
Advances in Science, Technology and Engineering Systems Journal
Vol. 8, No. 6, 01-07 (2023)

www.astesj.com
Special Issue on Innovation in Computing, Engineering Science & Technology

ASTES Journal
ISSN: 2415-6698

Control Program Generator for Vehicle Robot using Grammatical Evolu-
tion
Firdaus Sukarman1,3, Ryoma Sato2, Eisuke Kita*,1

1Graduate School of Informatics, Nagoya University, Nagoya, 464-8601, Japan
2Graduate School of Information Science, Nagoya University, Nagoya, 464-8601, Japan
3Faculty of Mechanical Engineering, Universiti Technologi MARA Selangor, 40450 Shah Alam, Malaysia

A R T I C L E I N F O A B S T R A C T

Article history:
Received: 16 May, 2023
Accepted: 10 September, 2023
Online: 30 November, 2023

Keywords:
Evolutionary Computation
Robot Control
Grammatical Evolution
Vehicle Robot
Program Generation

A robot development has spread widely for various purposes. It is difficult to create a control
program for an autonomous mobile robot manually. Therefore, an automatic design of the
control program for an autonomous mobile robot is proposed in this research. The autonomous
mobile robot is created with LEGO MINDSTORMS EV3, and the control program for the au-
tonomous mobile robot is designed using Grammatical Evolution (GE). Grammatical Evolution
(GE), which is one of the evolutionary computations, is designed to generate a program or a
program fragment satisfying the design objective. PyBullet is used with GE to simulate the
behavior of the robot. A robot traveling along a trajectory was considered as an example.
GE can generate the control program of the robot behavior of a robot vehicle traveling along
a trajectory. The computer simulation reveals the robot can travel along a designated line.
Since there is a reality gap between the simulator and the real environment, the parameters
of the vehicle robot such as produced power and sensor sensitivity are calibrated to reduce
the gap. Comparison of the computer simulation and the experimental result shows that the
reproducibility of the vehicle trajectory in the real environment is high.

1 Introduction

Evolutionary algorithm (EA), which is one of the heuristic search
methods, is widely applied for complex and continuous optimiza-
tion problems [1]. Specially, it is very effective for solving problem
with too many design variables. Evolutionary Computation includes
Genetic Algorithm (GA) [2, 3], Genetic Programming(GP) [4, 5],
Evolutionary Strategy (ES), Evolutionary Programming (EP) and
so on.

Genetic Algorithm is widely applied for the complex optimiza-
tion problem. Candidate solutions of the problem are defined as the
individuals [2, 3]. Each individual has the chromosome which de-
fines binary design variables. Population is constructed by the group
of the individuals. By applying the genetic operators such as selec-
tion, crossover and mutation, individuals evolve into new individu-
als so that the objective function is minimized. Genetic Program-
ming(GP) is also well-known evolutionary algorithm [4, 5]. Genetic
Algorithm aims at finding the solutions of functions, whereas Ge-
netic Programming aims at designing functions and programs [6, 7].
Individuals are defined in a binary tree structure, which is very dif-

ferent from them in Genetic Algorithm. Since the individuals are
defined in a binary tree structure, genetic operators for GP are very
different from them for GA.

Grammatical Evolution (GE), which was presented in 1998 by
O’Neill and C. Ryan, is the evolutionary algorithm for determining
the function or program which satisfies the design objective [8]–[10].
The aim of GE is the same as GP. Its algorithm, however, is slightly
different. Individuals of GE are defined in the binary or string, like
GA. The translation from the binary or integer numbers to function
or program is performed according to Backus-Naur form (BNF),
which is defined by a user in advance. Authors’ colleagues applied
Grammatical Evolution to symbolic regression problem, stock price
prediction problem and generation of control program of artificial
ant in computer simulation [11]–[14]. In this study, Grammatical
Evolution is applied for generating the control program of a real
vehicle robot. A vehicle robot is made of LEGO MINDSORM EV3
[15, 16].

