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This paper is an extension of the work originally presented in the 26th International Con-
ference on Automation and Computing. This study regarding hardware prefetching aims at
concealing cache misses, leading to maximizing the performance of modern processors. This
paper leverages prefetch coverage improvement as a way to achieve the goal. Original work
proposes two different storage buffers to enhance prefetch coverage; block offset buffer and
block address buffer. The block offset buffer updates its contents with the offsets of a cache
block accessed, while the block address buffer contains the address of a cache block prefetch-
issued. The offset buffer is utilized to speculate a local optimum offset per page. The offset
buffer is proposed to adopt multiple lengths of delta history in observing offset patterns from
completely trained table. This paper advances to employ incompletely trained table as well,
while in other prefetching methods including original work, only completely trained candidates
are utilized. Furthermore, we construct the table on the fly. Rather than using only completely
built tables, we offer utilizing and updating table concurrently. This paper also proposes a re-
fined metric from existing prefetch accuracy metric, to measure net contribution of a prefetcher.
Compared to the original work, we have 2.5% and 3.8% IPC speedup increment with single-
and 4-core configuration, respectively, in SPEC CPU 2006. In SPEC CPU 2017, our work
achieves 4.5% and 5.5% IPC speedup improvement with single- and 4-core configuration, re-
spectively, over the original work. Our work outperforms the 2nd best prefetcher, PPF, by 2.9%
and 2.7% IPC speedup with single- and 4-core configuration, respectively, in SPEC CPU 2006.
In SPEC CPU 2017, our work surpasses both Berti by 1% and SPP by 2.1% IPC speedup with
4-core configuration in SPEC CPU 2017.

1 Introduction

IN [1], the author necessitates the implementation of memory hi-
erarchy, which attempts to greatly shorten the average memory ac-
cess time due to huge performance gap between the processor ex-
ecution speed and memory latency. The execution speed of the
processor has significantly increased while memory has pursued
higher densities that causes increased memory latency. The enor-
mous gap has been increasing due to the different objectives in de-
veloping the processor and memory. Hierarchy of cache memory
has been introduced to reduce the performance gap by improving
average memory access time, depending on two kinds of mem-
ory reference locality; temporal and spatial locality. However, the
cache memory is still limited in reducing the gap with a trade-off
between its capacity and the speed of cache hierarchy levels. That
is, the cache levels closer to the cores are smaller size but have
shorter latency. On the contrary, the cache levels farther apart from
cores are of larger size but have longer latency. So, prefetching

has been proposed as an effective technique that can bridge the
performance gap by proactively fetching data ahead of processor’s
request into the cache closer to the cores. This paper proposes an
effective technique in terms of prefetch coverage.

Prefetching is a mechanism that comprehends the memory ac-
cess pattern of the program, and speculatively predicts and issues
memory addresses ahead of the program’s access to them. Hard-
ware prefetching is to employ a standalone hardware that is dedi-
cated to the prefetching. That is, hardware prefetcher predicts the
future access to a memory data based on the observed access pat-
tern of memory addresses in the past. Then, the prefetcher requests
the data from low level of the memory hierarchy and stores it into
a higher level cache close to the processor. Thus, by prefetching
data, the prefetcher helps prevent cache misses due to the future
access to the data, hiding long latency of low level cache access.

The objective of hardware prefetching is to proactively con-
tinue to fetch useful cache blocks from low level cache throughout
run time based on memory access patterns. Usually, the algorithm
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of a hardware prefetcher observes the past memory access patterns,
predicts a future memory data access, and issues the address of the
data. The patterns of a past memory access can be found based on
the presumption of the existence of spatial and temporal locality of
memory accesses.

In this paper, we propose an extended work of one of state-
of-art prefetcher [2] with effective techniques maximizing prefetch
coverage1 at a moderate cost of prefetch accuracy. The contribu-
tions of this paper are categorized into the following three parts.

1.1 Efficient use of hardware storage

Following two buffers are employed for prefetching; one is block
offset buffer and the other one is block address buffer to store the
offset of a block and the address of prefetched block, respectively,
in a FIFO manner. The offset buffer provides a reduction of hard-
ware overhead by generating virtual tables2 for prefetching instead
of real table. The offsets of cache blocks are stored in the tables
virtually generated whenever they are needed; storing the original
offsets and generating the virtual tables can save hardware over-
head by 45%3 in terms of total hardware overhead.

1.2 Maximizing prefetch coverage

We propose following techniques for maximizing prefetch cover-
age from the two buffers as an offset prefetching: We use the his-
tory of a delta in multiple lengths to find diverse access patterns
through access history. We mine access patterns from completely
trained (virtual) table. Besides, they are also mined from incom-
pletely trained (virtual) table.4 Access patterns from the incom-
pletely trained table are utilized until the table’s training is com-
pleted. After the training is finished, access patterns from the com-
pletely trained table are used. Moreover, we also utilize an on-the-
fly table that is on-going in building its entries. Taking advantage
of the access patterns in the table under construction, prefetching
can start as soon as possible even though there are few access pat-
terns when new page is accessed for the first time. Moreover, to
expand the opportunity in exploiting access patterns, we advance
to make a use of entries of other table built for different pages. Es-
pecially, by referencing access patterns from the preceding pages,
currently accessed page can have more diversified access patterns.

1.3 Better accuracy metric

We propose a modified metric in measuring prefetch accuracy by
excluding the undetermined prefetches in existing metric. We name
the metric as ”accuracy ratio”, which is the ratio of number of use-
ful prefetches to the sum of number of useful prefetches and num-
ber of useless prefetches. The denominator of the existing met-
ric is total number of prefetches which contains the undetermined
prefetches in it. So, we construct denominator only with a deter-

mined portion, useful prefetches and useless prefetches, in order to
well reflect prefetch accuracy.

2 Background
One of the early proposed hardware prefetching techniques is the
simplest sequential prefetching, next line prefetching [3]. The next
line prefetching is to prefetch a cache line that follows immediately
the miss of the cache line. More advanced prefetching methods
employ a prediction table by means of detecting memory access
patterns. The table is used to record memory access history and
identify its pattern. Also, a prefetching method is proposed for
constant stride access pattern that refers to a sequence of memory
accesses in which the distance of consecutive accesses is constant
[4, 5]. The constant stride pattern also appears in pointer-based
data structures [6].

