 20].
Results from these systems are promising and have the advantage
of being more affordable than TSI systems, a particular concern for
small communities lacking significant funds for additional power
infrastructure. This encouraging performance as well as the lack of
studies examining the technique in high-latitude locations is why a
distributed sensor network was selected as the basis for this study.

Studies on solar PV nowcasting have used a variety of model
structures for generating time series forecasts from input data. These
can include peak-matching algorithms, wavelet decomposition mod-
els, computer vision algorithms and, more recently, deep learning
and/or recurrent neural networks (RNNs) such as long short-term
memory (LSTM), gated recurrent unit (GRU), and 1-dimensional
convolutional (Conv1D) models which show a substantial ability to
learn complex relationships between their input and target data sets.

2.2. Distributed Sensor Networks

Despite their lower cost and potential for improved nowcasting per-
formance over TSI systems [14], distributed sensor networks have
seen limited use in the literature. A study presented in [15] state that
in 2013 utilized 80 rooftop PV installations across a 2500 km2 area
in Tucson, Arizona as a network of sensors and a centralized PV in-
stallation as the target for forecasting. The installations were located
at various distances from the central array. Data were recorded at
15-minute intervals and a forecast was generated by calculating the
covariance between pairs of installations to determine the speed and
direction of clouds as they passed over the array. The measurement
installation most closely correlated with the central PV array at any
given time step was used as that time step’s forecast by lagging
the data point by the calculated time-of-arrival. Forecasts were
evaluated on horizons of 15 to 90 minutes using mean-square error
(MSE). In [16], the authors developed a network of five irradiance
sensors located within a large PV plant to extract cloud speed and
direction information using the cross-correlation between sensors.
This was done by assuming that each cloud had a linear edge and
then using geometry to find the orientation of the edge and its esti-
mated speed. Similarly to [15], data from the sensor most correlated
to the PV array output was lagged by the calculated time-of-arrival
at each time step to create the forecast. Performance was evaluated
using RMSE. In [10], the authors used 19 low-cost irradiance sen-
sors localized to the north-west of a PV array in combination with a
peak-matching algorithm to find the lag between each sensor and
the PV array output, find the most correlated sensor, then time-shift
the sensor data stream by the time lag to generate a forecast. The
novel peak-matching algorithm was compared to simple autoregres-
sive neural networks with and without inputs from the sensor data.
The peak-matching algorithm outperformed both neural network
models on an RMSE basis. A 2015 study presented in [20] used
the US National Renewable Energy Laboratory’s (NREL) Horizon-
tal Irradiance Grid, a network of 17 irradiance sensors distributed
over approximately 1 km2 in Oahu, HI as a data source with a cen-
tral sensor used as a PV array analog. A regression forecasting
model known as Least Absolute Shrinkage and Selection Operator
(LASSO) was used with good results when compared to ordinary

least squares and auto-regressive models. Models were compared
using normalized mean absolute error (nMSE) and a metric known
as ”forecast skill” which compares model RMSE to the RMSE of a
“naı̈ve” or “persistence” forecast (which simply assumes the next
data point will be the same as the current).

2.3. Recurrent Neural Networks for Solar Forecasting

A number of studies over the past decade have explored RNNs as a
model structure for intra-hour and nowcasting irradiance forecasting
using TSI systems, sensor networks, and single-source irradiance
combined with local meteorological data [21, 22, 23]. For example,
the authors of [24] explored the use of various hybrid LSTM, GRU,
and Conv1D models for generating forecasts at horizons between 5
and 60 minutes. The researchers used a large database of solar PV
production data from a microgrid at the University of Trieste, Italy
and were able to produce very accurate forecasts, particularly at a 1-
minute, 1-step-ahead time horizon. The study also demonstrated the
feasibility of multi-step ahead forecasting, albeit with slightly lower
accuracy. The authors did find potential for further improvements,
especially during periods of heavy cloud cover and for multi-step-
ahead forecasts. Overall, they determined that their methodology
was sufficient to aid in the design of small-scale energy storage
systems. In [25], the authors utilized a LSTM-Conv1D hybrid deep
learning model to forecast 15-minute resolution data at various hori-
zon using real-world solar data from Rabat, Morocco. Their hybrid
model showed improved performance when compared to simpler
machine learning techniques and non-hybrid models in terms of
mean absolute error (MAE) and RMSE as well as enhanced stability
in training. The researchers noted accurate performance up to a
horizon of 90 minutes and concluded that their hybrid model could
prove useful for real-time microgrid energy management and that
there was potential for further forecast integration with wind power
and load forecasting. A 2021 study [26] also used a Conv1D-LSTM
hybrid model but this time in conjunction with the same NREL
Horizontal Irradiance grid data as was used in [20]. The model was
used to first extract localized dependencies between sensors which
were then compared to long-term patterns learned by the LSTM
component. The hybrid model outperformed both simple LSTM
and GRU models on a RMSE and MAE basis. The work presented
in [26], to the best of these authors’ knowledge, is the only example
in the literature of an RNN model used to generate a forecast using
a distributed sensor network and the lack of an actual solar PV array
in the data set represents a gap in the established literature which
this paper is intended to fill.

3. Methodology

3.1. Sensor Network

In order to fulfill the research objectives of this study, it was im-
portant to consider the extreme environment in which the sensor
network would operate. The sensors needed to be survivable in
harsh, arctic conditions under high winds and temperatures below
-40 °C while also being cost-effective for a small, rural electric
utility to install. Additionally, the remote location of the KEA PV
array necessitated sensors which could communicate wirelessly and
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operate under their own power. To meet these requirements, a sim-
ple design was formulated which uses a 1-watt PV panel mounted
at a 30-degree tilt angle both as a power source and measurement
instrument.

The sensors’ data collection system was based around the Rock-
etScream Mini Ultra™ Arduino-compatible microcontroller, a low-
power specialty microcontroller based on the Arduino ATmega4808,
which used a sensing resistor and its built-in voltage sensor to record
the PV panel voltage and translate it into irradiance measurements.
For energy storage, the sensors used a 4.7-farad supercapacitor as
well as a non-rechargeable 3.6-volt lithium thionyl chloride battery
for use during times when PV power was not available. A circuit
diagram for the sensors in shown in Figure 1 and an exhaustive list
of the materials used in the sensor design is presented in Table 1.

Figure 1: Internal sensor wiring schematic. “MCU” refers to the microcontroller.
Component labels are referenced in Table 1.

