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In this paper, we propose a highly accurate indoor position and direction estimation system using
a simple fully connected deep neural network (DNN) model on Bluetooth Low Energy (BLE)
Received Signal Strength Indicators (RSSIs). Since the system’s ultimate goal is to function
as an indoor navigation system, the system estimates the indoor position simultaneously as
the direction of movement using BLE RSSI fingerprints recorded indoors. To identify the
direction of movement along with the position, we decided to use multiple time instances of RSSI
measurements and fed them to a fully-connected DNN. The DNN is configured to output the
direction with the location simultaneously. RSSIs are known to be affected by various fluctuating
factors in the environment and thus tend to vary widely. To achieve stable positioning, we
examine and compare the effects of temporal interpolation and extrapolation as preprocessing
of multiple RSSI sequences on the accuracy of the estimated coordinates and direction. We
will also examine the number of beacons and their placement patterns required for satisfactory
estimation accuracy. These experiments show that the RSSI preprocessing method optimum for
practical use is interpolation and that the number and placement of beacons to be installed
does affect the estimation accuracy significantly. We showed that there is a minimum number of
beacons required to cover the room in which to detect the location if the estimation error is to
be minimized, in terms of both location and direction of movement. We were able to achieve
location estimation with an estimation error of about 0.33 m, and a movement estimation error
of about 10 degrees in our experimental setup, which proves the feasibility of our proposed
system. We believe this level of accuracy is one of the highest, even among methods that use
RSSI fingerprints.

1 Introduction

In recent years, almost everyone owns a smartphone. Some of the
most often used applications on smartphones are those with location
and navigation capabilities, such as Google maps. Global Posi-
tioning System (GPS) signals received from satellites are used for
location detection in many mapping and navigation applications.
However, these applications cannot be used indoors since the recep-
tion of GPS signals is generally poor due to the building structures.
As an alternative to GPS, indoor positioning systems have been
developed in recent years using various methods such as WiFi, In-
door Messaging System (IMES), and other wireless LAN standards,
as well as dedicated devices such as Light Detection and Ranging
(LiDAR) [1–6]. However, there are many issues to be solved for
the construction of the system, such as the availability of terminals
supporting these standards, and the installation cost.

Many of the indoor localization systems were based on WiFi.

For example, [7, 8] use Deep Networks with WiFi RSSI fingerprints.
Both use Autoencoders as the DNN. It is shown in [8] that an aver-
age error of 1.21 m is possible in an apartment of 14.5 m by 4.5 m,
but the number of Access Points (APs) is 59, which is considerably
large for a room this size. [9] uses Channel State Information (CSI)
fingerprints instead of RSSI fingerprints with an Autoencoder. CSIs
provide receive levels of multiple subcarrier signals which can be
collectively used to detect the receive level and direction more ac-
curately than a simple RSSI. They were able to achieve an average
error of 0.9425 m inside a living room of size 4 m by 7 m with
just one AP. However, CSI is not available on all network interface
cards.

In this research, we focused on BLE beacons [10, 11]. BLE
is one of the short-range wireless communication standards, and
it is possible to conduct wireless communication at a lower cost
and lower power consumption (often operating on battery for years
without the need for replacement), and are easier to install and
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maintain compared to other methods, such as WiFi, which generally
costs much more and requires a power line. In the real world, BLE
technology is quickly spreading in various forms, such as devices
for cash-less payment at cash registers and beacons that provide de-
tailed product promotion information, including discount coupons,
to nearby mobile devices. In [12], localization performance using
BLE beacons is compared to WiFi, and was shown that localization
performance using BLE potentially outperforms WiFi. Research
using the BLE has been conducted using a variety of approaches [13–
19]. Application of such systems to a university campus navigation
system has been explored in [20].

The theoretical values of RSSIs received from beacons are found
to decay inversely proportional to the square of the distance from
the beacons. However, RSSI is known to fluctuate widely in real
environments [21]. This is due to the effect of walls, obstacles, and
radio interferences from other radio communication devices, among
others. Therefore, the Euclidean distance calculation method, which
calculates the current position directly from the magnitude of RSSI,
generally gives an error of several meters or more. In this research,
we propose a method that uses DNNs on the collected RSSI finger-
prints [22–24]. This method requires the collection of RSSI data in
advance in the environment where we want to perform positioning.
It is known that RSSI variations caused by people and obstacles in
the environment affect the estimation significantly. In this study,
we use DNNs with RSSI fingerprints as training data, and we ex-
pect that DNNs can flexibly respond to RSSI variations in position
estimation.