In [7, 8], the author is proposed to find the most likely next ad-
dress for currently accessed addresses by representing probabilistic
correlation between accessed addresses with Markov model. This
method needs not only a large storage to store the addresses into
a table but it also requires high computational cost to calculate the
correlation. Furthermore, Markov prefetching has stale data prob-
lem in the table.

Global history buffer (GHB) [9] as a FIFO manner is proposed
to reduce a storage overhead as well as to solve a stale data prob-
lem. GHB holds recent miss addresses in the FIFO buffer and
chains the same miss addresses in the buffer. Following the chain,
deltas5 are computed and adjacent deltas form a pair used as a
prefetch key.6

Recent prefetching methods adopt a learning system since these
mechanisms are possible to give a feedback of varying accuracy
and coverage, depending on workloads [10]–[12]. In [12], the au-
thor dynamically adjusts prefetching aggressiveness in both posi-
tive and negative ways through a feedback system, to achieve better
performance and bandwidth-efficiency.

Signature Path Prefetcher (SPP) [13] uses confidence value to
adjust the length of a signature path to strike a balance between
accuracy and coverage. SPP speculatively predicts memory access
patterns, based on a 12-bit signature that represents a sequence of
memory access. The 12-bit signature is calculated in the fashion
of combining consecutive strides between adjacent accessed cache
lines. The signature and a subsequent stride form a pair, used as a
prefetching key and a prefetch prediction, respectively.

Perceptron-based Prefetch Filtering (PPF) [14] proposes an ad-
ditional filter layer enhancing SPP as a way to increase prefetch
coverage. PPF is a filter that uses a hased perceptron model to
evaluate the usefulness of each prefetch generated by SPP, in order
to reach better coverage. The perceptron model uses several fea-
tures such as physical address, cache line, and page address, etc. to
train PPF layer.

Recently, many offset prefetching descendants [11, 15, 16, 19]
1Prefetch coverage means the number of memory access patterns that are detected by prefetches. The coverage will be discussed in Sec. 2
2Virtual table refers an actually generated table for prefetching but it merely needs temporary hardware storage instead of permanent one
3Hardware overhead will be discussed in Sec. 4
4Incompletely trained table indicates a table of which the training period is in progress.
5Delta is a value of address difference between two adjacent addresses
6Each prefetch key has a corresponding prefetch prediction. Different prefetch keys may make different predictions.
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have been proposed after Sandbox prefetching (SP)[20] was pro-
posed. SP attempts to find a block offset that gives high per-
formance. The offset is chosen from a set, named sandbox, of
pre-selected offset candidates, based on calculated accuracy score
of each offset candidate during run-time. Best-offset prefetching
(BOP) [11] adds timeliness consideration to SP in order to pur-
sue timely prefetching. BOP tests pre-selected offsets with arrived
prefetch-requested block to figure out which offsets fit better in
terms of latency of the arrival of prefetched block; BOP checks
if the base address of previously prefetched block are equal to cur-
rently accessed block’s address minus offset. If the equality is sat-
isfied, the score for offset will increase. Otherwise, the score will
decrease.

In [15], the author attempts better timely prefetching by calcu-
lating best offset page-by-page as compared to BOP’s global best
offset. The offset is calculated by recording access timing of each
cache line in terms of the number of cycles. The measured cycles
are referred to decide the proper latency of two arbitrary accessed
cache lines in the same page. If there are cache lines accessed
within the chosen latency, Berti uses burst mode for them.

Instruction Pointer Classifier based Prefetching (IPCP) [17]
proposes two cache level, L1 and L2, prefetching at the same time
with multiple instruction pointers to speculate different access pat-
terns and cover a wide spectrum of access patterns. IPCP classi-
fies instruction pointers into constant stride, complex stride, and
stream. IPCP suggests different prefetching methods based on the
type of instruction pointer.

In [18], the author introduces a reinforcement learning algo-
rithm of prefetching to evaluate prefetch quality, pursuing system-
aware prefetching. Observing the current memory bandwidth us-
age, Pythia intends to obtain highly accurate, timely prefetching by
correlating program context information such as cache line address,
program counter value, etc. to prefetch decision.

2.1 Useful and Useless prefetch

Usefulness of a prefetch is determined by whether a prefetched
block is accessed by a program or not. In implementation, a
prefetch bit of a block is employed to evaluate the usefulness of
the prefetch. The prefetch bit is set when a prefetched block is
inserted into cache memory. Then, it is unset when the block is
accessed by the program. If the prefetch bit of a prefetched block
is unset within the time that the block is evicted, corresponding
prefetch will be regarded as a useful prefetch. In other words, the
useful prefetch fetches a block that is accessed in the near future
so the access occurs before the block is evicted. With the access,
the useful prefetch results in eliminating a cache miss. On the con-
trary, if the prefetch bit remains set, corresponding prefetch will be
considered as a useless prefetch. That is, useless prefetch fetches
a block that is evicted with no access to it. So, the prefetch wastes
cache space and memory bandwidth.

2.2 Temporal and Spatial Locality

Locality is that a program exhibits a tendency to reference the same
data accessed recently or a data located closely to the recently ac-
cessed data. The principle of temporal locality is that recently ac-

cessed memory addresses by a program are likely to be accessed
again in the near future.[21] The principle of spatial locality is that
other nearby memory addresses have a likelihood of being refer-
enced if a memory address is referenced. For example, sequential
prefetching takes advantage of spatial locality; the simplest sequen-
tial prefetching scheme is to prefetch next cache block, one block
lookahead of current access block[3].

2.3 Physical page contiguity

An address translation is an essential mechanism that maps a vir-
tual address into a physical address to support virtual memory for
modern processors. The translation is page-based operation so each
virtual page corresponds to a physical page. The transfer between
the two different address space can be a challenge to a hardware
prefetcher since the translation can separate two contiguous vir-
tual addresses into two distant addresses in physical address space.
Hardware prefetcher has no knowledge of the translation since it is
located at the side of a cache [4, 11, 22, 23]. So, prefetching should
stop if prefetched data crosses over a page boundary of reference
address.