PyBullet is utilized for simulation of the actual robot motions
[17, 18] . This environment is widely utilized as a robot learning
environment for manipulation due to its portability and light weight

*Corresponding Author: Eisuke Kita, Email: kita@i.nagoya-u.ac.jp

www.astesj.com
https://dx.doi.org/10.25046/aj080601

1

http://www.astesj.com
https://www.astesj.com
https://dx.doi.org/10.25046/aj080601

F. Sukarman et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 8, No. 6, 1-7 (2023)

for variety of machine learning tasks [19]. After the program is
created in the simulation environment, it is applied to control the
actual robot. Since there are differences in sensor sensitivity and
motor output between the actual robot and the robot in the simula-
tion environment, the program is modified to compensate for the
differences. The results of the robots in the actual and the simula-
tion environments are compared for discussing the validity of the
generated program.

The remaining part of this paper is organized as follows. The
evolutionary computations are introduced in Section 2. In Section 3,
experiments and discussion of control program design using GE are
performed. In Section 4, the designed control program is applied
to the actual vehicle robot. The conclusion and future issues are
summarized in Section 5.

2 Grammatical Evolution

2.1 Outline

Grammatical Evolution is designed to find a function or a program
satisfying the design objective. GE composes the initial popula-
tion by the individuals with randomly generated bit-strings or the
sequence of integer numbers [20]. The translation from the integer-
string to the program is performed according to the translation rules
of Backus-Naur Form (BNF) grammar [21]. After the integer-string
of each individual is translated into a function or a program, its
fitness is evaluated. The individuals are updated by using genetic
operators such as selection, crossover, and mutation with the indi-
vidual fitness. These process are repeated till the design objective is
satisfied. The process is summarized as follows.

1. Define translation rules based on targeted task, which trans-
lates integer string to a function or a program.

2. Generate individuals from integer string randomly to define
an initial population.

3. Translate the integer-string of each individual into a program.
4. Select parent individuals from population according to fitness.
5. Apply genetic operators such as selection, crossover, and mu-

tation to parent individuals to generate offspring individuals.
6. Update population.
7. If the individual satisfying the design objective can be found,

the results are output. If not so, go back to Step 3.

2.2 Translation from Integer String to Program

The translation rules are defined with the set of non-terminal sym-
bols N , the set of terminal symbols T , and the start symbol S.
Non-terminal symbols are replaced with the other non-terminal
or terminal symbols according to the translation rules. Terminal
symbols, on the other hand, is no longer replaced. The sets of the
symbols are summarize as follows.

N = { <code>,<op>,<var> }
T = { +,-<*,/,X }
S = { <code> }

The translation rule is shown in Table 1. The symbol ”|” means
“or”. The symbol <code> (A) is replaced with one of three can-
didates; <code><code> (A0), <op> (A1), and <var> (A2). The

symbol <op> and <var> have four candidates and one candidate,
respectively.

Table 1: Example of Simple Translation Rules

(A) <code> ::= <code><code> (A0)
| <op> (A1)
| <var> (A2)

(B) <op> ::= + (B0)
| - (B1)
| * (B2)
| / (B3)

(C) <var> ::= x (C0)

Table 2: Evolution of Symbols

S n rA m A Selected symbols Replaced symbol
<code>

3 3 0 <code> <code><code> <code><code>

0 3 0 <code> <code><code> <code><code><code>

2 3 2 <code> <var> <var><code><code>

<var> x x<code><code>

1 3 1 <code> <op> x<op><code>

2 4 2 <op> * x*<code>

2 3 2 <code> <var> x*<var>

<var> x x*x

The translation process is summarized as follows. For example,
assuming that the individual is defined as “302122”, the transla-
tion of “302122” according to Table 1 is shown in Table 2. The
start symbol is α = <code>. The leftmost not-used gene is n0 =

3. The symbol α = <code> has three potential symbols, n0 = 3.
Since the remainder of n0 = 3 divided by nα = 3 is nr = 0, the
symbol α = <code> is replaced with 0-th symbol of the candidates
<code><code>.