One of our target applications for this research is a navigation
system that combines an indoor positioning system with augmented
reality (AR). One of the intended applications of this system is
an auditory navigation system for the visually impaired [25]. In
this system, audio sign signals are localized towards the target for
navigation. This signal is used as a cue to indicate the direction the
user should move next. Localization of the auditory sign signal is
achieved by convolving the head-related transfer function (HRTF)
corresponding to the direction of the sign signal with the monaural
signal. Since this direction is relative to the user’s current orientation
(the front), it is necessary to detect this orientation at the same time
as the position. Therefore, the DNN used in this research estimates
the direction of movement (the orientation) as well as the position
simultaneously.

There has been some research on using DNNs with BLE RSSI
fingerprints (e.g., [26]). However, since our intended application
also requires the estimation of the movement of the user, we decided
to use multiple time instances of RSSI measurements and fed this
to a DNN model to estimate the current position as well as the
direction of the movement of the user simultaneously [22–24]. We
believe the novelty of our method is this simultaneous estimation,
where we employ multiple time instances of RSSI measurements
to model the dynamically changing position due to users moving
in a path. By explicitly training our DNN model with changing
RSSI measurements due to motion, we can detect the direction of
the movement from the temporal changes in the RSSI and also es-
timate the position more accurately when the RSSI measurements
are changing due to motion, potentially degrading accuracy with
conventional stationary modeling.

There have been attempts to emulate the WiFi RSSI movement

data to be fed to an RNN model [1] to estimate the movement.
However, their RSSIs are measured in a static state, which does not
capture the dynamic change in the RSSIs due to motion. There also
have been attempts to track the user position by using both BLE
beacons and Pedestrian Dead Reckoning (PDR) [27]. However, the
BLE beacons seem to be only used to correct the drift caused by
PDR in this work.

This paper is organized as follows. Section 2 describes the
proposed method for estimating indoor position and direction of
movement using DNN. Section 3 describes the conditions of RSSI
preprocessing and the experiments on the placement and number
of beacons to be placed. In Section 4, the experimental results are
described and discussed. In Section 5, we conclude our work and
discuss future challenges.

2 Proposed Method

We propose an indoor position and movement direction estimation
system using a DNN that has been previously trained with RSSI
fingerprints of a given room. The RSSI fingerprints, i.e., RSSI mea-
surements from all available BLE beacons, are manually collected
in the actual environment (test room) to train the DNN. As stated
in the introduction, we plan to eventually integrate the proposed
method into a navigation system that generates audio sign signals
toward the target position. To do so, the direction in which the user
is moving (and also facing towards) needs to be detected so that the
sign signal can be localized relative to the detected direction. Thus,
we decided to use multiple time instances of the RSSI measurements
as RSSI fingerprints to detect the direction from the difference be-
tween the multiple temporal RSSI measurements. In this paper,
we used two time instances, i.e., one set of RSSI measurements at
the current time interval, and one measurement from the prior time
interval. The explicit integration of motion estimation with position
estimation may be what is unique with this method.

We used the RSSI measurements reported in the advertisement
packets from the beacons. These advertisement packets are designed
to be sent periodically to all nodes in the proximity. However, we
found that the time intervals of these packets are often not periodical.
Some packets were also lost. Thus, it was necessary to preprocess
the RSSI measurements to obtain data in periodic intervals at the
exact time instances. In cases where the packets were lost, the RSSI
data was estimated from data that was received intact before or after
the lost packet. The preprocessing of the RSSI measurements will
be described in detail in the following section.

The training configuration of the DNN is shown in Figure 1.
The RSSI set for the current time and the prior time interval is fed to
the DNN. The DNN estimates the current position and the direction
of movement from the given RSSI sets. This is compared to the
labeled (true) position and movement direction, and the mean square
error (MSE) is calculated, which is fed to the DNN to update the
internal weights. This is repeated to minimize the MSE.
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Figure 1: Block diagram of the proposed method. MSE is the Mean Square Error
calculation between the estimated and the labeled position and movement direction
values.