In total, ten sensors were constructed and deployed in an ap-
proximately circular pattern around the 575-kW eastern portion of
the KEA PV array. The locations of the sensors were selected based
on the minimum distance required to detect a ramp event caused by
a cloud 2 minutes before the event would impact the PV array. This
was calculated by using historical wind speed data from the site as a
surrogate for cloud speed. A cloud moving at the 99.9th percentile
wind speed (21.1 m/s) would require a distance of approximately
2500 m to meet the desired 2-minute delay, so each sensor was
placed as close to 2500 m from the PV array as possible given the
physical accessibility of the site as well as local land use agreements.
The locations of the ten sensors in reference to the KEA 575-kW
PV array are shown in Figure 2.

3.1.1. Data Transmission and Limitations

Cellular modems are commonly employed for similar remote data
collection tasks, however the extremely limited cellular coverage
in the area surrounding the KEA PV array made this an infeasible
option. While satellite communications do not have this geographic
restriction, the high cost and power consumption of satellite modems
would have necessitated a much more expensive and cumbersome
sensor design. For these reasons, this study made use of short-range
radio transmissions using the Long-Range Wide Area Network (Lo-
RaWAN) protocol [27]. LoRaWAN uses a system of centralized
nodes, often called “gateways,” which serve as connection points
between LoRaWAN-capable devices and the wider internet. For
this study, one Dragino™ LG16 Indoor LoRaWAN gateway was
installed at the KEA PV site (where a wired internet connection

was available) and was fitted with a Dragino™ ABL-AN-040 fiber-
glass extended-range outdoor antenna for improved signal reception.
The sensors themselves each utilized a Seeed Grove™ LoRa-E5
LoRaWAN module to interface with the gateway and transmit data.

Figure 2: Map showing the locations of the sensors (labeled ”1” through ”10”)
relative to the KEA solar PV array.

While the LoRaWAN protocol does generally require much
less power than competing technologies, transmitting data still ac-
counted for the vast majority of energy used by the sensors. To
ensure a reasonable service life of at least 2 years, limits were
placed on the frequency of data collection and transmission. The
sensors were programmed to record and store a rolling window of
10 irradiance measurements, each 2 seconds apart but only transmit-
ted the 10 data points currently in memory when certain threshold
values were met:

• Absolute mean difference between the last 10 data points is
greater than 6.5 W/m2.

• Absolute median difference between the last 10 data points is
greater than 10 W/m2

These values were determined by calculating a sensor’s max-
imum average energy usage which would still allow it to operate
and transmit data using only its PV panel and supercapacitor during
the day. A maximum number of transmissions per day was then
calculated from this value and found to be approximately 1 trans-
mission every 2 minutes. The maximum measured irradiance ramp
rate which would result in an average of 1 ramp every 2 minutes
during daylight hours was determined empirically using global hori-
zontal irradiance (GHI) data collected from the KEA PV site. The
first 10 data points (20 seconds) of each of these qualifying ramp
events as well as the mean and median absolute differences between
each of the first 10 data points were recorded for each ramp and
the averages of these values were used to set the thresholds listed
above. Transmissions were also halted entirely when the mean of
the 10-measurement window was less than 15 W/m2.
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Table 1: Sensor components.

Component Manufacturer Model

Microcontroller RocketScream Mini Ultra™
LoRaWAN module Seeed Grove LoRa-E5
Solar panel Voltaic Systems 1 Watt 6 Volt Solar Panel
Solar panel mounting bracket Voltaic Systems Solar Panel Bracket - Small
Solar panel cable extension Voltaic Systems Cable Extension with Exposed Leads
Supercapacitor (C1) Eaton PHV-5R4V474-R
Diode (D1, D2) Diodes Incorporated 1N5817-T
Zener diode (D3) Vishay General Semiconductor BZX85B5V1-TR
Sensing resistor (R1) Vishay General Semiconductor MRS25000C6808FC100
MOSFET transistor Infineon Technologies IRLZ44NPBF
ER14505 battery EVE Energy Co. ER14505 STD
Antenna for LoRaWAN module SparkFun Electronics 915MHz LoRa Antenna
LoRaWAN antenna adapter Padarsey Electronics RF U.FL(IPEX/IPX) Mini PCI to SMA Female Pigtail
Breadboard (for mounting internal components) Adafruit Perma-Proto Quarter-sized Breadboard
Cable tension relief glands Lokman PG7
Electronics housing Polycase An-16F
Tripod mounting bracket Liuhe Universal Stainless Steel Vertical Pole Mount
Mounting tripod Davis Instruments Weather Station Mounting Tripod

As a final precaution against excessive power draw, the sensors
were programmed to be unable to transmit more than once in any 2-
minute period. This impacted the ultimate quality of the data since,
if another ramp event were to occur within that 2-minute waiting
period, it would not be recorded. It was ultimately decided that
the detection of ramp events large enough to warrant the activation
of a diesel generator at a resolution greater than 2 minutes would
likely not be significantly more valuable to grid operators, since the
generators required to ensure grid stability would already be in the
process of starting.

3.2. Data

Data used in this research were sourced from two distinct locations:
(1) the Kotzebue solar PV site and (2) the NREL 1-second Global
Horizontal Irradiance Measurement Grid in Oahu, Hawaii.

The data from the Kotzebue site can be broken down into three
categories:

• 1-minute resolution alternating current (AC) power produc-
tion data measured from the inverter one of eight 72-kW
sub-arrays that form the eastern, 575-kW segment of the
KEA PV array.

• 1-minute resolution meteorological data recorded from a me-
teorological station immediately adjacent to the sub-array.

• 2-second, non-continuous irradiance data from each of the 10
sensors.

PV and meteorological data at the Kotzebue site were measured
every 5 seconds via the same data logger and averaged over each
minute at the time of recording, leaving only the 1-minute resolution
data available. Figure 3 shows an example period of approximately
70 minutes of AC solar PV power data as well as several ramp
events from sensors 4 and 5, demonstrating the difference in tempo-
ral resolution and continuity.

Figure 3 shows that, while the sensors were not able to capture
the entire irradiance time series, they do transmit clear upwards
or downwards ramp event data in the minutes preceding the ramp
experienced by the PV array.

Figure 3: A section of data taken from September 13th, 2022 showing how ramp
events detected by upwind sensors correspond to upcoming ramp events in PV power
production.

Data from the meteorological station and KEA sub-array were
collected from late 2021 through March of 2023 with 486 days of
data deemed usable. While the sensor network was installed in July
of 2022, only 71 days of data between August and November of
2022 were deemed to be usable due to persistent snow cover of
the sensors’ 1-watt reference PV panels as well as low light levels
during the winter months of the 2022-2023 season.