Figure 1: Effect of Prefetching on Miss Address Stream

2.4 Miss addresses and Prefetch hit

Miss addresses have been used for prefetching as a reference of
memory access history. The miss addresses can be affected by
prefetching; some of cache misses can be removed by useful
prefetches. That is, correct prefetching based on miss addresses
in the past changes the subsequent miss addresses, resulting in in-
correct prefetching unless the prefetching reflects the change in the
miss addresses.

Figure 1 is an example that shows the change in a miss address
stream by prefetching. We ignore access latency for simplicity. We
start with how to construct the Delta Pattern Table from the stream,
and then explain about how a prediction from the table changes the
miss address stream.

The original sequence shown in Figure 1a starts with a base ad-
dress of A and shows a Delta pattern of 1 and 2, alternatively. The
Delta Pattern Table shown in Figure 1c is constructed based on the
Deltas observed in the sequence shown in Figure 1a. It is indexed
by Delta (prefetch key) 1 and 2 accordingly. For each Delta, the
Delta Prediction is entered. For example, from A to A+1, the ta-
ble stores Delta 1. The next address is from A+1 to A+3 between
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which the Delta is 2, so the table stores in entry Delta Prediction
2. In the sequence, Delta 1 is followed by Delta 2. For the table
lookup, the entry of Delta with value 1 will find in the correspond-
ing entry, Delta Prediction, a value 2. For example, address A+6
can be predicted from address A+4 by the Delta Pattern Table since
the Delta of 1 observed from A+3 to A+4 is matched with the Delta
(prefetch key) in the first entry in the table. So, its corresponding
Delta Prediction is 2 so the table predicts address A+6 by adding
2 to address A+4. Then, the address A+6 is changed to be a hit
address (the parenthesis with A+6 shown in Figure 1b indicates a
hit address); the A+6 is no longer used as a reference. Therefore,
the Delta, +2 (circled in Figure 1a), is not observed in Figure 1b.
Due to the missing Delta, next incoming address A+7 cannot be
predicted by the table. Furthermore, next incoming address A+9
cannot be predicted since the observed delta between A+4 and A+7
is 3 that does not match with any Delta (prefetch key) in the table.
Likewise, correct prediction of address A+10 disturbs next two in-
coming addresses, A+12 and A+13, to be predicted by the Delta
Pattern Table. In Figure 1b, underlined addresses indicates such
addresses.

Reconstruction of the pattern table could be proposed as a solu-
tion to above issue due to the changed miss address stream. How-
ever, the update of the table cannot be effective in reflecting the
miss address patterns since the original sequence of the memory
access does not hold the new delta value, 3, in this example se-
quence. Therefore, it is important to keep prefetch hit addresses to
identify patterns from miss address stream. Also, it is necessary to
record which address has been prefetched by a prefetcher.

Figure 2: Pearson’s Coefficient

2.5 Evaluation Methodology

There are two metrics to evaluate the performance of prefetching;
prefetch accuracy and prefetch coverage. Prefetch accuracy mea-
sures a prefetcher in that how accurately the prefetcher predicts
which memory addresses will be accessed in the future; on the
other hand, prefetch coverage measures a prefetcher in that how di-
verse access patterns the prefetcher is capable of detecting against
variations of the access patterns.

The accuracy and coverage has a relationship of inherent trade-
off between them. For example, next line prefetcher can make a

prediction for simple access pattern having a stride of 1 with a
high accuracy but has a limited scope in coverage, meaning that
the prefetcher cannot generate diverse predictions other than the
stride of 1. On the other hand, if a prefetcher wants to achieve a
wide scope in coverage, it should sacrifice its accuracy as a cost.
This is, for a wide scope in coverage, a prefetcher should consider
a wide change in simple to complex access patterns. So, regard-
ing the broad variation on all the patterns would be more likely to
lead a prefetcher to an inaccurate prediction. The imprecise pre-
diction results in useless cache blocks to be fetched so that cache
space can be wasted as well as cache pollution and memory band-
width consumption can increase. Consequently, the inaccuracy of
a prefetcher degrades the system performance.

We propose a refined metric for prefetch accuracy in order to
make the accuracy metric more relevant to IPC speedup perfor-
mance. Existing accuracy metric is the ratio of the number of useful
prefetches to the total number of issued prefetches[12]. The numer-
ator, the number of useful prefetches, in the metric is directly pro-
portional to the IPC speedup performance since useful prefetches
hides cache miss latency. However, the denominator, total number
of issued prefetches, shows low correlation to IPC speedup per-
formance. The total number of issued prefetches counts all the
prefetches that are issued during only the “current” IPC speedup
measure period. Actually, the IPC speedup measured in the cur-
rent measure period can be affected by the prefetches issued in the
“past”(before current) measure period. During the current measure
period, the hit(or miss) of the prefetch issued in the past period in-
creases(or decreases) IPC speedup. In other words, the total num-
ber of issued prefetches does not count the prefetches that were
issued in the past period which, however, impacts the currently
measured IPC speedup

Another reason of the low correlation between the total number
of issued prefetches and IPC speedup is that the total number of is-
sued prefetches contains the number of prefetches that turn out to
be neither useful nor useless by the end of current IPC speedup
measure period. They can be determined as either hit or miss
“after” the current measure period. Thereby, in the current mea-
sure period, we do not have enough information about how those
prefetches affects IPC speedup. However, in the conventional met-
ric, such prefetches constitutes a portion of the total number of is-
sued prefetches which is inversely proportional to the IPC speedup.

The low correlation between existing prefetch accuracy metric
and IPC speedup is shown in Figure 2 with Pearson’s correlation
coefficient of -0.501. The value close to 0 means a low correlation
while the value close to +1 or -1 indicates a linear correlation. One
can see that in Figure 2 the prefetcher SPP has the lowest accuracy
in the conventional metric but the IPC speedup of this prefetcher
shows the highest IPC speedup, compared to other two prefetchers,
BOP and Berti. We run the three prefetchers, BOP, Berti, and SPP,
since they show almost the same value in the other metric, called
prefetch coverage, in SPEC CPU 2006 benchmark to exclude the
effect of prefetch coverage on the IPC speedup. We propose the
modified metric, named prefetch accuracy ratio in this paper, as
shown in Equation 1.
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Equation 1 evaluates the accuracy of a prefetcher based on
the prefetches evaluated as useful and useless during “current”
measure period only. The equation directly compares the useful
prefetches and useless prefetches that are detected during the “cur-
rent” measure time. Therefore, the metric, prefetch accuracy ratio,
can show how much the useful prefetches contribute to the perfor-
mance improvement over a performance degradation from useless
prefetches. For example, a prefetch accuracy ratio of 1 means that
a prefetcher gives only a positive effect to the system performance
by generating only useful prefetches with no useless prefetches.
As shown in Figure 2, Pearson’s coefficient value of 0.947 shows
a high correlation between the prefetch accuracy ratio and IPC
speedup, so SPP represents the highest accuracy ratio, leading to
the highest IPC speedup.

