
Advances in Science, Technology and Engineering Systems Journal
Vol. 4, No. 5, 30-38 (2019)

www.astesj.com
Special Issue on Advancement in Engineering and Computer Science

ASTES Journal
ISSN: 2415-6698

Fully Homomorphic Encryption Scheme Based On Complex Numbers
Khalil Hariss*1,2, Maroun Chamoun1, Abed Ellatif Samhat2

1Université Saint Joseph, ESIB, CIMTI, Mar Roukoz, Lebanon
2Lebanese University, Faculty of Engineering, CRSI, Hadath, Lebanon

A R T I C L E I N F O A B S T R A C T

Article history:
Received: 15 June, 2019
Accepted: 20 August, 2019
Online: 06 September, 2019

Keywords:
Complex Numbers
Cloud Systems
Fully Homomorphic
Asymmetric Scheme
Bootstrapping
Approximate GCD

In this paper, we present a new Somewhat Homomorphic Encryption (SHE) scheme using
computation over complex numbers. We then use Bootstrapping technique to make the
scheme Fully Homomorphic (FH) and supports unbounded number of circuit depth. In
addition to its homomorphic properties and security level, a main characteristic of the
proposed new scheme is its simplicity as it is merely based on addition and multiplication
operations over complex numbers. The new scheme is implemented under Python using
SAGEMath library and evaluated. Then a crypt-analysis based on Approximate GCD
problem is done. A comparison with the BGV, a well known Fully Homomorphic Encryption
(FHE) scheme, shows that this new scheme is an efficient homomorphic encryption scheme.

1 Introduction

An encryption scheme is said to be FH, if it allows to perform addi-
tion and multiplication operations explicitly over the cipher-texts
while performing implicitly the same operations over the plain-
texts. This new type of ciphering is very required in cloud systems
mainly when users treat the cloud as a third untrusted party. With
Homomorphic Encryption (HE) the cloud is able to process over
encrypted storage and the privacy of the user is preserved at the
cloud side. In Figure. 1, we show the case of a mobile user sending
an encrypted query to the cloud using HE, thus the cloud is able to
process encrypted query over encrypted data to return an encrypted
answer. The user can do the decryption.
The notion of homomorphism was first introduced by Rivest, Adle-
man and Dertouzo [1] as privacy homomorphism after the invention
of RSA crypto-system [2]. The basic RSA crypto-system is a multi-
plicative homomorphic scheme that allows to perform multiplication
operations over the cipher-texts. Give, for example, RSA public
key, pk = (N, e) and cipher ci = (mi)emod(N) for a plain-text mi.
It is simple to demonstrate that

∏
i ci = (

∏
i mi)emod(N). Several

works followed the RSA scheme. A state of art of HE is given in [3]
– [6]. Some of the known homomorphic schemes are: Paillier crypto-
system [7, 8], Domingo Ferrer crypto-system [9, 10] which is a HE
scheme based on polynomial calculations. The Enhanced MORE
[11] is another FHE based on matrix calculation and the NOHE [12]
scheme is a lightweight FHE that profits from the simplicity and

the homomorphic behavior of logic NOT . The most valued work
in this domain was given by Craig Gentry in his Ph.D. thesis in
2009 [13, 14]. The work of Gentry was inspired from lattice based
cryptography. Gentry first introduced a SHE scheme that supports
a bounded number of operations over the cipher-texts. Then he
developed a new refresh mechanism called Bootstrapping [15] –
[19] to make the scheme FH and supports unbounded operations.
An important FHE scheme is the BGV crypto-system developed
by Brakerski, Gentry and Vaikuntanathan in [20, 21]. Since BGV
scheme is also Somewhat Homomorphic (SH), Modulus Switching
(MS) is a technique used with BGV to extend the circuit’s depth
during the evaluation procedure.
In this paper, our main motivation is to add a value in homomorphic
encryption by designing a new simple and robust FHE based on
simple complex numbers operations . We first build a new asym-
metric SHE complex-based scheme, then we apply Gentry refresh
mechanism (Bootstrapping). In comparison with BGV which is
lattice based encryption, our scheme is simply based on complex
addition and multiplication operations. In addition, Bootstrapping
supports unbounded number of circuit depth in our scheme, while
MS extends the BGV evaluation to a limited number.
The rest of the paper is organized as follows: in section 2, we
present the basic concept of HE with the properties that can lead
to a HE scheme. In section 3, we introduce our new FHE scheme
built using complex numbers theory. In section 4 we consider
our implementations for the new Complex-based scheme and the

*Corresponding Author: Khalil Hariss, Université Saint Joseph, khalil.hariss@net.usj.edu.lb

www.astesj.com
https://dx.doi.org/10.25046/aj040504

30

http://www.astesj.com
https://www.astesj.com
https://dx.doi.org/10.25046/aj040504

K. Hariss et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 5, 30-38 (2019)

Figure 1: Cloud Scenarion Under Homomorphic Encryption

BGV scheme under Python using SAGEMath Library, followed
by a crypt-analysis of our new scheme based on the Approximate
GCD problem [22, 23, 24]. And finally the conclusion, comparison
between the two schemes and future works are listed in section 5.