The 1-Second Global Horizontal Irradiance Grid data set pro-
vided by NREL consists of 17 GHI sensors distributed across ap-
proximately 1 km2 in Oahu, Hawaii. Data were collected from
these sensors from March of 2010 through October of 2011 [28].
A number of studies have used this data set as training data for
various solar nowcasting models [20, 26, 29] and it was used in this
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study to validate the results from the Kotzebue site as well as to
investigate the impact of differing ramp rate profiles on the efficacy
of various models. The NREL Oahu data set is not a perfect analog
to the Kotzebue data set as it lacks wind speed and direction data.
Additionally, the sensors were placed much closer together than
those deployed in Kotzebue for this study.

Due to the different sample rates between the Oahu and Kotze-
bue data sets, it was necessary to modify the Oahu data set to sim-
ulate the limitations of the Kotzebue sensors. First, the data were
resampled to a 2-second resolution to match the internal sampling
rate of the Kotzebue sensors then the ramp detection thresholds
and 2-minute transmission limit described in Section 3.1 were also
applied. This resulted in a discontinuous data set comparable to the
Kotzebue sensor data. Additionally, since the Oahu sensor network
did not include a centrally located PV array, the center-most sensor
was chosen as a surrogate and its data were resampled to a 1-minute
resolution to match the data from the KEA PV array.

3.2.1. Quality Control

For the solar PV power production data, the capacity of the sub-
array inverter (67 kW) was used as a maximum reference value. All
data points exceeding 67 kW were discarded.

Data were also removed based on their associated solar eleva-
tion (angle of the sun above the horizon). There is evidence to
show that irradiance data with solar elevation angles less than 5◦

can be unreliable due to low incident angles on reference surfaces
[30, 31]. In this data set, due to Kotzebue’s extreme latitude, solar
elevation did not exceed 5◦ at all from January 1st to January 28th
or from November 13th to December 31st but did not overlap with
the available data period.

3.2.2. Data Restructuring

Data from the sensors were transmitted at a 2-second resolution with
gaps between of at least 2 minutes while data from the PV sub-array
and meteorological data were logged as 1-minute averaged data.
A truncated example of some of the collated data from a day in
September, 2022 is shown in Table 2 below.

Note that data from multiple sensors may overlap but the ma-
jority of each sensor column is empty due to the 2-minute trans-
mission restriction. Data from the meteorological station and solar
PV sub-array (the examples of power production and ambient air
temperature are used in Table 2) is only timestamped each minute,
leaving substantial data gaps in this unmodified state.

Neural networks of the kind used in this study cannot be trained
with missing data, so data manipulation was required to produce a
continuous data set. One solution considered was to resample the
solar PV sub-array and meteorological data to a 2-second resolution
but this proved impractical due to the gaps in the sensor data caused
by the 2-minute transmission limit. It was instead decided to alter
the sensor data to fit the 1-minute resolution of the remaining data
fields. A diagram of this manipulation is shown in Figure 4 below.

The key insight for this manipulation is that, due to the 2-minute
hard cap on sensor transmissions, any given minute can only con-
tain, at most, one transmission per sensor. This allowed for the
sensor data to be pivoted, with each of the 10 data points from each

transmission assigned their own column. In this structure, assum-
ing an arbitrary sensor transmission is a vector of 10 data points
[t1, t2, ..., t10], then column ”sensor 1, data point 1” contains every
t1 data point from sensor 1, ”sensor 1, data point 2” contains every
t2 data point from sensor 1, and so on with column ”sensor m, data
point n” containing all nth (1-10) data points from sensor m (1-10).

Table 2: Example of collected data.

Time Sensor 1 Sensor 2 . . . PV Pwr. (kW) Air Temp. (C)

0:00 - - . . . 52.55 13.33
0:10 288 - . . . - -
0:12 225 - . . . - -
0:14 225 - . . . - -
0:16 252 - . . . - -
0:18 243 - . . . - -
0:20 243 - . . . - -
0:22 234 378 . . . - -
0:24 225 387 . . . - -
0:26 225 400 . . . - -
0:28 225 414 . . . - -
0:30 - 423 . . . - -
0:32 - 432 . . . - -
0:34 - 432 . . . - -
0:36 - 432 . . . - -
0:38 - 387 . . . - -
0:40 - 378 . . . - -
0:42 - - . . . - -
0:44 - - . . . - -
0:46 - - . . . - -
0:48 - - . . . - -
0:50 - - . . . - -
0:52 - - . . . - -
0:54 - - . . . - -
0:56 - - . . . - -
0:58 - - . . . - -
1:00 - - . . . 54.51 13.21

Figure 4: Example of how the sensor data is re-organized to fit into the 1-minute
timestamps of the solar PV power production data set. The ramp detected by sensor
1 took place during minute 1 while the ramp detected by sensor 3 occurred in minute
2 and was thus assigned accordingly.
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To preserve some additional time resolution information, the
time from the beginning of the ramp event until the end of its corre-
sponding minute was recorded and assigned its own data field for
each sensor. To aid the models’ ability to isolate ramp events, a bi-
nary flag field was created for each sensor to indicate if that minute
contained a transmission (1 for transmission, 0 for no transmission).
If a sensor did not transmit a ramp event in a given minute, these
fields for that sensor were set to 0.

In total, 125 fields were used as inputs to the models:

• 10 data-point fields for each of the 10 sensors.

• 1 time-to-end-of-minute field for each sensor.

• 1 ramp-event binary flag for each sensor.

• 2 for wind direction sine and cosine components.

• 1 for wind speed.

• 1 for solar elevation to aid the models in tracking the time of
day.

• 1 for the solar PV production.

Of the 71 days of available data, 47 were used for training data,
16 were used for validation, and eight days with a notable diversity
of ramp profiles were not used in the training process at all and
instead selected for testing.

3.3. Solar Variability

Forecasting weather events in general is a difficult task. Solar ir-
radiance, and thus PV production, undergoes long-term seasonal
variation due to the solar cycle and short-term variability from
weather effects such as clouds. Figure 5 shows an example of four
different days of measured solar PV AC power production under
dramatically different cloud coverage conditions.

Figure 5: Examples of different daily PV production profiles from Kotzebue showing
the clear difference in frequency of sudden ramp events across the four categories
[32]

Assessing the variability of solar PV production on both
timescales is another common tool apart from deterministic fore-
casts to which can help improve PV integration efficiency. While
a number of metrics exist for evaluating the variability of time se-
ries data, a simple one used often when assessing PV production
specifically is the Variability Index (VI) [33]. This metric was used
in previous work by these authors in assessing the variability of the
Kotzebue PV production data set [32].