Next, the leftmost symbol α = <code> of the symbols
<code><code> is replaced as follows. The second leftmost not
used number of the individual is n0 = 0. The symbol α = <code>
has three candidates and thus, n0 = 3. Since the remainder of n0 = 0
divided by nα = 3 is nr = 0, the symbol α = <code> is replaced with
the symbol <code><code> and then, the symbols <code><code>
becomes the symbols <code><code><code>.

Next, the leftmost symbol α = <code> of the symbols
<code><code><code> is replaced as follows. The third leftmost
not-used number of the individual is n0 = 2. The symbol α = <code>
has three candidates and thus, nα = 3. Since the remainder of n0 = 2
divided by nα = 3 is nr = 2, the symbol α = <code> is replaced with
the symbol <var> and then, the symbols <code><code><code>
becomes the symbols <var><code><code>. According to the sim-
ilar process, the individual “302122” results in x ∗ x. The whole
process is shown in Table 2.

3 Design of Control Program

3.1 Robot Vehicle

The robot vehicle is created by LEGO MINDSTORMS EV3 (Fig.1).
LEGO MINDSTORMS is an educational robot kit jointly devel-
oped by LEGO and Massachusetts Institute of Technology. LEGO
MINDSTORMS EV3, which was released in 2013, contains an
intelligent block with a 32bit ARM9 microprocessor which allows
the robot to operate autonomously by downloading and executing

www.astesj.com 2

http://www.astesj.com

F. Sukarman et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 8, No. 6, 1-7 (2023)

the program. Several sensor such as an ultrasonic sensor, a color
sensor, a gyro sensor, and a touch sensor can be attached to the input
port and then, the values of each sensor can be used to control the
servo motor connected to the output port.

For rapid software development, the robot is loaded with Mi-
croPython firmware for complete integration with a Python-based
simulation environment. For uploading and debugging programs
on robots, a standard IDE such as Visual Studio Code is utilized.
Actual course used in this experiment is shown in Fig.2.

Figure 1: Lego Mindstorms EV3

Figure 2: Actual Course

3.2 Simulation Environment

PyBullet is utilized for simulation due to its capability to replicate
actual robot motions using Bullet Physics Engine and stability in
repetitive machine learning calculations [17] . This environment is
widely utilized as a robot learning environment for manipulation
due to its portability and light weight for variety of machine learning
tasks.

Robot and track model is generated using standard Unified
Robot Description Format (URDF) used in Robotics Operating
System (ROS) [22]. Object physic characteristics can be defined
deliberately in the XML-styled format thus comparatively fasten
simulation environment with accurate parameters. Center of axle is
configured as measurement point for positional analysis.

Detailed dimensions of the course is shown in Figure 3. The
course design is performed by placing 30cm x 30cm tiles on a 240cm
x 120cm field. Lines center is located at the center of the tiles with
thickness 25mm to match attachment height of the reflection sensor.
This setup will enable the reflection sensor to completely sense
whether the surface reflect light or not. Tiles with various shapes
are prepared, and it is possible to design a course according to the
purpose. START, GOAL, and CHECKPOINT can be set for tiles as
their specifications. The START tile is the starting position of the

robot, which determines where and in what direction to place the
robot first. The GOAL tile is the end of the robot motion. When
the center of the robot’s axle enters the GOAL tile, the simulation is
terminated. The CHECKPOINT tile is functioned as Checkpoint
for the robot motion. In Fig. 4, the tiles numbered with i = 1, ·
· · , 18 denote the CHECKPOINT tiles. A robot has to pass all
CHECKPOINT tiles when a robot moves along a line.

Figure 3: Dimension of Course

Figure 4: Course Checkpoint

3.2.1 Control Program Translation rules

Grammatical Evolution can generate the best control program from
the randomly defined candidate programs according to translation
rules known as Backus-Naur Form (BNF) Grammar.

Table 3 shows the translation rule defined for this experiment.
In defining the translation rule, the control statements of LEGO
MINDSTORMS EV3 are introduced. This statements consists con-
trol statement used in PyBullet and LEGO MINDSTORM EV3, and
can be controlled with identical control statement both in simulator
and real machine.