Figure 2: Configuration of the DNN for continuous values of x-y positions and
movement directions.

To estimate the user’s position, we feed the RSSI from all avail-
able BLE beacons for two consecutive time intervals to the trained
DNN. The trained DNN will output the estimated position and
direction of movement simultaneously from these inputs.

Table 1: Parameters of the DNN model.

Item Conditions
Units in each layer 16-600-1200-900-450-4

Epochs 1000
Batch size 256
Dropout 0.5

Activation

Hidden layers ReLU

Output layers
X, Y linear

Dir. (cat.) softmax
Dir. (cont.) (sinθ, cosθ) tanh

In this experiment, the RSSI was measured with no obstacles
in the environment. However, since RSSI measurements collected
from multiple data sequences are used as the training data of the
DNN model, it is expected that estimation with some number of ob-
stacles can be accomplished with a relatively small increase in error.
The parameters of the DNN are shown in Table 1. The structure of
DNN when the direction of movement is treated as a continuous
value is shown in Figure 2.

As stated before, DNNs are used to simultaneously estimate
the position and the direction of movement. The units in the input
layer are given the RSSI of multiple beacons for two consecutive
point-in-time instances in the training data. In the output layer, two
units are used for the x- and y-coordinates of the estimated position
and additional units are used for the estimation of the movement
direction.

We modeled the motion direction as either categorical or contin-
uous. The categorical model outputs one of eight directions (0, 45,
90, 135, 180, 225 270, or 315 ° ) as the estimate as one-hot output.
Note that the categorical estimation values result in an estimation
error, if any, of at least 45° [22], however.

On the other hand, the continuous output processes the move-
ment directions as continuous values. The advantage of this is that
the numerical difference (error) between the estimated and true val-
ues can also be expressed as continuous values. For example, in the
experiment in [22], when the direction of movement was treated as
a continuous value instead of a categorical value, the results showed
that the frequency of fatal errors in the estimation of the direction of
movement (e.g., estimates that are the exact opposite of the correct
value) was greatly reduced. The estimation of the angle θ, the direc-
tion of movement, is calculated according to (1) using sin θestimate

and cos θestimate estimated as continuous values, and where θestimate

is the estimated angle of movement.

θ = tan−1 sin θestimate

cos θestimate
(1)

We decided to use sin θ and cos θ to express the movement di-
rection as output from the DNN. This is because these values are
continuous, ranging from −1 to +1. If they were expressed in raw
degrees, we would have to deal with discontinuities between 0 and
360° (if expressed as positive values) or −180° and +180° (if ex-
pressed using positive values for the right half, and negative values
for the left half). The output values sin θ and cos θ are converted to
movement direction by applying tan−1 to the ratio between sin θ and
cos θ ratios (i.e., tan θ). We would have to deal with discontinuities
at +90° and −90° for this conversion, but this can be done relatively
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easily by observing the positive/negative combinations of sin θ and
cos θ values.

For the training data of the DNN, RSSI measurements were
conducted when the receiver moved at a constant walking speed
in one of eight predetermined directions (described in Section 3).
These data were labeled with the correct position and direction.
For training, 11,336 sets were used, of which 20% were used as
validation data. For the test data, we used 2,434 sets.

The configuration of our proposed indoor position and move-
ment direction estimation system is shown in Figure 3. This system
is a client-server type system. First, the user’s smartphone collects
the RSSIs transmitted from multiple beacons at regular intervals.
Next, the smartphone sends the collected RSSIs to the PC server via
UDP packets. The server processes the received RSSIs, estimates
the position and direction of movement using a DNN model that has
been trained in advance, and sends the estimated position and direc-
tion back to the smartphone using UDP packets. By repeating the
above operation, continuous estimation becomes possible. By pro-
viding DNN models that match the environment on the server-side,
the computational load on the client-side can be reduced.

Figure 3: Proposed client-server system configuration.