2 Homomorphic Encryption
In this work, we focus on asymmetric schemes. Consider an asym-
metric scheme α, where pk is the public key, sk is the secret key, ci

is the ciphered text of a plain-text mi. A homomorphic scheme has
3 different basic functions that are: KeyGenα that generates (pk, sk),
Encryptα(pk,mi) that outputs cipher-text ci, Decryptα(sk, ci) that
outputs the plain-text mi.

2.1 Evaluation Function

In addition to the three basic functions listed above, a homomorphic
scheme has also an evaluation function defined by Evaluateα that
takes as input the public key pk, a circuit L and a tuple of cipher-
texts C = (c1, c2, c3,, ct), cipher of the input plain-texts vector
(m1,m2, ...,mt). The evaluation function outputs a cipher-text Ψ

given by:
Ψ = Evaluateα(pk, L,C) (1)

The scheme is homomorphic if we have: Ψ =

Encryptα(pk, L(m1,m2,,mt)).

2.2 Homomorphic Properties

When the circuit L performs a certain operation over the encrypted
data as written in 1, the cloud is computing a predefined Boolean
function f that can be written in a polynomial form. A polynomial
form is a set of addition and multiplication gates. Thus to build a
HE scheme we should satisfy these two basic properties:

1. Addition

Encα(pk,m1) + Encα(pk,m2) = Encα(pk,m1 + m2) (2)

2. Multiplication

Encα(pk,m1) × Encα(pk,m2) = Encα(pk,m1 × m2) (3)

where m1 and m2 are two plain-texts in {0, 1} and Encα(pk,mi) is
the encryption function.

3 Homomorphic Complex Scheme

In this section, we build our scheme using complex numbers. We
first list the security parameters and then we detail our proposal.

3.1 Parameters

Based on a security parameter λ, different other parameters are
generated as listed in [15] to build the new scheme:

1. γ: the bit length of the real and imaginary parts in the public
key (γ = ω(η2log2λ)).

2. ρ: the bit-length of the real and imaginary parts in the noise
(ρ = ω(log2(λ)).

3. η: the bit length of the secret key (η ≥ ρ.Θ(λlog2
2(λ)).

4. ρ
′

: extra noise parameter.

5. τ: The number of public keys (τ ≥ γ + ω(log2λ)).

3.2 Somewhat Homomorphic Complex Scheme Con-
struction

The SH complex scheme construction is based on the following
steps:

1. Secret key: The secret key sk is defined by an η bit prime
integer p.

2. Public keys: We build a public key bank (PK) formed of τ
complex numbers having the following form:
PK = {(pk1

h + ipk2
h) = ((pq1

h +εh
1)+ i(pq2

h +ε2
h), 1 ≤ h ≤ τ}.

For each complex public key (pk1
h + ipk2

h), we build different
parameters as follow:

(a) random integer: qh
j ←− Z ∩ [0,

2η

p
), random noise pa-

rameter: ε j
h ←− Z ∩ (−2ρ, 2ρ) where j ∈ {1, 2}.

(b) (pk1
h, pk2

h) should have different parities.

(c) (ε1
h, ε2

h) should have the same parity.

www.astesj.com 31

http://www.astesj.com

K. Hariss et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 5, 30-38 (2019)

3. Encryption Function: The encryption of any bit m is given by
the following equation:

c = Enc(pk,m) = (pk1
h + ipk2

h) × (R1
h + iR2

h) + r1
h

+ir2
h + m

(4)

where (pk1
h + ipk2

h) is chosen randomly from the public key
bank (PK), R1

h + iR2
h is a random complex chosen such that

|R1
h| <<<

p
6|ε1

h − ε2
h|

, |R2
h| <<<

p
6|ε1

h + ε2
h|

, r1
h + ir2

h is

a random complex chosen between (−2ρ
′

, 2ρ
′

) such that r1
h

and r2
h have the same parity and |r1

h − r2
h| �

p
6

(Choosing

the intervals of Rh
1, Rh

2, rh
1, rh

2 is explained in the upcoming
decryption section).

4. Decryption Function:
Following 4, we can demonstrate that c = Enc(pk,m) =

(pk1
h + ipk2

h) × (R1
h + iR2

h) + r1
h + ir2

h + m = (pq1
hR1

h −

pq2
hR2

h + R1
hε1

h −R2
hε2

h + r1
h + m) + i(pq1

hR2
h + pq2

hR1
h +

R2
hε1

h + R1
hε2

h + r2
h).

The decryption of the cipher c is done as follows:

Intermediate = real(c) − imag(c) =

p(q1
hR1

h − q2
hR2

h − q1
hR2

h − q2
hR1

h)+

R1
h(ε1

h − ε2
h) − R2

h(ε1
h + ε2

h) + (r1
h − r2

h) + m.

m = mod(modNear(Intermediate, p), 2).

(5)

Where modNear(x, p) = y, such that y ∈ (−
p
2
,+

p
2

).
Decryption works as long as:
−p
2
≤ R1

h(ε1
h − ε2

h) − R2
h(ε1

h + ε2
h) + (r1

h − r2
h) + m ≤

p
2

.

In addition (ε1
h − ε2

h), (ε1
h + ε2

h) and (r1
h − r2

h) are even
integers.
The decryption condition is satisfied as long as: |R1

h| <<<
p

6|ε1
h − ε2

h|
, |R2

h| <<<
p

6|ε1
h + ε2

h|
, |r1

h−r2
h| <<

p
6

and each

pair of (ε1
h, ε2

h), (r1
h, r2

h) is formed of two integers having
the same parity.