The translation rules are defined with the set of non-terminal
symbols N, the set of terminal symbols T , and the start symbol S .
The sets of the symbols are summarize as follows.

N = { <code>,<op>,<num> }
T = { if(SensorValue > (100+)/2): else:,
motor(, ,),-100,-90,-80,-70,-60,

-70,-60,-50,-40,-30,-20,-10,0,10,20,

30,40,50,60,70,80,90,100 }

S = { <code> }
The symbol <code> (A) can be replaced with one

of three candidates; <code><code> (A0), <op> (A1) and
if(SensorValue > (100+<num>)/2): <op> else:

www.astesj.com 3

http://www.astesj.com

F. Sukarman et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 8, No. 6, 1-7 (2023)

<op>(A2). The symbol <op> and <num> have one candidate and 21
candidates, respectively.

Table 3: Translation rules

(A) <code>::= <code><code> (A0)
| <op> (A1)
| if SensorValue>(100+<num>)/2{<op>}

else{<op>} (A2)
(B) <op>::= motor(<num>,<num>,100+<num>) (B0)
(C) <num>::= -100 (C0)

| -90 (C1)
| -80 (C2)
| -70 (C3)
| -60 (C4)
| -50 (C5)
| -40 (C6)
| -30 (C7)
| -20 (C8)
| -10 (C9)
| 0 (C10)
| 10 (C11)
| 20 (C12)
| 30 (C13)
| 40 (C14)
| 50 (C15)
| 60 (C16)
| 70 (C17)
| 80 (C18)
| 90 (C19)
| 100 (C20)

At translation rule (A), the statement <code><code> in Rule
(A0) adds the evolvable mechanism. Direct selection of motor
control is added using the statement <op> in Rule (A1) that en-
able the selection of motor movement directly. For sensor input,
if SensorValue>(100+<num>)/2{<op>}else{<op>} is used
as if -statement to control the motor movements upon receiving
the sensor value. The statement SensorValue get the output from
color sensor which is integer between 0 to 100 and the conditional
value (100+<num>)/2 is used to match the color sensor input in in-
crements of 5. This conditional statement produces two executable
statements <op>, first statement is executed when the sensor value
is larger than selected value, otherwise the second statement is exe-
cuted. This allows the color output of the sensor change the pattern
of the motor input.

At translation rules in (B), the statement motor(<num>,<num>,
100+<num>) is the control statement for the motors, where the ar-
guments are for left motor, right motor and waiting time for the
movement to complete. The statement <num> for first and second
argument is used to select the speed input range from -100 to 100 in
10 increments. Negative value means the motor will run backwards
with percentage ratio. The statement 100+<num> is a control argu-
ment that sets the execution time (ms) of motor power input. Since
the argument started with value of 100, only positive value will be
produced from 0 to 200 in increments of 10.

At translation rule C, a common usable parameter with a value
between -100 and 100 is set so that it can be used for sensor and
motor input conditional values.

3.2.2 Fitness Function and Parameters

Each generated program is evaluated using a fitness function ca-
pable of achieving the goal by passing all checkpoints in less than
60 seconds. The fitness function is defined such that lower values
indicate a better solution, so that the control program generation

problem is appointed as a minimization problem. The objective
function is defined as below.

min f (x) =

TGoal (i f Ncheckpoints = 18,TGoal ≤ 60)
104 (otherwise)

(1)

where Ncheckpoints and TGoal represent number of checkpoints
tiles,i-th and total time taken,T (s) to reach the GOAL tile, respec-
tively. Only individuals that pass through within all 18 checkpoints
are evaluated and beyond that the fitness is penalized with very large
number(104). Large number is used as fitness scaling to control
diversity to prevent the populations converge to early toward a single
optimal solution[3]. Solutions fitness that go beyond the tiles will
also be deducted until the trajectories of robot follow the line and
finally reach the determined target. Parameters used is shown in
Table 4

Table 4: GE Parameters

Population size 200
Maximum generation 50

Gene length 1000
Number of elites 1

Selection Tournament
Tournament size 5
Crossover type One-point crossover
Crossover rate 0.4, 0.5, 0.7
Mutation rate 0.03, 0.05, 0.07