3 Experimental Conditions

We conducted two evaluation experiments explained here. The first
experiment (A) was designed to evaluate the accuracy achievable
using a fixed beacon position configuration and a fixed number of
beacons (eight, which is the maximum number to be considered in
this paper). The goal of this experiment is to compare the effect of
preprocessing on the RSSIs of the estimation accuracy. The second
experiment (B) was designed to evaluate the effect of the number
of beacons and their positions on the estimation accuracy. The goal
was to find the minimum number of beacons and their positions
required for acceptable estimation accuracy.

3.1 Experiment A: Comparison of estimation accuracy
among RSSI processing methods

The experimental environment is shown in Figure 4. As shown in
this figure, eight beacons, shown here as bO, were placed on chairs
at regular intervals in a rectangular room (5 m x 8 m). A total of 40
grid points (5 x 8) were set at 1 m intervals. For this environment,
we assumed a total of 31 vertical, horizontal, and diagonal linear

paths in total. We collected data for each path by moving at a con-
stant speed of 0.5 m/s repeatedly from the edge to the other edge
of each path. We used a smartphone with BLE reception capability,
SONY Xperia5 (SO-01M), as the receiving device, and Mybeacon-
Pro (MB004) from Aplix Ltd. as the BLE beacons. We measured
the RSSI data every 0.25 seconds while moving on each path. To
acquire the RSSI data at the exact instance, temporal interpolation
and extrapolation of the RSSI sequence data are considered in this
experiment.

Interpolation is a method to calculate the RSSI on the esti-
mated coordinates using the RSSI measured before and after passing
through the estimated grid points, while extrapolation is a method
to calculate the RSSI on the estimated grid points using the RSSI
acquired before passing through the estimated grid points. When
collecting RSSI data in a real environment for experiments, we want
to acquire RSSI precisely on the grid point positions we want to
estimate (the grid points shown in Figure 4), but this may be difficult
due to discrepancies in the RSSI measurement timing. In addition,
in rare cases, RSSI may not be collected from some beacons (due to
internal processing delays or packet losses), and the collected RSSI
sequence data may be collected at unequal time intervals. Therefore,
we use interpolation and extrapolation to create RSSI data that are
equally spaced in time.

(a) Horizontal paths. (b) Verticall paths.

(c) Diagonal paths 1. (d) Diagonal paths 2.

Figure 4: Beacon placement and path configuration for experiment A. Beacons are
shown as bO, and the dots indicate the grid points at which the position and the motion
direction is evaluated.
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(a) An example of interpolation. (b) An example of extrapolation.

Figure 5: Examples of interpolation and extrapolation of RSSI data. The blue dots
indicate the measured RSSIs, and the squares indicate the smoothed data used in the
later estimation stages using DNNs.

Figure 5 shows an example of interpolation and extrapolation of
RSSI data. In this figure, the collected RSSI data is represented by
dots and the interpolated and extrapolated data by squares. In this
experiment, RSSI data was collected while walking at a constant
speed of 0.5 m/s. The subjects are expected to pass over the grid
points in Figure 4 every 2 seconds. The RSSI to be acquired at
exact timing is acquired from a data sequence that is supplemented
at intervals of 0.25 s using interpolation or extrapolation. The in-
terpolation is based on the piecewise cubic Hermitian interpolation
polynomial (pchip) [28, 29], and the extrapolation is based on cubic
spline interpolation [30, 31].

In the example in Figure 5 (a), the sample at 1.75 s was lost and
was interpolated from samples before and after this interval. In Fig-
ure 5 (b), the sample at 2 s was not available and was extrapolated
from preceding samples. Up to seven preceding samples and one
succeeding sample in time are used to interpolate one coordinate in
the collected data. Extrapolation uses up to 8 past samples. Since
RSSI values in the real environment vary widely, it is not possible
to process accurate RSSI data if the number of data used for in-
terpolation and extrapolation is small. Thus, based on preliminary
experiments, we decided to use the above-mentioned preceding and
succeeding samples for smoothing as a compromise between accu-
racy and real-time constraints. We will also compare the accuracy
without RSSI processing (no interpolation or extrapolation).