Another metric, prefetch coverage, is defined as the number
of useful prefetches over the number of cache misses with no
prefetching; prefetch coverage is proportional to the number of use-
ful prefetches as shown in Equation 2:

Prefetch coverage =
Number of Useful Prefetches

Total Number of Cache Misses
(2)

From Equation 1 and 2, we can conclude that the number of
useful prefetch can be a key factor to achieve both high accu-
racy and wide coverage at the same time. The number of useful
prefetches would not be proportional to the prefetch accuracy since
increase in the number of useful prefetches involves increase in the
number of useless prefetches in general. On the other hand, the
number of useful prefetches is proportional to prefetch coverage
since the change in the number of useful prefetches does not affect
total number of cache misses.

Based on aforementioned metrics, we evaluate existing
prefetchers and our proposed prefetcher in terms of IPC7 speedup
in section 3 and 4.

3 Design

Figure 3 illustrates the overall structure of our prefetcher, BRP.
Both L2 cache miss and prefetch hit addresses trains our prefetcher.
BRP sends a request to fill a prefetch into either L2 cache or last-
level cache (LLC); LLC is requested to be filled by the prefetch
when miss status holding register (MSHR)8 has no opening be-
cause it is full of its items.

Figure 3: Overall BRP Structure[2]

The BRP module consists of two buffers as a storage; block off-
set buffer and block address buffer. The block offset buffer stores
an offset of each block page-by-page. On the other hand, the block
address buffer stores the address of blocks that are prefetched. The
two buffers updates their data, according to FIFO manner; the old-
est one is evicted first and the latest one is stored as a last item in the
buffer, as avoiding stale data problem. In this section, we discuss
how the two buffers are employed in reaching moderate accuracy
ratio while maximizing prefetch coverage. Another feature of our
BRP is that it does not request a prefetch in the case that it traverses
a boundary of the page to which referred data belongs as discussed
in Section 2.3.

Figure 4: Example of Sigma-Delta Table generation (b) from block offset buffer (a)
with delta history length of 3.

3.1 Offset Buffer

Offset buffer stores a block offset of pages that have been accessed
recently. Based on the tag attached to the buffer, block offsets can
be stored to a offset buffer with the same tag. That is, One of the
offset buffers, of which the tag is the same as it of the page of the
block accessed, collects the latest offset of the block. If a new page

7All IPCs, instruction per cycle, are computed as arithmetic average of the IPC across the benchmarks
8MSHR holds pending load/store accesses that refer to the missing cache
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is accessed for the first time, a new tag is generated based on a base
address of the page, and a new offset buffer attached to the new
tag is also built, loading the offset on it. The storage capacity of
the buffer is set by users. If all the buffer is fully occupied by its
offsets, the buffer evicts its oldest one and stores the latest offset as
a last item in it.

The purpose of collecting block offsets is to observe the pat-
tern of deltas among offsets; the delta is the arithmetic difference
between the values of two block offsets that are successively ac-
cessed in the same page. [2] suggests a table, named Sigma-Delta
Table, to identify the delta pattern from delta sequence as shown
in Figure 4. Delta Sum, the sum of number of consecutive deltas,
is used as an index; corresponding to it is the subsequent delta, the
delta coming next.

Figure 4 represents an example of how a Sigma-Delta Table is
generated from an offset buffer containing block offsets of 0, 2, 5,
7, 10 and 12. The example shows a case that three consecutive
deltas are added up. The generated delta sequence is 2, 3, and 2
from the offset sequence of 0, 2, 5, and 7 as shown in Figure 4a,
of which the sum is 7. The next Delta is 3 (to move from offset 7
to 10). So, the sum of 7 and the subsequent delta of 3 constructs a
pair as an entry of the table shown in Figure 4b. In the table, in the
case that Delta Sum 7 is given, from the same row and next column
under Subsequent Delta, a value of 3 is read out.

In implementation, the number of consecutive deltas is set by
users with regard to hardware overhead. In fact, the Sigma-Delta
Table is built as a virtual table that does not require a permanent
hardware overhead. That is, all the entries in the table is de-
rived from offsets in the buffer only when they are referenced for
prefetching. Hardware overhead of the table will be discussed in
Sec. 4.

(a) Single Delta History Length (b) Multiple Delta History Length

Figure 5: Comparison of delta history length (a) single (b) multiple

3.1.1 Multiple delta history length

As aforementioned, the Sigma-Delta Table is built by pairs of delta
sum and subsequent delta which is calculated by deltas. The num-
ber of deltas used is equal to the delta history length. [2] suggests
a method of using multiple delta history lengths rather than a sin-
gle delta history length. So, the multiple Sigma-Delta Tables are
built according to multiple delta history lengths. For example, if
the maximum length of the delta history is set to be 4, four of the

Sigma-Delta Tables are built; That is, each table belongs to differ-
ent delta history length. Different number of consecutive deltas are
used to construct the Sigma-Delta Table. All the generated sigma-
delta pattern tables are subject to being used for prefetching.

The higher prefetch coverage is achieved by the proposed
method as shown in Figure 5b, compared to the method of using
single delta history length shown in Figure 5a. IPC speedup shown
in Figure 5a gets decreased by the coverage reduction as a single
delta history length increases. Compared to the decrease, in Fig-
ure 5b, IPC speedup is sustained as more multiple lengths of delta
history gets involved. This is because the multiple delta history
lengths cause an increase in prefetch coverage that cancels out the
IPC speedup decrement caused by accuracy ratio reduction.