3.3 Complex Homomorphic Properties

We show in this section that the proposed scheme satisfies the homo-
morphic properties. Given two cipher-texts c1, c2 respectively for
2 different plain-texts m1, m2 encrypted using the complex scheme
listed in section 3.2.
c1 = (pk1

h + ipk2
h)(R1

h + iR2
h) + r1

h + ir2
h + m1 = (pq1

hR1
h −

pq2
hR2

h + R1
hε1

h − R2
hε2

h + r1
h + m1) + i(pq1

hR2
h + pq2

hR1
h +

R2
hε1

h +R1
hε2

h +r2
h). c2 = (pk1

t +ipk2
t)(R1

t +iR2
t)+r1

t +ir2
t +m2 =

(pq1
tR1

t− pq2
tR2

t +R1
tε1

t−R2
tε2

t +r1
t +m2)+ i(pq1

tR2
t + pq2

tR1
t +

R2
tε1

t + R1
tε2

t + r2
t).

1. Addition

c1 + c2 =

(pq1
hR1

h − pq2
hR2

h + pq1
tR1

t − pq2
tR2

t + R1
hε1

h

−R2
hε2

h + R1
tε1

t − R2
tε2

t + r1
h

+r1
t + m1 + m2) + i(pq1

hR2
h + pq2

hR1
h+

pq1
tR2

t + pq2
tR1

t + R2
hε1

h + R1
hε2

h + R2
tε1

t

+R1
tε2

t + r2
h + r2

t).

(6)

Decryption of c1 + c2 is obtained by calculating
mod(modNear(real(c1 + c2) − imag(c1 + c2), p), 2) having
the following form:
pQadd + Radd + m1 + m2 such that Radd = R1

h(ε1
h − ε2

h) −
R2

h(ε1
h + ε2

h) + R1
t(ε1

t − ε2
t) − R2

t(ε1
t + ε2

t) + (r1
h − r2

h) +

(r1
t − r2

t).
Decryption works as long as Radd is even and

−p
2
≤ Radd ≤

p
2

.

2. Multiplication
Similar to addition, decryption of c1 × c2 is obtained by cal-
culating mod(modNear(real(c1 × c2) − imag(c1 × c2), p), 2).
We can demonstrate that real(c1 × c2) − imag(c1 × c2) have
the following form:
pQmult + Rmult + m1m2 such that Rmult = (r1

tR1
h + m2R1

h −

r2
tR2

h)(ε1
h−ε2

h)−(r1
tR2

h+r2
tR1

h+m2R2
h)(ε1

h+ε2
h)+(r1

hR1
t+

m1R1
t − r2

hR2
t)(ε1

t − ε2
t) − (R1

tr2
h + r1

hR2
t + m1R2

t)(ε1
t +

ε2
t) + (R1

hR1
tε1

h − R2
hR2

tε1
h)(ε1

t − ε2
t) + (R2

hR2
tε2

h −

R1
hR1

tε2
h)(ε1

t + ε2
t) − (R1

hR2
tε1

h + R2
hR1

tε1
h)(ε1

t + ε2
t) −

(R2
hR1

tε2
h + R1

hR2
tε2

h)(ε1
t − ε2

t) + r1
h(r1

t − r2
t) − r2

h(r1
t +

r2
t) + m2(r1

h − r2
h) + m1(r1

t − r2
t).

Decryption also works as long as Rmult is even and
−p
2
≤

Rmult ≤
p
2
. We can simply demonstrate that Radd and Rmult

are even since each couple of (r1
h, r2

h), (r1
t, r2

t), (ε1
h, ε2

h)
and (ε1

t, ε2
t) is formed of two integers having the same parity,

but having Radd and Rmult between
−p
2

and
p
2

is not always
satisfied.
As a conclusion our new complex scheme is SH that supports
a bounded number of addition and multiplication operations
over the cipher-texts.

3.4 Making the Complex Scheme Fully Homomorphic

To make our complex scheme FH, we apply Bootstrapping [15, 17]
in order to reduce the noise level after each operation. Starting from
a complex cipher c, the plain-text m can be calculated following

this equation m← [c∗ − b
c∗

p
e]2 where c∗ = real(c) − imag(c) since

this decryption equation is much simpler than Equation. 5. First
of all we can use Gentry’s transformation to squash the decryption
circuit. In this transformation we add to the public key some extra
information about the secret key, and use this extra information to

www.astesj.com 32

http://www.astesj.com

K. Hariss et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 5, 30-38 (2019)

post process the cipher-text c∗. The post processed cipher-text c∗

can be decrypted more efficiently than the original cipher-text.