3.3 Simulation Results

In Figure 5 , we perform five simulations with different initial values
and show the average value. This attempts to remove the influence
of how the initial values were selected. The horizontal and the ver-
tical axes represent the number of generations and the arrival time
to the GOAL tile, respectively. The result of the crossover rate 0.5
and the mutation rate 0.05 demonstrates the quickest convergence
during the initial generation. Table 5 shows the average fitness of the
best individual in the final generation for different crossover rates
and mutation rates. When the crossover rate is 0.4, the simulation
did not converge for mutation rate 0.03 and 0.05, but shows lowest
rate of convergence when mutaton rate is 0.07. The best fitness is
obtained when the crossover rate is 0.5 and the mutation rate is 0.05.

Figure 5: Convergence history travel time over generation

www.astesj.com 4

http://www.astesj.com

F. Sukarman et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 8, No. 6, 1-7 (2023)

Table 5: Effect of Crossover and Mutation rate

Crossover rate
Mutation rate

0.03 0.05 0.07

0.4 - - 22.51
0.5 22.32 16.74 17.20
0.7 28.64 16.98 18.74

Figure 6: Generated program

Fig.6 shows the program generated based on the best individual
of the final generation. It is notice that the best generated program
is a simple line tracing program. When the color sensor of a robot
vehicle notices white on the course, the vehicle moves forward with
the maximum motor output. When the color sensor notices black,
the vehicle rotates to the right on the spot. At the start, the vehicle
moves forward because the color sensor is positioned on the white
field. When the color sensor enters the black line, the vehicle ro-
tates to the right. After completing the rotation, the vehicle moves
forward because the color sensor is positioned on the white field.
After repeating forward and right turns alternately four times in this
way, a robot vehicle goes straight and reach the GOAL tile.

4 Experiment

4.1 Performance Estimation of Robot Vehicle

LEGO MINDSTORMS EV3 robot can be controlled using motor
power input (Duty Cycle) in percentage and speed input. When
the motor is assigned with increments of speed in 2s interval time,
rotational speed increases and reached the limit of 800degree/s as
shown in the Fig. 7 which is equivalent to the maximum of 80%
of the power input. Motor power input is capped to 80% and the
limitations are also applied to the simulation.

Motor power input is a simple method to control the movement
of the robot by supplying current to the motor in ratio. The esti-
mation of motor speed require actual power input when the robot
is under actual load when moving around the track with surface
friction. Fig.8 shows the relation between power and rotational
speed of motor in degree/s.

4.2 Kinematics of Robot

Grammatical Evolution program uses speed input to vary the veloci-
ties of the two wheels, thus determine the trajectories of the robot.
Actual robot used in this experiment utilize Differential-drive Robot
concept where two independent motor with wheel radius,r rotate
about the same axis and low-friction caster wheel is used to keep
the robot horizontal.

For left and right motor linear velocity, vl and vr, where R is
distance from center of curvature to the center of the axle and l is

effective distance between wheel (axle), kinematics equation based
on Instantaneous center of curvature concept for the system is shown
below;

vl = ω(R + l/2)

vr = ω(R + l/2)

ω =
vl + vr

2
(2)

By varying the motor speed for left and right, trajectories of the
robot can be determined based on the turning rate, ω.

Figure 7: Relation between Speed input and Rotation Speed (degree/s)

Figure 8: Relation between Power and Rotation Speed (degree/s)

4.3 Actual Robot Experiments

Evaluation of the simulation is done by using the actual robot with
identical dimensions to prove the effectiveness of the program gen-
erated. Program generated from GE is executed to check the effec-
tiveness.