VI =

√∑n
k=2(IRRk − IRRk−1)2 + ∆t2√∑n
k=2(CS Ik −CS Ik−1)2 + ∆t2

(1)

VI characterizes the variability of solar PV data over a given
period of n time steps by comparing it to a corresponding clear-sky
(synthetic, unobstructed PV data) over the same period. A value of
1 indicates a perfectly clear day while larger values correspond with
increasing variability. References [33] and [32] used the VI metric
to categorize daily variability over the course of a year. In (1) above,
IRRk is the measured irradiance at time step k, CS Ik is the clear-sky
irradiance at time step k, n is the number of time steps, and ∆t is the
length of time between time steps.

This metric is of particular interest in this work because it pro-
vides a potential explanation for the differences in forecasting ac-
curacy depending of the data used to train models. As outlined
in Section 3.2, a comparison was done between the Kotzebue
PV and sensor data and data from the NREL sensor network in
Oahu. These two locations have significantly different daily and
yearly weather patterns and, since the objective of this research is
to develop methodologies for detecting sudden ramp events, it was
deemed useful to evaluate the frequency of such events across the
two data sets.

3.4. Artificial Neural Networks

Artificial neural networks (ANNs) refer to a wide classification
of computational tools which approximate the function of a bi-
ological brain. They are composed of complex collections of
simple arithmetic operations which can be optimized to produce
a desired output from a given input [34]. Because they can be
adapted to arbitrary problems, ANNs have found widespread use
across many data-driven fields, including solar PV forecasting
[35, 36, 37, 38, 39, 40, 41, 42].

ANNs are composed of interconnected structures called ”neu-
rons” which intake the weighted sum of arbitrary numerical inputs,
add an arbitrary bias value, and apply a activation function (usu-
ally a function bounding between 0 and 1 or restricting to positive
values). The output y of a neuron with n inputs can be written as
y = f (X ·W+ b) where X is the vector of input values to the neuron
[x1, x2, x3, ..., xn], W is the vector of weights associated with each
of the input values [w1,w2,w3, ...,wn], b is the bias, and f is the
activation function.

The values which a neuron intakes can either be raw input data
such as temperature, wind speed, etc. or the output of another neu-
ron. The ability to stack neurons into layers gives ANNs the ability
to model complex tasks efficiently [43]. The layers of neurons be-
tween the input and output layers are often called ”hidden layers”
as their inputs and outputs are not directly captured. Figure 6 below
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shows a diagram of an arbitrary ANN with its interconnected layers.
For solar PV forecasting, examples of input fields might include am-
bient temperature, time-of-day, current solar irradiance, etc. while
the output layer would necessarily be future PV production.

Figure 6: A diagram showing the interconnected structure of an ANN with 3 hidden
layers and and an arbitrary number of neurons per layer.

ANNs are optimized to learn input/output relationships in a
given data set through a process called ”training” during which
the weights and bias of each neuron are iteratively adjusted until a
stable solution is found. Training is performed through a process
called ”backpropagation” where, starting from the output end of the
network, a gradient descent algorithm is used to find the value of
each weight and bias for which some user-defined error function is
minimized [44]. This procedure uses a loss function Q(w) of the
form:

Q(w) =
1
n

n∑
i=1

Qi(w) (2)

where n is the length of the data set and w is the weight or bias value
to be optimized. An initial guess for w is selected then iteratively
updated using the process: w = w − α∇Q(w) where α is a scalar
factor often called the ”learning rate” which modulates the size of
each step down the gradient and ∇ is the gradient operator. This
iteration repeats until w stabilizes at some minimum value of Q(w),
at which point the next weight or bias is adjusted. This repeats until
the entire network is optimized [45].

3.4.1. Long Short-Term Memory

While the general ANN structure (sometimes called a dense ANN,
since each neuron is connected to every neuron in the next layer) is
still widely used for numerous forecasting applications, other vari-
ants exist which are specialized for specific tasks. One such variant
is the RNN which is designed for sequential applications, such as
time series forecasting. RNNs work by adding the weighted output
of each neuron’s activation function together with the weighted
input from the next time step. Each neuron can be thought of as
a chain of ”cells” which each share the same weights and biases.
Figure 7 below shows the structure of a simple RNN neuron [46].

Since each cell in the chain shares weights and a bias, an RNN
which intakes n time steps will have its output values scaled by
wn

2. For even small values of n, this can quickly lead to an unstable
gradient and is often referred to as the ”exploding/vanishing gra-
dient problem.” This flaw makes simple RNN structures like that
shown in Figure 7 unfeasible for learning the longer-term, yearly
dependencies required for accurately forecasting solar PV data [47].

Figure 7: The chain of cells which make up an individual RNN neuron. X is the
vector of input values at time t, w1,2 are the weights, and b1 is the bias.

LSTM-based models have become an extremely popular choice
for time series forecasting due to its ability to overcome the explod-
ing/vanishing gradient problem [48, 49, 50]. This is achieved by a
more complex cell structure which contains three sub-units called
”gates,” each of which contains either one or two sets of their own
weights, biases, and activation functions. This structure allows the
LSTM cell to maintain two internal states: the short-term and long-
term memory. The short-term memory retains information about
the previous time steps in the chain while the long-term memory is
used to learn dependencies across much wider timescales, allowing
long-term pattern information to be transferred without the gradient
growing too large/small [51, 52]. The structure of an LSTM cell
can be seen in Figure 8 below.

Figure 8: LSTM internal structure showing the three gates, ”forget” ( f ), ”input” (i),
and ”output” (o) as well as their internal weights and biases.
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The output of the three gates at time t can be expressed as
follows:

ft = σ(ht−1wh, f + xtwx, f + b f ) (3)

it = σ(ht−1wh,i,1 + xtwi,1 + bi,1) · tanh(ht−1wh,i,2 + xtwi,2 + bi,2) (4)

ht = σ(ht−1wh,o + xtwx,o + bo) · tanh(yt) (5)

Here, xt can either be a scalar (in the case of a single variable in-
put) or a vector of length equal to the number of input variables and
the weights w and biases b are the same shape as xt. All operations
are also assumed to be element-wise across the vector. The current
timestamp’s long-term memory state, yt, can be expressed as:

yt = yt−1 · ft + it (6)

Like with simple RNNs, the weights and biases inside each
LSTM cell are shared between all cells in the neuron’s chain. LSTM
cells can also be interconnected into layers, processing multiple time
steps simultaneously, and allowing for even deeper pattern recogni-
tion (see Figure 9 below).