3.4.1 Bootstrapping:

Consider the evaluation procedure given in 1, we use instead of the
arithmetic circuit L, the decryption circuit Dα of the SH scheme α.
The main concept of Bootstrapping is that we have a cipher-text ψ1
that encrypts m under pk1 that we want to refresh. sk1 is the secret
key related to the public key pk1. sk1 is encrypted under another
public key pk2. Let sk1 j be the encrypted secret bits j of sk1 under
pk2. Bootstrapping is given by this algorithm:

Recrypt(pk2,Dα, < sk1 j >, ψ1 j),

S et ψ1 j ← Encrypt(pk2, ψ1 j)

Output ψ2 ← Evaluateα(pk2,Dα, 〈〈sk1〉, 〈ψ1 j〉〉)

(7)

In 7, the function Evaluateα takes as input the bits of sk1 and
ψ1, each encrypted under pk2 to evaluate homomorphically the
decryption circuit Dα. The output ψ2 is an encryption under pk2 of
Decryptε(sk1, ψ1) = m. By applying 7, we are removing the error
vector associated to the first cipher and adding another error vector.
The progress is made as long as the second error vector in ψ2 is
shorter than the primitive in ψ1.
In Figure. 2, we present the evaluation procedure of a circuit with
high depth giving birth to a cipher c with a high noise level.
As given in Figure. 3, for a cipher c consider Dc(sk) = Decryptsk(c),
this operation is called squashing the decryption circuit (will be
explained in the upcoming section) and Dc(.) is a low depth poly-
nomial in sk. Bootstrapping consists of evaluating Dc(.) using the
encryption of the secret key sk.

3.4.2 Squashing the Decryption Circuit:

Bootstrapping is possible as long as the decryption circuit is an
arithmetical circuit of low depth. Squashing is the required trans-
formation in making it possible as listed in[15, 16, 17, 18, 19].
Following Gentry’s Squashing technique, we add three different
extra parameters κ, θ, Θ that are function of the security parameter
λ. κ =

γη

ρ
′ , θ = λ, Θ = ω(κ.log(λ)). For a secret key s∗k = p and

a public key p∗k from the original complex homomorphic scheme

α, we add to the public key a set
−→
Y = {y1, y2, y3, ..., yΘ} of rational

numbers in [0, 2) with κ bits of precision, such that there is a sparse

subset S ⊂ {1, 2, 3, ...,Θ} of size θ with
∑
i∈S

yi ≈
1
p

(mod2).

The secret key becomes the indicator of the subset S . The scheme
of section 3.2 becomes FH complex by first applying the following
modifications:

1. K
¯

eyGen:

Generate s∗k = p and p∗k as before. set xp ← b
2κ

p
e. Choose

randomly a Θ bit vector −→s with hamming weight θ, −→s =

〈s1, s2, ..., sΘ〉 and let S = {i; si = 1 in vector S }. Choose
Θ random integers ui ∈ Z ∩ [0, 2κ+1), i = 1, 2, 3, ...,Θ sub-
ject to the condition that

∑
i∈S

ui = xpmod(2κ+1). Set yi =
ui

2κ

and
−→
Y = {y1, y2,, yΘ}. Hence each yi is a positive number

smaller than 2 with κ bits of precision after the binary point

such that [
∑
i∈S

yi]2 = (
1
p

) − ∆p for some ∆p < 2−κ.

2. E
¯
ncrypt and Evaluate Algorithm:

Generate the cipher-text c∗ = real(c) − imag(c) from a
complex cipher c. Then for each i ∈ {1, 2, 3, ...,Θ}, set
zi ← [c∗.yi]2 keeping only n = dlogθe + 3 bits of preci-
sion after the binary point for each zi. Output both c∗ and
−→z = 〈z1, z2, ..., zΘ〉

3. D
¯

ecrypt and Output Algorithm:

m← [c∗ − b
∑
i∈S

sizie]2 (8)

Lemma 1. For every cipher-text (c∗,−→z) that is generated by
evaluating a circuit C, it holds that

∑
i sizi is within 1

4 of an
integer.

Proof. Fix an arithmetic circuit L, public keys and secret
keys generated with respect to the security parameter λ, with
{yi}

Θ
i=1 the rational numbers in the public key and {si}

Θ
i=1

the secret key bits. If we recall that yi’s were chosen

that: [
∑

i

siyi]2 = (
1
p

) − ∆p. We fix a circuit L, and t

cipher-texts {ci}
t
i=1 that encrypts the input to L and denote:

c = Evaluateε(pk, L, c1, c2, .., ..., ct), we need to establish this
equation:

b
c∗

p
e = b
∑

i

sizie(mod2) (9)

where c∗ = real(c) − imag(c) and the zi’s are computed as
[c∗.yi]2 with only dlogθ + 3e bits of precision after the binary

point, hence [c∗.yi]2 = zi − ∆i with |∆i| ≤
1

16θ
.

[(
c∗

p
)−
∑

sizi]2 = [(
c∗

p
)−
∑

i

si[c∗yi]2 +
∑

si∆i]2 = [(
c∗

p
)−

c∗[
∑

siyi]2 +
∑

si∆i]2 = [(
c∗

p
) − c∗.(

1
p
− ∆p) +

∑
si∆i]2

= [c∗.∆p +
∑

si∆i]2. �

We claim that the final quantity inside the brackets has mag-

nitude at most
1
8

. By definition, since c∗ is a valid cipher-text

output, the value
c∗

p
is within

1
8

of an integer. Together all

these facts imply the lemma. To establish the claim, we first

observe that |
∑

si∆i| ≤ θ ×
1

16θ
. Regarding c∗∆p, recall

that the output c∗ is obtained by evaluating the circuit L on
the cipher-text ci as listed in [15], for any polynomial P that
implements the circuit L, for any α ≥ 1, if P’s input has mag-
nitude at most 2α(ρ

′
+2), its output magnitude at most 2α(η−4).