Figure 9 shows the trajectory of the vehicle. A robot vehicle
starts from the position of X=0 and Y=0 and then, makes one lap
around the course clockwise. A solid line shows the computer sim-
ulation result and broken lines denote actual experiment results of
five trials of vehicle robot, respectively. Table 6 shows the arrival
time for 5 trials performed. Maximum, minimum, and mean arrival
times are 18.71 (s), 19.92 (s) and 19.30 (s), respectively. Since the
arrival time of the simulation is 16.74 (s), the errors of maximum,
minimum, and mean arrival times are 11.8 (%), 19.0 (%) and 15.4
(%), respectively. In experiments using actual robots, it is expected
that the arrival time becomes longer than that in simulations due to
factors such as robot acceleration and control delay time.

www.astesj.com 5

http://www.astesj.com

F. Sukarman et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 8, No. 6, 1-7 (2023)

This difference in time elapsed is caused by the actual robot
movement take a longer path to make turn for each line corner.
Longer sensor responses and efficiency of the motor are two main
reasons which create a tiny small lag for the robot to make turns.
Even there is a small time difference, the robot control program able
to accomplish the main objective which is following the line. In
addition, Figure 10 shows the difference between the vehicle posi-
tion in the simulator and in the real environment at each time step
(0.01s). The error fluctuates up and down with time, but basically
increases with time.

The correlation coefficient between the vehicle coordinates in
the simulator and the experiment is evaluated for the trajectory of
the vehicle, and the result is show in Table 7. A high correlation is
shown in both the x-coordinates and y-coordinates. It can be seen
that the correlation coefficient for the y-coordinate is lower than that
for the x-coordinate. From Fig. 9, it is expected that the deviation
of the y-coordinate between the simulation and the experiment is
relatively large.

Table 6: Running Time

Experiment Arrival time (s) Error (%)
Trial 1 18.98 13.4
Trial 2 19.51 16.5
Trial 3 18.71 11.8
Trial 4 19.92 19.0
Trial 5 19.47 16.3

Average 19.32 15.4
Arrival time at simulation : 16.74 (s)

Figure 9: Robot path comparison between simulation and actual

Figure 10: Displacement between vehicle position in simulator and real world

Table 7: Correlation coefficient between vehicle coordinates in simulation and exper-
iment

x-coordinate 0.9553
y-coordinate 0.7743

5 Conclusion
A method of designing a control program for an autonomous mo-
bile robot using Grammatical Evolution (GE) was proposed in this
research. The autonomous mobile robot was created with LEGO
MINDSTORMS EV3, and the control program for the autonomous
mobile robot was designed using Grammatical Evolution (GE).
Robot Virtual Worlds was used to simulate the behavior of the robot.
A robot traveling along a trajectory was considered as an exam-
ple. As a result, the fitness converged toward the optimal solution,
and the running trajectory of the robot according to the designed
control program was appropriate. A real machine experiment was
performed by applying the control parameters that adjust the gap
between the simulator and the real environment. Comparing the
computer simulations and experimental results shows that the target
achievement time in the running experiment was equivalent to that
of the simulator. In addition, it was shown that the reproducibility
of the vehicle trajectory in the real environment was high.
Finally, future issues is summarized as follows. First, to reduce the
computational time, an algorithm should be revised to improve the
convergence performance. Secondly, the experiments with com-
plicated courses and conditions should be performed to verify the
effectiveness of the proposed method for many problems.

References
[1] H.-P. P. Schwefel, Evolution and Optimum Seeking: The Sixth Generation,

John Wiley & Sons, Inc., USA, 1993.

[2] J. H. Holland, “Adaptation in natural and artificial systems,” University of
Michigan press, Ann Arbor, MI, 1, 1975.

[3] D. E. Goldberg, “Genetic Algorithms in Search, Optimization, and Machine
Learning,” NN Schraudolph and J., 1, 1989.

[4] J. R. Koza, Genetic Programming II: Automatic Discovery of Reusable Pro-
grams, volume 1, MIT Press, 1994.

[5] J. R. Koza, Genetic Programming lll: Darwinian Invention and Problem Solv-
ing, Morgan Kaufmann, 1999.

[6] V. de Carvalho Santos, C. F. M. Toledo, F. S. Osorio, “An exploratory path
planning method based on genetic algorithm for autonomous mobile robots,”
62–69, IEEE, 2015, doi:10.1109/CEC.2015.7256875.