We will also examine whether categorization or continuous angu-
lar values are appropriate for estimating the direction of movement.
The output layer of DNN is different depending on how to handle
the movement direction. If the movement direction is output as a
categorical value, the output layer will be 10 (x-, y-coordinates, and
8 additional outputs for one of 8 directional categories, i.e. 8 × 45°,
as one-hot output). If the movement direction is output as a continu-
ous value, the output layer of DNN will be 4 (x-, y-coordinates, and
sin θ and cos θ values).

To compare the accuracy of the position estimation, we created
a heat map showing the average estimation error for all coordinates
and the average estimation error for each coordinate with each RSSI
processing method. The average position estimation error, d, is
calculated as in (2).

d =

N∑
i=1

√
(xi − x)2 + (yi − y)2

N
[m] (2)

Here, N is the number of estimations, and x and y are the true
coordinates, and xi and yi are estimated x and y positions. As stated

before, to treat the movement direction as a continuous value in the
DNN, the output of the DNN is set to be sin θ and cos θ. There-
fore, the error in estimating the direction of movement, θerror, is
calculated as shown in (3) and (4).

θestimate = tan−1 sin θestimate

cos θestimate
[°] (3)

θerror =
1
N

N∑
i=1

|θtrue − θestimate|[°] (4)

Here, θtrue is the true direction of movement, and sin θestimate and
cos θestimate are estimated sin and cos values output from the DNN.

3.2 Experiment B: Comparison of estimation accuracy
by placement and number of installed beacons

The number and placement pattern of the installed beacons were set
as shown in Figure 6 in this experiment to investigate the effect of
beacon placement and the number of beacons.

Beacons were placed on the chair at regular intervals as shown
in Figure 6, and a total of 40 grid points (5 × 8) were set at 1 m
intervals. As in Experiment A, a total of 31 vertical, horizontal
and diagonal linear paths were assumed, and data were collected by
moving at a constant speed of 0.5 m/s repeatedly from the edge of
each path. The collected RSSI data were interpolated to obtain the
exact RSSI measured at the estimated grid points. All movement
directions were treated as continuous values. Figures 6 (a) to (d)
show the configuration of the beacon placement to compare estima-
tion accuracy for four patterns using four beacons. In Figures 6 (d)
to (f), the number of beacons to be placed is varied to compare the
estimation accuracy. The calculation of the estimation accuracy is
done in the same way as in Experiment A.

(a) Four beacons A. (b) Four beacons B. (c) Four beacons C.

(d) Four beacons D. (e) Six beacons. (f) Eight beacons.

Figure 6: Beacon placement for experiment B. Beacons are shown as bO, and the dots
indicate the grid points at which the position and the motion direction is evaluated.
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(a) No processing. (b) Extrapolation. (c) Interpolation.

Figure 7: Position estimation error using movement direction with continuous
values.

(a) No processing. (b) Extrapolation. (c) Interpolation.

Figure 8: Position estimation error using movement direction with categorical
values.

4 Results and Discussions

4.1 Experiment A

The experimental results are shown in Figure 7 through 10 and
Tables 2, 3, and 4, respectively.

Table 2: Average direction of movement estimation error with continuous direction
values. The path direction notations are L:horizontal right to left, R: horizontal left
to right, U: vertical bottom to far top, D: vertical top to near bottom, UL: diagonal
lower right to upper left, LL: diagonal upper right to lower left, UR: diagonal lower
left to upper right, LR: diagonal upper left to lower right, and All: average over all
directions.

Direction Average estimation error [ ° ]
No processing Extrapolation Interpolation

All 115.96 78.28 12.96
L 59.02 73.76 10.75
R 57.48 76.02 14.72
U 159.49 109.44 14.38
D 143.86 73.51 11.12

UL 131.55 89.99 10.27
LL 130.26 53.65 15.44
UR 156.59 90.53 7.14
LR 123.78 67.81 17.68

Table 3: Average direction of movement estimation error with categorical direction
values.

Direction Average estimation error [ ° ]
No processing Extrapolation Interpolation

All 112.60 85.24 10.61
L 57.09 38.44 10.99
R 45.15 100.83 12.78
U 164.79 90.36 10.52
D 136.71 80.18 11.10

UL 135.48 65.16 9.34
LL 119.57 53.65 12.96
UR 153.00 98.91 3.13
LR 125.68 96.35 15.28

Table 4: Direction estimation error distribution by angle error range.