In particular, when P’s are fresh cipher-texts, which have mag-
nitude at most 2γ, P’s output cipher-text c∗ has magnitude at

most 2γ(η−4)(ρ
′
+2) < 2κ−4. Thus |c∗∆p| <

1
16

.

www.astesj.com 33

http://www.astesj.com

K. Hariss et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 5, 30-38 (2019)

Figure 2: Circuit Evaluation with High Noise

Figure 3: Fresh Cipher Generation

3.4.3 Practical Implementation of Squashing and Bootstrapping:

For the squashed decryption circuit given in 8, the implementation of∑
i∈S sizi (such that zi = (zi1, zi2,, zin) is a vector of n = dlogθe+ 3

bits, where 1 ≤ i ≤ Θ), can be done with lower computational
complexity as implemented in [16, 19]. This new implementation

is based on dividing the new secret key −→s in θ boxes of B =
Θ

θ
bits

each, where each box has a single bit having the value 1. This will
lead us to obtain a grade school addition algorithm that requires
O(θ2) multiplications instead of O(Θ.θ). The secret key −→s is di-
vided into sk,i, the ith secret key bit in box k, where 1 ≤ k ≤ θ and
1 ≤ i ≤ B. The resultant equation is:

m← (c∗ − b
θ∑

k=1

(
B∑

i=1

sk,izk,i)e)mod(2) (10)

We denote that the sum qk =
∑B

i=1 sk,izk,i is obtained by adding B
numbers, only one being nonzero. The decryption equation is now:

m← (c∗ − b
θ∑

i=1

(qk)e)mod(2) (11)

Where the qk’s are rational in [0, 2) with n bits of precision after the
binary point. Another form of the decryption equation is given by:

m = [c∗]2 ⊕ [b
Θ∑

i=1

sizie]2 (12)

Based on 12, we can deduce that the parity of the plain-text m is
related to the parity of the primitive cipher-text c∗ and the parity of
[b
∑Θ

i=1 sizie]2.
In order to make this concept much clearer, a simple implementation
of bootstrapping, using low values, is explained in the following

example. Giving randomly Θ = 4, θ = 2, B =
Θ

θ
= 2, and

a precision bit n = 1. The secret key −→s = [b1, b2, b3, b4] such
that (b1 = 1 and b2 = 0) or (b1 = 0 and b2 = 1), (b3 = 1 and
b4 = 0) or (b3 = 0 and b4 = 1) based on the implementation of
10. Initial values for evaluating the decryption circuit using the
secret key −→s without encryption are s1 = [s11 s12] = [b1 b2],
s2 = [s21 s22] = [b3 b4], the z values are taken just as an exam-
ple z1 = [z11 z12] = [[10] [01]], z2 = [z21 z22] = [[11] [01]].
We start by applying the evaluation procedure over the plain-
texts by calculating S um =

∑θ
k=1
∑B

i=1 sk,izk,i =
∑2

k=1
∑2

i=1 sk,izk,i =

(b1z11 + b2z12) + (b3z21 + b4z22) = [b1 b2] + [b3 b3 + b4] =

www.astesj.com 34

http://www.astesj.com

K. Hariss et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 5, 30-38 (2019)

Figure 4: Circuit Evaluation over Cipher-texts.

(S um1) + (S um2), then we apply the binary summation to calcu-
late S um = S um1 + S um2 = [b1 + b3 b2 + b3 + b4 + b1b3] =

[S um(0) S um(1)] (S um(0) = S um1(0) + S um2(0) and S um(1) =

S um1(1) + S um2(1) + S um1(0)S um2(0)). As a result, the parity
of bS ume is given by b1 + b3 + b2 + b3 + b4 + b1b3. Next step
is to do the circuit evaluation over the complex cipher-texts. Let
se f = [se1 se2] be the cipher of the secret key s1 = [b1 b2]
and ses = [se3 se4] be the cipher of the secret key s2 = [b3 b4]
using the encryption procedure listed in 4 with random values
(Rh

1 + iRh
2) = 1.

se f = [se f (0) se f (1)] = Enc(s1) = [(pq1
1 + ε1

1) + i(pq1
2 + ε1

2) + r1
1 +

ir1
2 + b1 (pq2

1 + ε2
1) + i(pq2

2 + ε2
2) + r2

1 + ir2
2 + b2].

S umenc =

θ∑
k=1

B∑
i=1

sek,izk,i =

2∑
k=1

2∑
i=1

sek,izk,i = S um1enc + S um2enc,

where S um1enc = se f (0)z11 + se f (1)z12 and S um2enc = ses(0)z21 +

ses(1)z22. An implementation of circuit evaluation over the cipher-
texts is given in Figure.4.
As shown in Figure.4, after applying the binary summation over
S um1enc and S um2enc we obtain S umenc = [S umenc(0) S umenc(1)]
such that S umenc(0) = p(Q0R + iQ0I) + (ε1

1 + ε3
1) + i(ε1

2 + ε3
2) + (r1

1 +

r3
1) + i(r1

2 + r3
2) + b1 + b3.