Briefly, multiple delta history lengths improves prefetch cover-
age by generating more useful prefetches, resulting in IPC speedup
improvement. Several methods will be discussed to reach further
increase in prefetch coverage in the section onward.

(a) Complete trained table only (b) (Complete+Incomplete) trained table

Figure 6: Completely and Incompletely Trained Table (a) complete only (b) com-
plete+incomplete

3.1.2 Complete/Incomplete training

After a Sigma-Delta Table fills all of its entries, training session is
started to evaluate the validity of the patterns that the table stores.
Surely, we use a Sigma-Delta Table of which the training session
is completely finished with its validity for prefetching. In addition,
we propose to utilize the Sigma-Delta Table for prefetching while
its training session is in progress in order to avoid no prefetch is-
sued during the training session. Adopting the table with on-going
training helps increase the scope of prefetch coverage. Figure 6b
reflects the effect of the incompletely trained table additionally
used, as compared to Figure 6a. Figure 6b exhibits a coverage
increase by 2 to 15 times, compared to the coverage shown in Fig-
ure 6a, a result from using the completely trained table only. The
increased coverage is due to the increase in the number of useful
prefetches that a table under its training generates.

Furthermore, in Figure 6a, coverage decreases as the number of
entries increases since the increase in the number of entries in the
table requires longer training session. As a result, no prefetching
duration increases, resulting in decrease in useful prefetches. How-
ever, Figure 6b shows the effectiveness of our proposed method
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especially when more entries are employed. This is because the
increased duration of training session for the case of more entries
makes incompletely trained tables having longer time to generate
more useful prefetches.

According to our design intention, the IPC speedup increases
by 1 to 11% due to the increased coverage; IPC speedup is 1.04 to
1.11 in Figure 6b versus 1.03 to 1.01 in Figure 6a. The proposed
method is more effective in the case of greater number of entries in
a Sigma-Delta Table. One interesting observation in Figure 6b is
that the additional use of the table continuing its training provides
slight increase in accuracy ratio, as compared to Figure 6a, except
the case of single entry of Sigma-Delta Table; 3 to 7% increase
across 3 to 9 entries and 10% decrease in single entry. Another
interesting observation from Figure 6b is that the case of 3 entries
exhibits better results in both accuracy ratio and coverage than the
results of single entry.

Training mechanism adopted in this work is to check the valid-
ity of collected delta patterns stored in the Sigma-Delta Table. The
training is to compare values of entries in the Sigma-Delta Table
with subsequently accessed block offsets that update a block offset
buffer; to check if the pair of delta sum and delta prediction in the
entry is equal to a pair of them calculated from the updated offsets
in the offset buffer. If the equality happens, the table will get a hit,
so called table hit. Otherwise, the table will get a table miss.

In implementation, we employ a flag to denote whether each
Sigma-Delta Table obtains a table hit or not. On the other hand, a
table miss score is counted with 2-bit saturating counter. If a table
reaches a maximum table miss score, 3 with the 2-bit counter, all
the entries in the table will be removed and new entries will, then,
be generated by more recent offsets stored in the offset buffer. After
training is finished, the table attaining a table hit and having lowest
table miss score is used as top priority for prefetching.

(a) Sigma-Delta Table with no on-the-fly (b) Sigma-Delta Table with on-the-fly

Figure 7: Sigma-Delta Table usage (a) no on-the-fly (b) on-the-fly

3.1.3 On-the-fly table

We propose to use the Sigma-Delta Table on the fly to avoid no
prefetching issued until the table is full of its entries. That is, we
employ the table even under construction to generate a candidate
of a prefetch to reach further increase in coverage. The on-the-
fly table is effective in increasing coverage since it can generate a

prefetch while the table either accumulates its entries or replaces its
existing entries with new entries due to reaching a maximum table
miss score. Also, the table can generate prefetches sooner based on
the few patterns that belong to the new page accessed for the first
time. According to our design intention, the IPC speedup increases
by 1.3% due to the increased coverage; IPC speedup is 1.055 to
1.126 in Figure 7b versus 1.04 to 1.11 in Figure 7a.

3.1.4 Referring to other pages

Multiple Sigma-Delta Tables are generated to figure out the offset
patterns for individual page. In [2], the author proposes referring
to those tables so other near pages can reference the offset patterns
to issue their prefetches. In other words, each page refers to the
offset pattern, the pairs of Delta Sum and a Delta, in the table that
has been accessed little earlier. So, the patterns detected from both
currently accessed page and earlier accessed pages are utilized for
current prefetch issue. Especially, this referring method should be
effective in generating diverse prefetches when the page does not
have enough identified patterns due to first time access to the page,
early stage of building the Sigma-Delta Table, etc.

Figure 8: libq: Example of Spike Pattern

Figure 9: Number of Referred Pages Sensitivity

Furthermore, the referring mechanism gives a chance to mine
performance improvement from irregular pattern. For example,
spike pattern, the delta sequence with the single delta of +7, shown
in Figure 8 from leslie benchmark is hard to be predicted due to
its minority in patterns. Also, the delta spike can appear irregu-
larly and its magnitude can be variable. Based on locality property
among near pages, it is possible that preceding pages go through
both the same timing and magnitude of spike pattern. So, we lever-
age access patterns of the preceding page in generating prefetches
for subsequently accessed pages.
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Obviously, there should be a cost of an initial miss in capturing
the irregular pattern when the pattern shows up for the first time.
With the sacrifice of the initial miss, the the pattern can be identi-
fied and referred by other near pages that may go through the same
access pattern. This method is very effective to performance im-
provement for some benchmarks such as calculix, lbm, leslie, libq,
soplex, etc. through simulation. In those benchmarks, some of the
pages that are accessed sequentially tends to have the same offset
patterns.

Compared to other prefetchers, BOP[11] is not successful in
identifying the delta spike pattern since the prefetcher focuses only
on globally optimal offset, using only delta value of +2 as a major-
ity. GHB[9] could succeed in predicting the pattern as it captures
two consecutive deltas as a pair, preserving the sequence of indi-
vidual delta. By maintaining the delta sequence, GHB constructs
pairs of two adjacent deltas such as (+2,+2), (+2,+7), and (+7,+2)
that are used as a prefetch key. So, the pair, (+2,+2), is used to
predict the spike delta, +7. However, in the case that the magni-
tude of next delta spike varies, GHB is hard to predict correct spike
delta. Furthermore, GHB needs hardware storage in order to store
the pairs of two deltas.