Error range Occurrences
Continuous Categorical

157.5 ≤ θ ≤ 180.0 13 9
112.5 ≤ θ ≤ 157.5 18 25
67.5 ≤ θ ≤ 112.5 78 102
22.5 ≤ θ ≤ 67.5 314 269
0.0 ≤ θ ≤ 22.5 2011 2029

(a) no RSSI processing, continuous direction (b) no RSSI processing, categorical direction

(c) RSSI extrapolation, continuous direction (d) RSSI extrapolation, categorical direction

(e) RSSI interpolation, continuous direction (f) RSSI interpolation, categorical direction

Figure 9: Position estimation error distribution by RSSI processing method and
angular expression.
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(a) no RSSI processing, continuous direction (b) no RSSI processing, categorical direction

(c) RSSI extrapolation, continuous direction (d) RSSI extrapolation, categorical direction

(e) RSSI interpolation, continuous direction (f) RSSI interpolation, categorical direction

Figure 10: Direction estimation error distribution by RSSI processing method and
angular expression.

Figures 7 and 8 show the position estimation results when the
direction of movement is treated as a continuous value and when it is
treated as a categorical value, respectively. The average error at each
grid position is color-coded as shown in the color bars. Figs. (a), (b),
and (c) in both figures show the average estimation error at each grid
position when RSSI is not processed, extrapolated, and interpolated,
respectively. Note that we trained and tested the DNN with the same
RSSI sequence handling, i.e., applying no processing on the RSSI
data in both training and testing to get (a), applying extrapolation to
both the training and test data for (b), and interpolation to both the
training and test data for (c), respectively.

The average position estimation errors for the three methods in
Figure 7 were 1.777 m, 2.069 m, and 0.330 m, respectively. The av-
erage estimation errors of the three methods in Figure 8 were 1.812
m, 2.061 m, and 0.469 m, respectively. These results show that
interpolation can provide much higher position estimation accuracy.
On the other hand, the difference in the treatment of the direction
of movement (categorical vs. continuous) does not seem to have a
significant impact on the accuracy of position estimation.

Tables 2 and 3 show the direction estimation errors when the
direction of movement is treated as a continuous value and when
it is treated as a categorical value, respectively. Table 4 also com-
pares the error range distribution of both continuous and categorical
direction. From Table 2 and 3, we can see that interpolation is still
effective in estimating the direction of movement. However, de-
pending on how the direction of movement is treated, the magnitude
of the error remains the same for both categorical and continuous
values. This is also evident in Table 4, where we can see that both
methods generate approximately the same number of instances with
errors in each range. It should be added, however, that the advantage
of using continuous values is that if the number of categories of
directions to be estimated needs to be changed, a new labeling and

learning process is required, whereas this is not necessary when
using continuous values.

Figures 9 and 10 show the distribution of the position estimation
error and the direction estimation error for each combination of
RSSI preprocessing and moving direction handling, respectively.
These correspond to conditions included in Figures 7 and 8 and
also Tables 2 and 3. In these figures, the occurrences of the po-
sition estimation errors are plotted for every 0.1 m interval. The
error in the direction of movement is plotted in 15° increments for
continuous values, and in 45° increments for categorical values.
The rather large increment for categorization was because we de-
signed the categorization in these increments, while the continuous
value treatment allows arbitrary intervals, for which we arbitrarily
used bins in 15° increments for error analysis. From the results,
we can see that the interpolation for both position and direction of
movement estimation is stable with little error overall. In particular,
when the direction of movement is treated as a continuous value
and the RSSI values are interpolated, the position estimation error
peaks in the range of 0.0 to 0.2 m, as shown in Fig. 9e. For the
direction of movement, a peak can be seen in the range of 0 to 15°,
as shown in Fig. 10e . This tendency is not seen in the extrapolation
or unprocessed cases, indicating the effectiveness of interpolation.
The large average position estimation error with extrapolation com-
pared to unprocessed RSSI is probably due to the inaccuracy of
RSSI calculation based on past data and the inability to remove
RSSI variations by extrapolation alone. However, the extrapolation
succeeded in slightly reducing the estimation error of the direction
of movement. From these results, we conclude that interpolation is
the best method out of the three tested for processing RSSI for both
indoor position and direction of movement estimation.