S umenc(1) = p(Q1R+iQ1I)+(ε1
1ε

3
1−ε

1
2ε

3
2)+(r3

1ε
1
1 +r1

1ε
3
1−r3

2ε
1
2−r1

2ε
3
2)+

(r1
1r3

1−r1
2r3

2)+b1ε
3
1 +b3ε

1
1 +b1r3

1 +b3r1
1 +(ε2

1 +ε3
1 +ε4

1)+(r2
1 +r3

1 +r4
1)+

b1b3 + b2 + b3 + b4 + i((ε1
1ε

3
2 + ε1

2ε
3
1) + (r3

2ε
1
1 + r1

1ε
3
2 + r1

2ε
3
1 + r3

1ε
1
2) +

(r1
2r3

1 +r1
1r3

2)+b1ε
3
2 +b3ε

1
2 +b1r3

2 +b3r1
2 +(ε2

2 +ε3
2 +ε4

2)+(r2
2 +r3

2 +r4
2)).

Since mod(modNear(real(S umenc(0)) − imag(S umenc(0)), p), 2) =

b1+b3 and mod(modNear(real(S umenc(1))−imag(S umenc(1)), p), 2) =

b1b3 + b2 + b3 + b4, as long as the encryption parameters are chosen
such that the scheme is SH (i.e S um1enc and S um2enc are formed of
complex ciphers that can be added and multiplied homomorphically
as long as the scheme is SH). Based on all the calculations listed
above, a fresh cipher-text of c∗ can be written as:

f reshcipher = bS umenc(0) + S umenc(1)e + [c∗]2+∑
j

(pk
j
1 + ipk

j
2)(R j

1 + iR j
2) (13)

4 Implementation and Security Analysis

In order to validate our work, first we did an implementation of our
new Complex-based scheme, then we compared the evaluation of
the logic circuit C = (b0 ⊕ b1) • (b2 ⊕ b3) using the two schemes:
Complex and BGV.
As a brief overview of the BGV [20, 21], it is a FHE scheme that
works over bit level and built using Lattice based cryptography. The
security of this scheme depends on the hardness of Learning With
Error (LWE) introduced by Oded Regev in [25], that relies on the
complexity of solving a noisy linear system. Starting from a secu-
rity parameter λ, we have a secret key s ∈ Z[1,n]

p and a cipher-text
c ∈ Z[n,1]

p . The hardness of LWE resides in taking the lattice dimen-
sion: n ≈ poly(λ) and the ring dimension: p ≈ poly(n) following
[21, 25]. Homomorphic addition is achieved by simply adding the
two cipher-texts, while homomorphic multiplication is done by cal-
culating the Tensor product of the two different cipher-texts which
increases the dimension exponentially. Key Switching (KS) is a
new technique introduced to reduce the cipher dimension after each
homomorphic multiplication. The basic BGV scheme is SH since
the noise level will increase with circuit depth, therefore MS is
another technique introduced to reduce the noise level after each
arithmetic operation and extend to a higher circuit depth.
Finally a crypt-analysis of the new scheme is validated with the
GACD attack. All simulations are done under Python with SAGE-
Math Library using a machine having the following specifications
(CPU: Intel Xeon, E5− 2630, 2.40 GHZ, 8 CORES, 128 GB RAM).

4.1 Implementations and Results

1. First Implementation : First implementation with the new
Complex-based scheme is done with three different security
layers (small: λ = 42, ρ = 26, η = 988, γ = 147456,
Θ = 150, τ = 158), (medium: λ = 52, ρ = 41, η = 1558,
γ = 843033, Θ = 555, τ = 572), (large: λ = 62, ρ = 56,
η = 2128, γ = 4251886, Θ = 2070, τ = 2110) with extra
noise parameter ρ

′

= η − ρ, θ the hamming weight of vector
−→s is equal to 15, n the precision after the binary point of each

www.astesj.com 35

http://www.astesj.com

K. Hariss et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 5, 30-38 (2019)

Table 1: First Implementation Results

Parameters KeyBankGen Encrypt Decrypt
small 0.136439000002 s 0.00102999999945 s 0.000683999998728 s

medium 2.732191 s 0.00130100000024 s 0.00339099999837 s
large 48.049091 s 0.00596199999927 s 0.0216390000023 s

Table 2: Second Implementation Results

Parameters Complex mean execution time BGV mean execution time
small 0.4102108 s 0.35041905 s

medium 2.8407822 s 2.42358273 s
large 27.40187732 s 38.52468052 s

zi is taken as 4. Table. 1 shows in terms of execution time the
generation of public key bank of τ complex public keys, 1 bit
encryption and decryption.

2. Second Implementation : In the second implementation,
we did the evaluation procedure of the logic circuit C =

Plainoutput = (b0 ⊕ b1) • (b2 ⊕ b3), (i.e. CipherOutput =

((c0 + c1) × (c2 + c3), where ci = Enc(bi), f or 0 ≤ i ≤ 3)
using the two schemes (Complex and BGV) with the same
level of security λ. For BGV the three layers of implemen-

tation are (small: λ = 42, n = 42, p ≈ O(n20), q ≈ O(
n20

2
)),

(medium: λ = 52, n = 149, p ≈ O(n6), q ≈ O(
n6

2
)), (large:

λ = 62, n = 370, p ≈ O(n6), q ≈ O(
n6

2
)). Table.2 shows

a comparison in terms of mean execution time between the
two implementations for 100 iterations (Evaluation procedure
for the Compplex-based scheme is done with Bootstrapping
mechanism while with BGV is achieved with KS and MS). In
addition, results have shown that noise is efficiently reduced
for the two schemes. One can see that for large case, the
proposed Complex based-scheme performs better that BGV.