[7] R. Kala, “Multi-robot path planning using co-evolutionary genetic pro-
gramming,” Expert Systems with Applications, 39, 3817–3831, 2012, doi:
10.1016/j.eswa.2011.09.090.

[8] C. Ryan, J. Collins, M. O. Neill, Grammatical evolution: Evolving programs for
an arbitrary language, volume 1391, 83–96, 1998, doi:10.1007/BFb0055930.

[9] M. ONeil, C. Ryan, “Grammatical evolution: Evolutionary automatic program-
ming in an arbitrary language,” Norwell, MA, 10, 1–978, 2003.

[10] C. Ryan, M. ONeill, J. J. Collins, Introduction to 20 years of grammatical
evolution, 2018, doi:10.1007/978-3-319-78717-6 1.

www.astesj.com 6

http://www.astesj.com

[11] T. Kuroda, H. Iwasawa, E. Kita, “Application of advanced Grammatical Evolu-
tion to function prediction problem,” Advances in Engineering Software, 41,
1287–1294, 2010, doi:10.1016/j.advengsoft.2010.09.005.

[12] E. Kita, Y. Zuo, H. Sugiura, T. Mizuno, “Acceleration of Grammatical Evo-
lution with Multiple Chromosome by Using Stochastic Schemata Exploiter,”
Proceedings - 2017 4th International Conference on Mathematics and Com-
puters in Sciences and in Industry, MCSI 2017, 2018-Jan, 190–195, 2018,
doi:10.1109/MCSI.2017.40.

[13] H. Sugiura, M. Nagao, Y. Zuo, E. Kita, “Grammatical evolution using two-
dimensional gene for symbolic regression: An advanced improvement with
conditional statement grammar,” International Journal of Critical Infrastruc-
tures, 13, 2017, doi:10.1504/IJCIS.2017.083634.

[14] E. Kita, H. Sugiura, Y. Zuo, T. Mizuno, “Application of grammatical evolution
to stock price prediction,” Computer Assisted Methods in Engineering and
Science, 24, 2017.

[15] L. Group, “LEGO MINDSTORMS EV3,” 2023.

[16] L. G. 2019-2020, “LEGO MINDSTORMS Education EV3 MicroPython,”
2020.

[17] E. Coumans, Y. Bai, “PyBullet, a Python module for physics simulation for
games, robotics and machine learning,” 2017.

[18] F. Sukarman, E. Kita, “Auto-generated Control Program in Mobile Robot using
Grammatical Evolution,” 1–5, Association for Computing Machinery, 2022,
doi:10.1145/3573910.3573921.

[19] X. Yang, Z. Ji, J. Wu, Y.-K. Lai, “An Open-Source Multi-goal Reinforcement
Learning Environment for Robotic Manipulation with Pybullet,” Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intel-
ligence and Lecture Notes in Bioinformatics), 13054 LNAI, 14–24, 2021,
doi:10.1007/978-3-030-89177-0 2.

[20] M. Fenton, J. McDermott, D. Fagan, S. Forstenlechner, E. Hemberg,
M. O’Neill, “PonyGE2: Grammatical evolution in python,” GECCO 2017
- Proceedings of the Genetic and Evolutionary Computation Conference Com-
panion, 1194–1201, 2017, doi:10.1145/3067695.3082469.

[21] G. Dick, P. A. Whigham, “Initialisation and grammar design in grammar-guided
evolutionary computation,” 534–537, ACM, 2022, doi:10.1145/3520304.
3529051.

[22] O. R. 2021, “ROS - Robot Operating System,” 2021.

www.astesj.com
https://dx.doi.org/10.25046/aj080601

7

https://www.astesj.com
https://dx.doi.org/10.25046/aj080601

	Introduction
	Grammatical Evolution
	Outline
	Translation from Integer String to Program

	Design of Control Program
	Robot Vehicle
	Simulation Environment
	Control Program Translation rules
	Fitness Function and Parameters

	Simulation Results

	Experiment
	Performance Estimation of Robot Vehicle
	Kinematics of Robot
	Actual Robot Experiments

	Conclusion