4.2 Experiment B

The experimental results of Experiment B are shown in Figures 11
through 14, and Tables 5 and 6.

(a) Four beacons A. (b) Four beacons B. (c) Four beacons C.

(d) Four beacons D. (e) Six beacons. (f) Eight beacons.

Figure 11: Position estimation error for experiment B.
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Table 5: Average direction of movement estimation error with various beacon place-
ment pattern.

Direction Average estimation error [ ° ]
(a) (b) (c) (d)

All 38.93 36.18 36.56 47.94
L 38.06 35.31 32.21 39.65
R 36.82 44.22 43.03 35.17
U 46.98 36.56 37.11 83.21
D 42.01 37.12 47.06 48.26

UL 44.88 39.67 34.91 45.81
LL 35.49 37.44 34.85 40.98
UR 31.83 25.40 29.72 35.20
LR 38.70 33.24 34.82 63.49

Table 6: Average direction of movement estimation error vs. the number of beacons.

Direction Average estimation error [ ° ]
(d) (e) (f)

All 47.94 33.45 10.61
L 39.65 26.64 10.99
R 35.17 18.63 12.78
U 83.21 62.89 10.52
D 48.26 25.46 11.10

UL 45.81 32.36 3.13
LL 40.98 31.60 15.28
UR 35.20 29.99 9.34
LR 63.49 48.15 12.96

Figures 13a through 13d and 14a through 14d show the rela-
tionship between the position and direction estimation error and
corresponding number of occurrences for the four beacon installa-
tion patterns (A, B, C, and D). These correspond to conditions in
(a), (b), (c), and (d) in Figure 11 and Table 5. In these Figures, the
position estimation error is plotted every 0.1 m, and the error in the
direction of movement is plotted in 15° increments. In the case of
four beacons used, we can see a large peak in the position estimation
error distribution at less than 1 m in all patterns. However, the wide
range and the multiple peaks of the estimation error distribution
indicate that stable estimation is not possible. As for the moving
direction estimation error, a peak can be seen around 15°, again in
all patterns. We point out that beacon pattern D contains notable
error occurrence distribution up to 180° compared to other patterns,
in which the occurrences generally converge to a small number of
instances at larger error values.

(a) position estimation error. (b) Direction estimation error.

Figure 12: Position and direction estimation error vs. number of beacons

(a) 4 beacons in pattern A (b) 4 beacons in pattern B

(c) 4 beacons in pattern C (d) 4 beacons in pattern D

(e) 6 beacons (f) 8 beacons

Figure 13: Position estimation error distribution by number of beacons and its
placement.

(a) 4 beacons in pattern A (b) 4 beacons in pattern B

(c) 4 beacons in pattern C (d) 4 beacons in pattern D

(e) 6 beacons (f) 8 beacons

Figure 14: Direction estimation error distribution by number of beacons and its
placement. Directions were treated as continuous values.

Figures 13d through 13f and 14d through 14f show the relation-
ship between the estimation error and the corresponding number of
occurrences with 4, 6, and 8 installed beacons. They correspond
to conditions in (d), (e), and (f) in Figure 11 and Table 6. In terms
of position estimation error, the distribution of estimation error is
shown in a rather wide range, often showing a notable number of
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Table 7: Comparison of average position estimation errors.

System Ave. loc. est. error [m] Room size [m] No. of APs/beacons
Proposed 0.33 5 x 8 4 to 8

WiFi CSI+Autoencoder [9] 0.9425 4 x 7 1
WiFi fing. + Autoenc. (WiDeep) [8] 1.21 14.5 x 4.5 59

BLE DOD [17] 0.54 16 x 10 2
BLE fing. + 3D-CNN [26] 0.72 3 x 6 8

occurrences up to about 3 m with four beacons. In the case of six
installed beacons, there are two large peaks close to 1 m. In the case
of eight installed beacons, there is only one large peak close to 0
m. These seem to indicate that increasing the number of beacons
contributes to stabilizing the position estimation. As for the error in
the estimation of the direction of movement, the peak of the error
generated is in the range of 0 to 15° for any number of beacons, but
the large estimation error is reduced when the number of beacons
is increased. In particular, when there are 8 beacons installed, the
percentage of estimation errors of 45° or more for all directions
of movement in the test data is 7.3%. We believe this is sufficient
accuracy for the intended application of our system.