4.2 Security Analysis:

The crypt-analysis of the homomorphic encryption schemes will
consider the techniques used to build such schemes. The security
of the BGV-lattice based scheme relies on the hardness of solv-
ing LWE problems [25]. As for our new complex scheme, it uses
mathematical operations and the typical attack in this case is Gen-
eral Approximate Common Divisor (GACD). Given a public key
bank PK = {x1, x2,, xτ} where x j = pq j + r j for 1 ≤ j ≤ τ, the
basic idea of this attack is to reveal the value of the secret key p
starting from PK. The secret key p can be revealed using differ-
ent types of algorithms like the approximate GCD of two numbers
discussed in [22], the approximate GCD of many numbers using
the SDA algorithm [23] by applying a lattice based attack with
LLL algorithm. Recently a new improved attack was introduced
and implemented in [24], [19]. In our crypt-analysis, we tried to
apply this new Approximate GCD attack. Given the public key

bank PK = {x j, 1 ≤ j ≤ τ}, where q j ∈ [0,
2γ

p
) and r j ∈ [0, 2ρ) are

chosen uniformly and independently at random. The algorithm is as

follows: For j = 1, 2,, τ, let:

y j =

2ρ−1∏
i=0

(x j − i) (14)

Equation 14 shows clearly that p divides the GCD g =

gcd(y1, y2,, yτ). To build this attack and depending on the choice
of the (q j, r j), we will try to find a certain bound B not much larger
than 2ρ that with a high probability, all the prime factors of g except
p are smaller than this bound B. The probability that all the prime
factors of g except p are smaller than B is done based on [19]: ”For
every prime p ≥ B other than p, not all the x j’s are congruent to
one of (0, 1, ..., 2ρ − 1) modp”. This happens with probability very

close to 1 − (
2ρ

p
)s. Hence, the probability that all the prime factors

of g except p are smaller than B is essentially given by the following
Euler product:

Ps,ρ(B) =
∏

p≥B, p,p

(1 −
2sρ

ps) (15)

Based on [19] and using the usual prime counting function π(x)
explained in [26], we can demonstrate that 15 converges to some
positive number smaller than 1 and satisfies the following lemma:

Lemma 2. For any B > 2ρ+ 1
s , we have:

1 − Ps,ρ(B) <
2s

s − 1
×

2sρ

Bs−1logB

In our simulation, we picked B = 2
s + 1
s − 1

ρ
and we got a success

probability Ps,ρ(B) > 1 − 2−ρ. The GACD attack is given by the
pseudo code of Algorithm 1.

www.astesj.com 36

http://www.astesj.com

K. Hariss et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 5, 30-38 (2019)

Algorithm 1 GACD Attack

procedure p=GACD (η,γ, ρ)
p← random prime(0, 2η)
s← ρ

B← b2
s + 1
s − 1

ρ
c

Fa← Factorial(B)
x← p × random integer(0, 2γ−η) + random integer(0, 2ρ)
i← 0
g← 1
while i < 2ρ do

g← g × (x − i)
i← i + 1

end while
j← 1
while j ≤ s do

x← p×random integer(0, 2γ−η)+random integer(0, 2ρ)
i← 0
z← 1
while i < 2ρ do

z← z × (x − i)
i← i + 1

end while
g← Greatest divisor o f gcd(g, z) prime to Fa

if blog2(g)c ≤ η then
Break

end if
j← j + 1

end while
return g

end procedure

Due to the limited resources of our machine (CPU: Intel Xeon,
E5-2630, 2.40 GHZ, 8 CORES, 128 GB RAM), the proposed GACD
attack with the security levels related to λ is not feasible since the
polynomial y j given in 14 is of degree 2ρ with coefficients of size γ
and requires a memory of size 2ργ bits. The required size of each
level is: small : 1.125 Terra Byte, medium : 210759 Terra Byte,
large : 34831286272 Terra Byte, while our machine is only 128
GB RAM.

5 Conclusion
In this paper, we profited from the simplicity of complex numbers
properties by proposing a new SWE scheme based on complex num-
bers. We applied Gentry refresh mechanism to make our scheme
FH. We then implemented our new scheme with the BGV using
SAGEMath library. As a comparison with BGV, a well known FHE
scheme, our new scheme is an efficient homomorphic scheme and
performs better than BGV in terms of execution for large implemen-
tation. In addition, our scheme is simply based on simple complex
operations rather than lattice based cryptography (homomorphic
complex multiplication is done without dimension expansion rather
than Tensor product) and Bootstrapping can support unbounded
circuit depth, while MS used with BGV is limited to some circuit
depth. Finally a crypt-analysis based on GACD attack is presented.
Future work will consider the implementation of the GACD At-
tack given in section 4.2 with a more powerful machine in order to
evaluate the approximate attack time.

Acknowledgment This work has been partially funded with sup-
port from the Lebanese University.