Figure 9: One layer of LSTM of arbitrary size, with the length of the chain (the
number of previous time steps to be used in the next time step prediction) extending
to the right. Note how the input vector x is connected to each neuron at every time
step and likewise with the long-term memory y and short-term memory h.

3.4.2. Gated Recurrent Unit

The Gated Recurrent Unit (GRU) model is an advancement on the
LSTM and is fundamentally very similar in its application with
some notable differences. As opposed to the three gates present in
the LSTM cell, GRU cells only have two. Additionally, the GRU
design opts to forgo the two separate memory states of the LSTM in
favor of one, long-term memory [53, 54]. The structure of the GRU
cell is shown in Figure 10.

Here, the output states of the reset and update gates can be
expressed as:

rt = σ(xtwx,r + yt−1wy,r + br) · yt−1 (7)

zt = σ(xtwx,z + yt−1wy,z + bz) · tanh(rtwr + xtwx + b) (8)

Finally, the new singular long-term state, yt can be written as:

yt = yt−1 · (1 − σ(xtwx,z + yt−1wy,z + bz)) + zt (9)

This highlights the fundamental differences between the LSTM
and GRU models, primarily the fact that the GRU model cannot con-
trol the amount the previous long-term state yt−1 to intake into the
current calculation (which LSTM is able to do with the forget gate).
This potentially allows for a more nuanced ability to learn across
multiple time steps. There is also the lack of short-term memory
state in the GRU formulation. This affords the model notably more
computational efficiency, allowing for larger models to be practical
while also potentially limiting its ability to extract more detailed
patterns from training data [55].

Figure 10: The internal structure of a GRU cell showing the two gates, ”reset” (r)
and ”update” (z) as well as their internal weights and biases.

3.4.3. 1-Dimensional Convolutional

Convolutional Neural Networks (CNNs) are a subset of ANNs most
commonly used in the field of image processing. They use a 2-
dimensional sliding window over a data set and then feeding that
window into a set of connected neurons. This same methodology
can be applied, with some adjustment, to 1-dimensional sequential
data, such as a time series. These 1-dimensional CNNs are often
referred to as Conv1D models when used in this context. Conv1D
models are particularly useful for reducing the number of input
variables in large, multivariate time series as well as for determining
which patterns and combinations of variables have the largest im-
pact of accuracy. As mentioned in Section 2, they are often layered
before LSTM and/or GRU layers in order to reduce the input size
and improve training efficiency [56]. The structure of a Conv1D
neuron is shown
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Figure 11: Diagram of three consecutive Conv1D layers showing one neuron (k) of
layer p.

Figure 11 shows the Conv1D data flow process over a data set
with N data columns and an initial window of size M. The output
vectors of the previous layer, sp−1

i convoluted (∗ being the convo-
lution operator) with ”kernels” or vectors of shape [1, c] (denoted
by wp−1

i ). These resulting vectors are now reduced in size by c − 1,
since the kernel must fit entirely within the rolling window M. A
bias bp

k is then applied followed by a rectified linear unit (ReLU)
activation function. The vector is then sub-sampled (denoted by
the ss operator) by a factor of f before being convoluted with the
kernels of layer p and interconnected with the neurons of layer p+1.
The output of layer p for each data column i can be expressed as:

sp
i =

L∑
k=1

(ss f (ReLU(
N∑

i=1

(sp−1
i ∗ wp−1

i,k ) + bp
k )) ∗ wp

i,k) (10)

where L is the number of neurons in layer p and each subsequent
layer reduces the vector size, thus limiting the possible combinations
of kernel and window size [57].

3.5. Model Structures and Implementation

For this study, eight combinations of LSTM, GRU, Conv1D, and
Dense layers were tested. These include: a base LSTM and GRU
model, an LSTM and GRU model proceeded by a Dense model,
an LSTM and GRU model preceded by a Conv1D model, and a
”hybrid” model, which combines the Conv1D, LSTM/GRU, and
Dense models. The naming convention for these eight models is
presented in Table 3 below.

Table 3: Base model structure naming conventions.

Model LSTM GRU

N/A LSTM GRU
Dense Dense-LSTM Dense-GRU
Conv1D Conv1D-LSTM Conv1D-GRU
Dense and Conv1D Hybrid-LSTM Hybrid-GRU

Another useful addition to machine learning models is the
”dropout” layer. Not a computational layer like the Conv1D, Dense,
or CNN layers, the dropout instead randomly sets a specified frac-
tion of the weights between connected layers in a model to zero

on each training iteration. This is highly valuable to combat a phe-
nomenon known as ”overfitting” whereby a model will optimize its
weights and biases to fit its training data set but will perform poorly
on an as-yet unseen (or ”validation”) data set. This happens because
the model learns patterns which are specific to the training data but
cannot be generalized to future data. The dropout layer forces the
model to adapt to variation in the input data set as, with the dropout
layer, the model now cannot rely on any one neural pathway be-
tween layers. The generalized model structure with dropout layers is
shown in Figure 12. The specific number of Conv1D, LSTM/GRU
and Dense layers, as well as the fraction of each dropout layer, is
specified in Section 3.7 below.

Figure 12: Illustration of the base LSTM/GRU layers and how additional layers are
stacked to form a full model.

These eight models were constructed, trained, tuned, and val-
idated using the Python library ”Keras” which provides a wide
variety of tools for implementing machine learning models of all
kinds including neural networks. Keras provides a framework for
creating hybrid neural networks in a highly modular fashion and is
ideal for quickly prototyping models while also including a robust
system for refining and validating model performance.

3.6. Performance Metrics

The metrics used to evaluate the efficacy of the various model struc-
tures were divided into two categories: (1) standard error metrics
and (2) event-based metrics.

3.6.1. Standard Error Metrics

Previous research into solar PV forecasting across all time hori-
zons used some combination of the standard statistical error metrics
MAE, MSE, RMSE, and the coefficient of determination, r2.