Table 6 also compares the estimation error of the direction of
movement when the number of beacons is 4, 6, and 8. From this
Table, we can see that the estimation error becomes smaller as the
number of beacons increases, similar to the position estimation re-
sults. The estimation accuracy percentage can be calculated using
(5), where θestimation error [°] (0 ≤ θestimation error ≤ 180) is the angle
estimation error.

1 −
θestimation error

180
[%] (5)

From (5), the estimation accuracy of 4 beacons is 73.4%, that
of 6 beacons is 81.4%, and that of 8 beacons is 94.1%. Therefore,
the estimation accuracy of 8 beacons is 20.7% higher than that of
4 beacons. From the above results, we can say that increasing the
number of beacons contributes significantly to the improvement of
stable estimation accuracy, both in terms of position and motion di-
rection. Thus, for a room with a size similar to the one in this study,
the average value of the position estimation error can be expected to
be well below 1 m, and the average movement direction estimation
error can be expected to be around 10° if 8 beacons are used, which
can both be considered to be sufficient accuracy for practical indoor
navigation.

Although it is quite difficult to compare estimation results with
other schemes since they will differ in terms of conditions (room
size, number of APs/beacons and their placement, etc.), we have
summarized the position estimation error comparison in Table 7.
From this table, it seems safe to say that the proposed system
achieves comparable or better estimation accuracy compared to
the other similar methods. There is no data on movement direction
estimation accuracy to compare with the proposed method, however.

5 Conclusion
In this study, we investigated an indoor position and direction esti-
mation system consisting of a smartphone and BLE beacons. The

RSSI measurements of multiple BLE beacons were fed into a DNN
model that estimated both position and direction of movement simul-
taneously. Multiple time instances of the RSSI of the BLE beacons
were used for the estimation. The post-processing of the RSSI of
the BLE beacons and the number of beacons required for accurate
estimation were considered. The results showed that temporal inter-
polation is the most effective post-processing of RSSIs before using
them as input data for DNN models. In particular, interpolation
contributes to the stabilization of the accuracy of the estimation of
the direction of movement. Eight beacons in a space of 5 m × 8
m resulted in an average position estimation error of 0.330 m for
all grid positions in this room, and a total error of 10.61° in the
estimation of the direction of movement. We believe this is one
of the most accurate estimations even among methods that rely on
fingerprints. We also showed that the estimation of the direction
of movement should be treated as a continuous value to increase
the accuracy of the direction of movement estimation. Regarding
the placement pattern and the number of beacons required, we con-
firmed that sparsely and evenly distributed beacons and a sufficient
number of beacons contribute to stable estimation. In the measure-
ment tested room, when 8 beacons were installed, the percentage of
estimation errors of 45° or more for all directions of movement in
the test data was 7.3%, significantly less than with a smaller number
of beacons. With this level of accuracy, we believe that the system
can be applied to actual indoor navigation systems.

In this experiment, we measured RSSIs with no obstacles in the
surroundings. However, when we consider actual usage scenarios,
objects and people in the room often become obstacles. Since we
used multiple RSSI sequences to train the DNN model, the models
may be able to handle some deviation in the RSSI measurements
due to object placement owing to the generalization capabilities of
the DNN. However, some form of reinforced learning will become
necessary to handle an extensive amount of deviations due to the
introduction of obstacles. This is currently out of the scope of this
paper but is planned to be investigated in the future. We also assume
the system to be used on the same floor and thus assume that the
z-axis values are fixed. Multiple floor navigation systems will be
investigated in the future as well.

Additionally, all user paths modeled in this work were simple
straight paths at constant speeds. We would like to further expand
our model to handle more complex paths, consisting of different
direction and speed combinations.
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