The performance improvement from referring to other pages is
shown in Figure 9 with different number of referred pages. There
is a 39% increase in prefetch coverage between no page referred
and 16 pages referred. On the other hand, there is a 40% de-
crease in accuracy ratio between them. As a result, IPC speedup
increases by 6%. On the other hand, coverage, accuracy ratio, and
IPC speedup are almost the same among 16 to 128 referred pages.
Also, referring to 256 pages degrades IPC speedup by 3.9% due to
the decrease in prefetch coverage by 9.3%. Performance degrada-
tion occurs in the case that we refer many pages, which contains
pages accessed in the distant past. With the observation, 32 pages
are set to be referred.

Figure 10: Block Address Buffer Sensitivity

3.2 Block Address Buffer

As discussed in Section 2.4, [2] proposes recording memory ad-
dresses that have been prefetch requested, including prefetch hit
addresses. So, the access pattern can be preserved as the original

pattern of the miss addresses. The paper offers a block address
buffer to store the history of recent prefetch addresses. The record
is used for multi-degree prefetching that indicates issuing multi-
ple prefetchings per prefetch prediction. Additionally, the history
helps filter out duplicate prefetches that are issued in the past.

As shown in Figure 10, there is an IPC speedup increase of
3.7% between no prefetch buffer and 12 prefetch buffers, because
prefetch coverage increases by 76% while accuracy ratio decreases
by 14%. On the other hand, compared to 12 buffers, 32 buffers
shows 0.27% increase in IPC speedup. Also, there is no significant
IPC speedup improvement with more than 32 buffers. The result
represents that an optimal number of buffers is 32 since more than
32 buffers requires more hardware overhead with little return.

4 Performance Evaluation
We evaluate the performance of the prefetcher, BRP, with added
techniques mentioned in the previous section. We compare it with
other prefetchers’ performance in terms of IPC speedup, accuracy
ratio, and coverage, in this section.

4.1 Simulation Methodology
To evaluate BRP and other prefetchers, a subset of both the SPEC
CPU 2006 benchmark[24] and 2017 benchmark[25] is used since
the SPEC CPU 2006 benchmark is known as memory-intensive
characteristics and SPEC CPU 2017 is developed recently. We use
individual thread for a single core simulation and 4-thread mixes
randomly selected from the benchmark for 4-core simulation. Sim-
points [26], of which the interval is 10M instructions, are used
to measure the IPC speedup. We simulate 200M instructions as
a warmup and then measure the performance with the following
200M instructions. ChampSim simulator[27] is used for the eval-
uation. The framework of the Champsim simulator is the 3rd Data
Prefetch Championship.

Table 1: Processor Configuration

Core Parameters 1-4 Cores, OoO, 4GHz,
256 entry ROB, 4-wide

Branch Predictor 16K entry bimodal,
20 cycle misprediction penalty

Private L1 Dcache 32KB, 8-way, 8 MSHRs, LRU, 4 cycles
Private L2 Cache 256KB 8-way, 16 MSHRs, LRU

8 cycles, Non-inclusive
Shared L3 (LLC) 2MB/core, 16-way, LRU

12 cycles, Non-inclusive
Main Memory 4GB, 1-2 64 bits channels,

8 ranks/channel, 8 bank/rank, 1600MT/s

Table 1 summarizes the simulation configuration for the testing
systems. The CPU is clocking at 4 GHz clock rates per core with
an out-of-order scheduler. Each CPU core has its private cache; L1
and L2 cache. All the four cores shares a single L3 cache. The L1
cache is divided into instruction and data cache, of which size is 32
KB. L2 cache size is 256KB. The block size and page size of the
cache is 64B and 4KB, respectively. In the single core simulation,
single DRAM channel is adapted. In the 4-core simulation, two
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DRAM channels are adapted. Also, L1 and L2 cache contain 8 and
16 prefetch queues, respectively.

L1 and L2 cache have 8 and 16 miss MSHRs, respectively. The
prefetch queue temporarily holds the block address which is re-
quested for prefetching until it is issued. The MSHR and prefetch
queue helps CPU continue to execute following instructions of a
program since they store pending cache misses and prefetches.
Only L2 cache access initiates the prefetcher and no prefetcher ex-
ists in other cache levels. All the prefetched data are stored into
either L2 cache or L3 cache.

The performance of this work is compared with the origin
work, BRP, as well as prefetchers such as SPP, PPF, BOP, and Berti,
which are discussed in section 2. Those prefetchers are compared
in terms of following three metrics; IPC speedup, prefetch accu-
racy ratio, and prefetch coverage. We use the original code of these
prefetchers submitted to DPC-2 and DPC-3. We follows BRP’s
configuration which is set as follows: 1) Delta history length up to
3; length of 1, 2, and 3. 2) Maximum entries of 3 in sigma-delta
table. 3) Block offset buffers for 512 pages. 4) Referring 32 pages.
5) 25 block address buffers.

(a) SPEC 2006: The impact of prefetch accuracy ratio and coverage on IPC speedup

(b) SPEC 2017: The impact of prefetch accuracy ratio and coverage on IPC speedup

Figure 11: Single-core IPC speedup

4.2 Single Core Performance

Figure 11 shows the average IPC speedup of all the prefetchers
with both SPEC 2006 and 2017 benchmark. The IPC speedup is
a normalized IPC value to the IPC value of no prefetching base-
line. Our work outperforms all the other prefetchers with the best
average IPC speedup of 1.257 and 1.143 on SPEC CPU 2006 and
2017 benchmark, respectively, due to the widest prefetch cover-
age. As shown in Figure 11a, in SPEC CPU 2006 benchmark, our
work exhibits 58.2%, 50.3%, 36.3%, 15.4%, and 3.5% improve-
ment in coverage over BOP, SPP, Berti, PPF, and BRP, respectively,
as our work shows the lowest accuracy ratio according to the de-
sign intention. So, our work achieves 25.7% IPC speedup improve-
ment, which is 15.3%, 8.9%, 6.7%, 2.9%, and 2.5% more than
the BOP, Berti, SPP, PPF, and BPR, respectively. Also, in SPEC
CPU 2017 benchmark, as shown in Figure 11b, our work exhibits
50.5%, 47.9%, 35.6%, 16%, and 6.5% improvement in coverage
over BOP, SPP, Berti, PPF, and BRP, respectively. So, our work
achieves 14.3% IPC speedup improvement, which is 7.7%, 6.4%,
3.2%, 2.7%, and 4.5% more than the BOP, Berti, SPP, PPF, and
BPR, respectively.