MAE =
1
N

N∑
i=1

|yi − ŷi| (11)
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MS E =
1
N

N∑
i=1

(yi − ŷi)2 (12)

RMS E =

√√√
1
N

N∑
i=1

(yi − ŷi)2 (13)

r2 = 1 −
∑N

i=1(yi − ŷi)2∑N
i=1(yi − ȳi)2

(14)

In the above equations, y is the actual data set, ŷ is the forecast,
ȳ is the mean of the actual data set, and N is the length of both
y and ŷ. Each of these metrics quantifies the error of a forecast
differently. MAE treats all individual errors proportionally while
MSE penalized larger absolute differences more severely. RMSE
preserves the units of the input data and is also used to calculate
another metric (”skill”), which is discussed below. r2 is bounded
between 0 and 1 and shows the degree to which changes in ŷ are
determined by changed in y. In order to more directly compare
results with previous work, variants of MAE and MSE, normalized
Mean Absolute Error (nMAE) and normalized Mean Square Error
(nMSE) were used. These simply scale the error by the maximum
value of the actual data set.

nMAE =
1
N

N∑
i=1

|yi − ŷi|/max(y) (15)

nMS E =
1
N

N∑
i=1

(yi − ŷi)2/max(y) (16)

Forecast skill compares the RMSE score of ŷ to that of a per-
sistence model. A persistence model, sometimes referred to as a
”naive” model, is the simplest prediction algorithm possible. It
simply assumes that the next data point will be the same as the
previously measured data point.

ŷt+H = yt (17)

In (17), H is the forecast horizon, or the number of steps ahead
to be forecast. The most commonly used skill definition uses RMSE
as its metric.

skill = 1 −
RMS E f orecast

RMS Epersistence
(18)

A score of 0 indicates that the model in question performed no better
than a persistence model while negative and positive scores demon-
strate worse and better relative performance respectively. While not
itself useful for generating meaningful forecasts, persistence models
and forecast skill are important tools for establishing baseline model
performance. Data sets with large periods of little change, such
as extremely sunny or extremely overcast days in the case of solar
irradiance data, can lead to surprisingly good performance from a
persistence model in terms of the standard error metrics.

3.6.2. Event-based Metrics

While the standard error metrics are useful for understanding the
aggregate performance of a model, the ultimate goal of this research
is to develop a deterministic forecasting method which can accu-
rately predict individual large ramp events which would threaten
the stability of a high-solar-penetration electric grid. In order to
more directly measure this capability, the models presented in this
paper were also evaluated on an individual event basis. This was
accomplished using three standard event-based metrics: Precision
(PR), Recall (RE), and Fβ.

PR =
hits

hits + f alse alarms
(19)

RE =
hits

hits + misses
(20)

Fβ = (1 + β2) ·
PR

β2 · PR + RE
(21)

Hits, misses, and false alarms are binary classifications of data
points. PR represents a model’s ability to only forecast events which
actually happen while RE reflects its success at actually forecasting
events in the first place. In (21), β is a scaling factor used to weight
PR and RE differently. These metrics are commonly used in ma-
chine learning classification applications, but are rarely applied to
time series forecasting. This makes sense for situations in which
one is primarily concerned with cumulative performance but, con-
sidering the highly event-based nature of this research, these metrics
were warranted. Additionally, while it may be that those using such
a model would place more importance on either PR or RE in their
calculation of Fβ, this research evaluated all models at β = 1, which
is written as F1.

Applying these metrics to a time series data set first required
defining hits, misses, and false alarms. Since all ramp events are
relative, it was necessary to define a minimum ramp size threshold h.
Additionally, while both upward and downward ramp events effect
grid stability, upwards ramps can be dealt with more easily through
dispatchable loads. For this reason, only downward ramp events
were considered in this paper. Misses were calculated by first locat-
ing points at time t in the actual data set y where yt−1 − yt ≥ h and
then evaluating against the forecasted data set ŷ to find if ŷt − yt ≥ h.
False alarms were calculated in the opposite way, where all of the
data points in the forecasted data set ŷ where ŷt−1 − ŷt ≥ h and then
checking if yt − ŷt ≥ h. A hit was defined as a data point for which
both ŷt−1 − ŷt ≥ h and yt−1 − yt ≥ h. Figure 13 shows a visual
representation of how each event is classified.
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Figure 13: Venn diagram of the definition of misses, hits, and false alarms.

Under real-world conditions, the minimum downward ramp
magnitude for which a forecast would be useful to a grid operator is
extremely dependent on both their specific grid’s configuration and
current state. A small grid on a clear day with a large proportion of
its power coming from solar PV is able to absorb a different relative
ramp magnitude compared to a larger grid with battery storage,
alternative generation sources, and low PV penetration. For this
reason, PR, RE, and F1 were evaluated over a range of h values in
order to explore how the models performed at predicting different
ramp sizes. Plotting RE, PR, and F1 versus h can give a visual sense
of model performance, but it was still deemed useful to select a con-
sistent baseline value of h at which to evaluate the models. The 99th
percentile downward ramp rate was selected, which corresponded
to approximately 25.3% of maximum PV capacity per minute, and
is referred to as h99 throughout the paper. Values of RE, PR, and F1
evaluated at h99 are labeled PRh99, REh99, and F1,h99 respectively.

A version of forecast skill to be used with F1 was also devised
in order to use a persistence model as a baseline. The F1 forecast
skill, F∗1 is presented in (22) below and is similar to the standard
RMSE definition shown in (18), although modified to preserve the
convention of positive values indicating better performance over the
persistence model.

F∗1 =
F1,model

F1,persistence
− 1 (22)

3.7. Hyperparameter Tuning

The term ”parameter” is often used to refer to the trainable internal
weights and biases within a neural network. Similarly, the term
”hyperparameter” refers to the values which define the overall archi-
tecture of the model itself, including the number of layers of each
type, the number of neurons (or ”units” as referred to in Keras), and
learning rate α. The ideal values for these hyperparameters is highly
dependent on the task and there is no set rule for determining them.
The model design process often involves significant iterative trial
and error where one specifies a range of values for each hyperparam-
eter, models are constructed using various combinations of those
values, then tested to determine their relative accuracy. This process,
often referred to as ”tuning,” is easily automated using Keras. The
ranges of the hyperparameters tuned for each type of model layer
are presented in Table 4 below.

Table 4: Hyperparameter ranges for each layer.

Parameter Min. Max Step

LSTM/GRU Layers 1 5 1
LSTM/GRU Units per Layer 4 128 4
Conv1D Layers 1 5 1
Conv1D Units per Layer 4 128 4
Dense Layers 1 5 1
Dense Units per Layer 4 128 4
Dropout % Between Layers 0.0 0.3 0.05
Learning Rate (α) 1 × 10−5 1 × 10−2 10

The results of the hyperparameter tuning, and thus the architec-
tures of the eight models used in this study, are presented in Table 5.
The number of values in parentheses denote the number of layers in
each category and are listed in order of how the data flows through
the layers of the model (i.e. the Dense-GRU model has three GRU
layers, the first with 24 units, the second with 24, and the third with
12 a well as 2 Dense layers, the first with 20 units and the second
with four). Each layer also has a dropout layer proceeding it, the
associated dropout fraction of which is also ordered sequentially in
the ”Dropout Layers” column.