(a) SPEC 2006: IPC speedup by individual benchmark

(b) SPEC 2017: IPC speedup by individual benchmark

Figure 12: IPC speedup by Benchmark

Figure 12 represents IPC speedup by individual benchmark. In
SPEC CPU 2006(Fig. 12a), our work shows significant IPC im-
provement from benchmarks such as GemsFDTD, leslie, libq, so-

www.astesj.com 134

http://www.astesj.com


J. So et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 6, 126-138 (2022)

plex, sphinx, xalancbmk, and zeus, as compared to no prefetching
baseline. This is because our work achieves high coverage from
them by generating large number of useful prefetches as shown in
Figure 13a. Especially, our work achieves the best IPC speedup in
10 applications such as calculix, gromacs, leslie, soplex, etc., com-
pared to other prefetchers. As compared to the original work, BRP,
our work shows better IPC speedup across nearly all the bench-
marks. For example, our work exhibits 5%, 8%, and 7% IPC
speedup improvement in leslie, sphinx, and xalancbmk, respec-
tively.

In SPEC CPU 2017(Fig. 12b), our work shows outstanding IPC
improvement from applications such as cactuBSSN, pop2, and fo-
tonik3d, as compared to no prefetching baseline. This is because
our work achieves high coverage from them by generating large
number of useful prefetches as shown in Figure 14a. Especially,
our work achieves the highest IPC speedup in 16 out of 20 bench-
marks. As compared to BRP, our work also shows better IPC
speedup across nearly all the benchmarks; especially, our work ex-
hibits 20%, 8%, and 6% IPC speedup increase in mcf, x264, and
fotonik3d, respectively.

(a) SPEC CPU 2006: The number of useful prefetches by Individual Benchmark

(b) SPEC CPU 2006: Accuracy Ratio by Individual Benchmark

Figure 13: Coverage and Accuracy Ratio with SPEC CPU 2006

As shown in SPEC CPU 2006(Fig. 13a), our work generates
the largest amount of useful prefetches in the applications such
as bzip2, calculix, gromacs, lbm, leslie, sphinx, xalancbmk, and

zeus so that we have the highest IPC speedup. For those applica-
tions, high coverage is a key to predict their patterns, which would
be diverse and irregular. On the other hand, in those applications
such as gcc and mcf, our work generates the largest number of use-
ful prefetches, which brings the highest coverage on them, but our
work does not reach the highest IPC speedup. This is because that
the comparable accuracy ratio would be also required to achieve
better IPC speedup.

(a) SPEC CPU 2017: The number of useful prefetches by Individual Benchmark

(b) SPEC CPU 2017: Accuracy Ratio by Individual Benchmark

Figure 14: Coverage and Accuracy Ratio with SPEC CPU 2017

As shown in SPEC CPU 2017(Fig. 14a), our work generates the
largest amount of useful prefetches in the applications such as lbm,
omnetpp, xalancbmk, x264, pop2, deepsjeng, nab, fotonik3d, and
xz so that we have the highest IPC speedup on them, accordingly.
For those applications, high coverage is a key factor to achieve the
high IPC speedup because they would have diverse and irregular
patterns. On the contrary, in those benchmarks such as mcf and
camp4, our work does not achieve the highest IPC speedup even
though the highest coverage is reached with the largest number of
useful prefetches. This is because the enough accuracy ratio would
be also involved.
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Table 2: SPEC CPU 2006: Multi Programmed Workloads

mix0 GemsFDTD, astar, bzip2, cactusADM
mix1 calculix, gcc, gromacs, h264ref
mix2 lbm, leslie3d, mcf, soplex
mix3 sphinx, tonto, xalancbmk, zeus

Table 3: SPEC CPU 2017: Multi Programmed Workloads

mix0 perlbench, gcc, bwaves, mcf
mix1 cactuBSSN, lbm, omnetpp, wrf
mix2 xalancbmk, x264, cam4, pop2
mix3 exchange2, fontonik3d, roms, xz

(a) SPEC CPU 2006

(b) SPEC CPU 2017

Figure 15: 4-core IPC speedup

4.3 Multi-Core Performance

We generate 4 multi-programmed mixes, each consists of 4 traces
as shown in the two tables; table 2 and table 3. Each trace in the
mix is assigned to a different core for the multi-core simulation.

In SPEC CPU 2006(Fig. 15a), our work accomplishes 20.6%
geometric mean IPC speedup increment across 4 mix workloads,
compared to no prefetching baseline. Especially, our work exhibits
33.8% IPC speedup improvement in mix3 over the baseline, since

our work is effective to appllications such as sphinx, xalancbmk and
zeus in 4-core configuration as well. The performance improve-
ment of our work is the best among all the prefetchers. our work
surpasses the second highest one, Berti, by a 1.0% IPC speedup.
Compared to single core test, in multi-core test, the IPC speedup
improvement of our work over Berti reduces by 7.9% since the our
work issues more prefetches than berti, throttling LLC and DRAM
bandwidth.

In SPEC CPU 2017(Fig. 15b), our work accomplishes 22%
geometric mean IPC speedup increase over no prefetching base-
line across 4 mix workloads, which is the best performance im-
provement among all the prefetchers. Especially, our work shows
41.2% IPC speedup improvement in mix3 over the baseline, since
our work is effective to appllications such as fontonik3d and xxz
in 4-core configuration as well. Our work outperforms the second
highest one, SPP, by a 2.1% IPC speedup. Compared to single core
test, in multi-core test, the IPC speedup improvement of our work
over SPP reduces by 1.2% since the aggressive prefetching of our
work throttles LLC and DRAM bandwidth more in the multi-core
configuration by generating both high number of useful and useless
prefetches.

(a) SPEC CPU 2006

(b) SPEC CPU 2017

Figure 16: Single-Core: L1$ and L2$ prefetching IPC speedup
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4.4 Multi-level prefetching performance

We added an L1 cache prefetcher to the test configuration to com-
pare the performance of the prefetchers with IPCP which proposes
multi-level prefetching, by an L1 prefetcher and an L2 prefetcher
at the same time. We combine the IPCP L1 prefetcher with other
proposed prefetchers acting as L2 prefetchers to conduct the test.

The L1 prefetcher of IPCP provides 17.8% and 11.1% IPC
speedup in SPEC CPU 2006 and 2017, respectively, as compared
to no prefetching. As shown in Figure 16a, our work shows the
highest IPC speedup with an additional of 0.093% IPC speedup
made by the L1 prefetcher in SPEC CPU 2006 benchmark; Our
work outperforms the second highest, PPF, by 1.2% IPC speedup.
In this test, BOP receives the maximum benefit of 0.131% IPC
speedup, an increase from 1.104% to 1.235%, due to the IPCP L1
prefetcher. As shown in Figure 16b, in conjunction with the IPCP
L1 prefetcher, our work also achieves the highest IPC speedup, sur-
passing the second highest, IPCP(L1+L2), by 0.018% in the IPC
speedup. Please note, the L1 prefetcher gain here is only 0.004%,
of the lowest amount.

Figure 17: Multi-Core: L1$ and L2$ prefetching IPC speedup

In 4-core simulation, the two level IPCP prefetcher reached the
hightest IPC speedup in SPEC CPU 2017, with 1.265 in average.
As indicated in Figure 17, our work achieved the second highest
performance in average, with an IPC speedup of 1.239, surpassed
by the IPCP(L1+L2) only by 0.026%.

Table 4: Prefetcher Storage Overheads

Buffer-referred Prefetching(BRP) 5.512KB
Signature Path Prefetching(SPP) 5.507KB
Perceptron-Based Prefetch Filtering(PPF) 39.34KB
Best-Offset Prefetching(BOP) 1.85KB
Best-Request-Time Prefetcher(Berti) 22.1KB

4.5 Storage Overhead And Performance Contribution

The total hardware storage of our work is equal to the hardware
overhead of the original work, BRP, of which the overhead is
5.512KB, with each individual component shown in Table 5. Our
work does not increase the hardware overhead from the original

work. There is no extra hardware overhead required with the intro-
duced mechanism of employing incompletely trained Sigma-Delta
Tables for generating prefetch candidates. Furthermore, we utilize
the original Sigma-Delta Table under construction so no additional
hardware is needed. The component with the largest overhead is
block offset buffer (3.32KB). The buffer stores multiple 6-bit off-
sets per page. Berti holds heavy hardware overhead of 22.1KB,
because it pursues an increase in both prefetch coverage and ac-
curacy at the same time. Especially, the heavy overhead of Berti
is caused by adapting diverse features such as instruction pointer,
recorded page table, etc. in order to ensure prefetch accuracy. As
shown in Table 5, BOP has the lowest overhead since its storage
contains a few cache lines that has been requested recently. How-
ever, BOP derives low performance since the storage is employed
to find out global best offset value as a simple manner.

Table 5: BRP Storage Overhead

Structure Quantity Component Storage
Block 512 Offsets(6bit),
Offset Tag(16bit),
buffer lru(9bit), 33280 bits

burst mode(2bit),
aggressiveness(2bit),

Sigma-delta 1536 history length(2bit),
table valid(1bit),
accessories miss count(2bit), 9216 bits

hit flag(1bit)
Block 25 address(64bit) 1600 bits
Address
buffer
Total = 33280 + 9216 + 1600 = 44096 bits = 5.512KB

With the virtual Sigma-Delta Tables, nearly 45% of hardware
storage is saved against using real Sigma-Delta Tables in total stor-
age overhead. Hardware storage is allocated for storing block off-
sets in the buffers but then the table is virtually generated only when
they are used, instead of giving permanent hardware storage for
the real tables. The block offset buffers only except its accessories
occupy 2.304KB; 512 buffers exist(each for a single page), each
buffer has 6 block offsets, and each offset is 6-bit long. On the other
hand, when the real Sigma-Delta Table is adapted with assigned
constant storage, the total hardware overhead occupies 6.912KB; 3
tables exists per page (total 512 pages), there are 3 entries per table
and each entry is of 12 bits (6 bits for delta sum and the other 6
bits for delta prediction). About 67% storage is reduced in terms
of constructing pattern tables for prefetching, and about 45% hard-
ware overhead decreases in terms of total hardware overhead.

5 Conclusion

In this paper, we have shown an extended work of Buffer-referred
Prefetching, achieving high performance gain with low hardware
overhead. First of all, it provides techniques that increase the
prefetch coverage with no additional hardware overhead, compared
to the original work. With such techniques, our work helps bring
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out lots of useful prefetches from Sigma-Delta Tables under con-
struction even though the table is not complete in its training. The
technique is effective to the cases that few access patterns generated
due to new page access, pattern transfer within the same page, and
irregular patterns. This paper also offers a refined metric, called
accuracy ratio, for measuring prefetch accuracy in order to directly
take into account both performance improvement and degradation
from a prefetcher. Future work would be to add a perceptive fil-
ter as a replacement of the block address buffer to achieve better
prefetch filtering or well-tuned aggressive prefetching. Our work
accomplishes 25.7% and 20.6% IPC speedup improvement over no
prefetching baseline with single- and 4-core configuration, respec-
tively, in SPEC CPU 2006 benchmark. In SPEC CPU 2017 bench-
mark, our work reaches 14.3% and 22.1% IPC speedup increase
over no prefetching baseline with single- and 4-core configuration,
respectively. Compared to the original work, we have 2.5% and
3.8% IPC speedup increment with single- and 4-core configuration,
respectively, in SPEC CPU 2006. In SPEC CPU 2017, our work
achieves 4.5% and 5.5% IPC speedup improvement with single-
and 4-core configuration, respectively, over the original work. Our
work outperforms the 2nd best prefetcher, PPF, by 2.9% and 2.7%
IPC speedup with single- and 4-core configuration, respectively, in
SPEC CPU 2006. In SPEC CPU 2017, our work surpasses both
Berti by 1% and SPP by 2.1% IPC speedup with 4-core configura-
tion in SPEC CPU 2017.
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