4. Results and Discussion

4.1. Performance of the Eight Base Models

Models were constructed using Keras based on the hyperparameter
tuning results and each was evaluated using the performance met-
rics outlined in Section 3.6. As with the hyperparameter tuning, the
loss function used for all eight models was MSE. To eliminate the
effect of random variation in the initial parameter guesses during
training, each model was trained a total of 10 times, after which all
internal parameters were reset. The models were not restricted in
terms of how many full passes through the training data, or ”epochs”
each training iteration used, but instead a ”patience” threshold was
set which automatically ended the training process if three epochs
occurred without any improvement in the models’ MSE score. Once
trained, each of the 10 iterations of the eight model architectures
was used to create a 2-minute-ahead forecast for the eight test days
and the performance of the resulting forecasts was evaluated using
the standard and event-based metrics. The mean values of the per-
formance metrics were calculated across the 10 iterations for each
model and are presented in Table 6 below with h99 again equal to
25.3% of maximum PV capacity per minute.

Overall, it is apparent from Table 6 that the standard error met-
rics and event based metrics are not strictly linked. The basic
LSTM/GRU models performed poorly across all metrics, showing a
severe inability to detect ramp events at or above h99 and generally
having high error scores across the standard metrics. The Dense-
LSTM fared little better, although the Dense-GRU did show the
highest PRh99 of any model and improved standard error scores. The
Conv1D-LSTM/GRU models displayed particularly interesting re-
sults, with the Conv1D-GRU showing underwhelming event-based
scores and middling standard errors but the Conv1D-LSTM archi-
tecture having a substantially higher F∗1,h99 than any other model,
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Table 5: Hyperparameter tuning results.

Model RNN Layers Conv1D Layers Dense Layers Dropout Layers Learning Rate (α)

LSTM (20, 8, 24) N/A N/A (0.15, 0.15, 0.1) 1 × 10−3

GRU (16, 8, 8) N/A N/A (0.2, 0.2, 0.25) 1 × 10−3

Dense-LSTM (28, 8) N/A (16, 16, 16) (0.15, 0.15, 0.15, 0.2, 0.2) 1 × 10−3

Dense-GRU (24, 24, 12) N/A (20, 4) (0.25, 0.1, 0.15, 0.15, 0.15) 1 × 10−3

Conv1D-LSTM (28, 24) (36) N/A (0.2, 0.1, 0.2) 1 × 10−4

Conv1D-GRU (32, 16, 16) (64) N/A (0.15, 0.2, 0.15, 0.1) 1 × 10−4

Hybrid-LSTM (32, 16) (36) (8, 8) (0.1, 0.1, 0.2, 0.1, 0.15) 1 × 10−4

Hybrid-GRU (28, 4, 20) (28) (12, 4) (0.1, 0.15, 0.15, 0.25, 0.15, 0.2) 1 × 10−4

Table 6: Model performance across all metrics over the eight test days.

Model nMAE nMSE r2 Skill PRh99 REh99 F1,h99 F∗1,h99

LSTM 0.215 0.412 0.825 -0.165 0.000 0.000 0.000 -1.000
GRU 0.211 0.370 0.843 -0.104 0.000 0.000 0.000 -1.000
Dense-LSTM 0.212 0.401 0.842 -0.100 0.000 0.000 0.000 -1.000
Dense-GRU 0.181 0.331 0.869 0.000 0.895 0.009 0.017 -0.630
Conv1D-LSTM 0.210 0.397 0.832 -0.143 0.242 0.069 0.102 1.220
Conv1D-GRU 0.211 0.396 0.872 0.008 0.000 0.000 0.000 -1.000
Hybrid-LSTM 0.186 0.365 0.856 -0.050 0.006 0.028 0.041 -0.107
Hybrid-GRU 0.169 0.330 0.870 0.001 0.030 0.022 0.015 -0.673

although with poor results in other metrics. Finally, the Hybrid-
lSTM/GRU models showed improved standard error scores but
generally had skill scores around 0, indicating rough parity with
persistence models.

The results in Table 6 indicate a rather large gap in performance
across the models in terms of the event-based metrics. This was
likely due to the relatively small size of the available data set. A
downwards ramp event with a magnitude of at least h99 only oc-
curred 64 times across the eight test days. This meant that missing
only a few more events than another model lead to drastically lower
event-based scores. The relative performance of the eight models in
terms of F1 is better illustrated in Figure 14.

Figure 14: Mean F1 score versus downward ramp rate magnitude (h) distribution for
the eight base models over 10 trials. Shaded region around the mean line represents
1 standard deviation.

Figure 14 shows the mean and variance of each of the 10 mod-

els’ F1 score across the 10 trials along with a persistence model for
downwards ramp events h of 5% to 40% of the maximum PV array
capacity per minute at increments of 1% with h99 plotted as a refer-
ence. No ramp events over 40% per minute were recorded during
any of the eight testing days. This plot shows a number of surpris-
ing results. The basic LSTM/GRU as well as the Dense-LSTM did
not approach the persistence model’s performance for any value of
h while the Dense-GRU, Hybrid-LSTM/GRU, and Conv1D-GRU
models all performed relatively similarly. Interestingly, the Conv1D-
LSTM was able to consistently outperform persistence across all
values of h. It is apparent from Figure 14 that there is significant
variability within each model’s F1 score, especially for larger values
of h where there are fewer ramp events of that size.

The fact that only one of the models was able to barely out-
perform the persistence model across multiple values of h shows
that these models are struggling to accurately forecasting significant
ramp events when they happen. The standard error metrics are
also somewhat high compared to similar studies in the literature
[10, 20, 58]. One potential reason for the former is the use of MSE
as the loss function for the model training process. While MSE does
penalize larger errors disproportionately, it does not specifically
incentivize models to train in a way which produces good event-
based metric scores. This could also be impacted by the hard-coded
2-minute window between sensor transmissions, during which ramp
events could be missed. This is most likely due to a general lack of
quality training data.

4.2. Comparison to Alternative Data Set

While not the best performing model across all metrics, the Conv1D-
LSTM’s notable improvement over other models in terms of F1
warranted further testing. As mentioned in Section 3.2, data from
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NREL’s Global Horizontal Irradiance Grid sensor network in Oahu,
HI was used as a comparison to the Kotzebue PV production data.
The same Conv1D-LSTM architecture was used with the 570 days
of available data from Oahu, with similar proportions of training,
validation, and testing data. This is not an ideal comparison due
to the Oahu data set (1) not having associated wind speed and di-
rection data, which was an input into the Kotzebue models, and
(2) the data from Kotzebue being production data from a PV array
compared to the pyranometer measurements from Oahu. Since it
takes time for a cloud to move across a PV array, ramp events hap-
pen slower when compared to a point-source measurement, like a
pyranometer, where the cloud edge impact happens all at once. This
spatial smoothing effect has been observed across a wide variety of
locations, including Kotzebue [32, 59, 60].

To create a more fair comparison between the Oahu and Kotze-
bue data sets, the Conv1D-LSTM model architecture was trained
on the same Kotzebue data as before minus the wind speed and
direction variables. The models were again fully re-trained a total
of 10 times and the results across all metrics were averaged. The F1
plot of these is shown below in Figure 15.

It is apparent in Figure 15 that the Conv1D-LSTM trained on
and targeting the Oahu data was much less successful in terms of
F1 compared to its respective persistence model but also showed
significantly less variance between trials than the Kotzebue Conv1D-
LSTM. The lower variance was likely due to the proportionally
larger data set from Oahu while the reduced relative performance
can likely be explained using the variability index VI outlined in
Section 3.3. The daily VI was calculated for both the Kotzebue
PV production and the central Oahu PV-surrogate pyranometer. To
obtain a better sense of the variability in Kotzebue, 286 days within
calendar year 2022 were used. These included the 71 days for which
there was also usable sensor array data.

Figure 15: Mean F1 score versus downward ramp rate magnitude (h) distribution for
the base Kotzebue Conv1D-and no-wind Conv1D-LSTM models from both Kotzebue
and Oahu. Shaded region around the mean line represents 1 standard deviation.

Figure 16 also includes VI values for a plane-of-array (POA) ref-
erence cell located at the Kotzebue PV array over the same 286-day
time span. This reference cell, like a pyranometer, takes single point
measurements and thus should show more variability than the PV
array production due to spatial smoothing. This is evident in Figure
16 but it is also clear that the Oahu data set contains significantly

more days of higher variability than either of the Kotzebue data sets.
This indicates that the increased variability in Oahu is not simply
due to a lack of spatial smoothing and is instead a result of local
weather patterns.

Figure 16: Histogram showing the relative frequency of various VI values between
the Kotzebue and Oahu data sets.

It is possible that there are so many sudden ramp events in the
Oahu data set that a persistence model is able to achieve a rela-
tively high F1 score simply because ramp events happen to occur
within the 2-minute time horizon of each other very frequently. It
is also likely that the Conv1D-LSTM architecture model learned
that optimizing for MSE could be achieved without trying to match
every local minima/maxima. This is supported by the standard er-
ror metrics presented in Table 7 below which show that the Oahu
Conv1D-LSTM model performed significantly better than either of
the Kotzebue models and even achieved a positive skill.

Table 7: Mean statistical metrics over 10 trials for Kotzebue Conv1D-LSTM and
no-wind Conv1D-LSTM models from both Kotzebue and Oahu.

Model nMAE nMSE r2 Skill
Base Conv1D-LSTM 0.210 0.397 0.832 -0.143
Oahu Conv1D-LSTM 0.115 0.274 0.88 0.142

No-Wind Kotzebue
Conv1D-LSTM 0.178 0.348 0.863 -0.025

5. Conclusion

The aim of this research was to develop and test a method for predict-
ing sudden ramp events in solar PV production data at a 2-minute
time horizon. To this end, a network of 10 solar irradiance sensors
was deployed around a utility-scale solar PV array in Kotzebue,
Alaska, just above the Arctic Circle. Data from these sensors was
used to detect incoming changes caused by passing clouds via a
number of deep neural network models, all of which were evalu-
ated using both standard error metrics such as MSE, MAE, and
forecast skill as well as an application of the event-based metrics
PR, RE, and F1. A total of eight models were tested, combining
the widely used RNN models LSTM and GRU with 1-dimensional
convolutional (Conv1D) and fully connected (dense) networks into
various hybrid models. While most of the models showed middling
results in terms of the standard error metrics and largely failed to
outperform a persistence model in terms of F1 across a range of min-
imum ramp magnitudes, the combined Conv1D-LSTM model show
notable improvement over the others in the F1 case, although its
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mediocre standard error metric scores are not enough to definitively
conclude that it is the best model for this specific application.

It is likely that a model’s ability to forecast ramp events is re-
lated to the frequency and severity of ramp events. When the VI
metric was applied to both the Kotzebue and Oahu data sets, it is
apparent that the Oahu site experiences significantly more extreme
ramp events over a similar time period when compared to the Kotze-
bue site. This likely both impedes the models’ ability to accurately
learn what constitutes a ramp event as well as gives the persistence
models an advantage since shifting the data set by 2 data points is
more likely to coincidentally line up with existing ramp events. This
performance difference is reflected in the event-based metrics for
the Oahu data set as compared to Kotzebue.

There were two notable limitations with this research: (1) the
minimum 2-minute window between sensor transmissions, during
which time ramp events could be missed, and (2) the general lack
of available training data. It is possible that the models were simply
unable to reliably learn patterns between the sensor, meteorological,
and PV production data sets but would see improved performance
with additional data. It is also likely that the failure of most of the
models to outperform persistence on an F1 basis was due to the use
of MSE (or any standard error metric for that matter) as the loss
function. MSE and functions like it are not designed to optimize a
model for event-based forecasting. Unfortunately, RE, PR, and F1
use discrete values and as such are non-differentiable, meaning they
cannot be used as a loss function.

This research provides two main contributions to the field of so-
lar PV nowcasting. For one, it represents by far the highest-latitude
deployment of a distributed irradiance sensor network yet tested. It
also marks a step forward in evaluating the ability of nowcasting
models to accurately and reliably predict sudden changes which
might threaten grid stability. While there has been great success in
the past two decades in PV forecasting of all kinds according to the
standard error metrics, very little analysis has been presented which
quantifies the number of critical events captured by models. The
few studies which do either evaluate these metrics over too long of
a time horizon for this specific application, only evaluate them at
one minimum ramp magnitude h, or both [61, 62, 63].

Lastly, assessing the capabilities of artificial intelligence (AI)
across various domains has emerged as a vibrant research area. Par-
ticularly in the Arctic, AI is proving to be a vital tool for exploring
the region’s future and supporting its communities amidst climate
change [64, 65]. Further research is essential to fully harness AI’s
potential in this context. By evaluating multiple AI models towards
Arctic energy challenges, this paper has laid the groundwork for
numerous research endeavors in this direction, paving the way for a
deeper understanding of AI’s applications in the Arctic and beyond.
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