References
[1] R. Rivest, L. Adleman, and M. Dertouzos, “On data banks and privacy homo-

morphisms,” in Foundations on Secure Computation, Academia Press, 1978,
pp. 169–179. [Online]. Available: http://www.oalib.com/references/14708317

[2] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signa-
tures and public-key cryptosystems,” Commun. ACM, vol. 26, no. 1, pp. 96–99,
Jan. 1983. [Online]. Available: http://doi.acm.org/10.1145/357980.358017

[3] P. Martins, L. Sousa, and A. Mariano, “A survey on fully ho-
momorphic encryption: An engineering perspective,” ACM Comput.
Surv., vol. 50, no. 6, pp. 83:1–83:33, Dec. 2017. [Online]. Available:
http://doi.acm.org/10.1145/3124441

[4] L. Zhang, Y. Zheng, and R. Kantoa, “A review of homomorphic encryption and
its applications,” in Proceedings of the 9th EAI International Conference on
Mobile Multimedia Communications, ser. MobiMedia ’16. ICST, Brussels,
Belgium, Belgium: ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering), 2016, pp. 97–106. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3021385.3021405

[5] C. Aguilar-Melchor, S. Fau, C. Fontaine, G. Gogniat, and R. Sirdey,
“Recent advances in homomorphic encryption: A possible future for
signal processing in the encrypted domain,” IEEE Signal Processing
Magazine, vol. 30, no. 2, pp. 108–117, March 2013. [Online]. Available:
http://doi.acm.org/10.1109/MSP.2012.2230219

[6] S. Fau, R. Sirdey, C. Fontaine, C. Aguilar Melchor, and G. Gogniat, “Towards
practical program execution over fully homomorphic encryption schemes,” in
2013 Eighth International Conference on P2P, Parallel, Grid, Cloud and
Internet Computing (3PGCIC-2013), Compiègne, France, Oct. 2013, pp. –.
[Online]. Available: https://hal.archives-ouvertes.fr/hal-00917061

[7] P. Paillier, “Public-key cryptosystems based on composite degree residuosity
classes,” in Advances in Cryptology — EUROCRYPT ’99, J. Stern, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1999, pp. 223–238. [Online].
Available: https://link.springer.com/chapter/10.1007/3-540-48910-X 16

[8] M. Nassar, A. Erradi, and Q. M. Malluhi, “Paillier’s encryption: Implementa-
tion and cloud applications,” in 2015 International Conference on Applied
Research in Computer Science and Engineering (ICAR), Oct 2015, pp. 1–5.
[Online]. Available: https://ieeexplore.ieee.org/document/7338149

[9] J. D. i Ferrer, “A new privacy homomorphism and applications,” Information
Processing Letters, vol. 60, no. 5, pp. 277 – 282, 1996. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0020019096001706

[10] J. Domingo-Ferrer, “A provably secure additive and multiplicative privacy
homomorphism*,” in Information Security, A. H. Chan and V. Gligor, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, pp. 471–483. [Online].
Available: https://dl.acm.org/citation.cfm?id=744660

[11] K. Hariss, H. Noura, and A. E. Samhat, “Fully enhanced ho-
momorphic encryption algorithm of more approach for real world
applications,” Journal of Information Security and Applications,
vol. 34, no. Part 2, pp. 233 – 242, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S2214212616303052

[12] K. Hariss, H. Noura, A. E. Samhat, and M. Chamoun, “Design and
realization of a fully homomorphic encryption algorithm for cloud ap-
plications,” in Risks and Security of Internet and Systems, N. Cuppens,
F. Cuppens, J.-L. Lanet, A. Legay, and J. Garcia-Alfaro, Eds. Cham:
Springer International Publishing, 2018, pp. 127–139. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-319-76687-4 9

[13] C. Gentry, “A fully homomorphic encryption scheme,” Ph.D. disser-
tation, Stanford, CA, USA, 2009, aAI3382729. [Online]. Available:
https://dl.acm.org/citation.cfm?id=1834954

[14] G. Craig, “Fully homomorphic encryption using ideal lattices,” in Proceedings
of the Forty-first Annual ACM Symposium on Theory of Computing, ser. STOC
’09. New York, NY, USA: ACM, 2009, pp. 169–178. [Online]. Available:
http://doi.acm.org/10.1145/1536414.1536440

www.astesj.com 37

http://www.oalib.com/references/14708317
http://doi.acm.org/10.1145/357980.358017
http://doi.acm.org/10.1145/3124441
http://dl.acm.org/citation.cfm?id=3021385.3021405
http://doi.acm.org/10.1109/MSP.2012.2230219
https://hal.archives-ouvertes.fr/hal-00917061
https://link.springer.com/chapter/10.1007/3-540-48910-X_16
https://ieeexplore.ieee.org/document/7338149
http://www.sciencedirect.com/science/article/pii/S0020019096001706
https://dl.acm.org/citation.cfm?id=744660
http://www.sciencedirect.com/science/article/pii/S2214212616303052
https://link.springer.com/chapter/10.1007/978-3-319-76687-4_9
https://dl.acm.org/citation.cfm?id=1834954
http://doi.acm.org/10.1145/1536414.1536440
http://www.astesj.com

K. Hariss et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 5, 30-38 (2019)

[15] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully
homomorphic encryption over the integers,” in Advances in Cryp-
tology – EUROCRYPT 2010, H. Gilbert, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 24–43. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-642-13190-5 2

[16] C. Gentry and S. Halevi, “Implementing gentry’s fully-homomorphic
encryption scheme,” in Advances in Cryptology – EUROCRYPT
2011, K. G. Paterson, Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, pp. 129–148. [Online]. Available: https:
//link.springer.com/chapter/10.1007/978-3-642-20465-4 9

[17] C. Gentry, S. Halevi, and N. P. Smart, “Better bootstrapping in fully
homomorphic encryption,” in Public Key Cryptography – PKC 2012,
M. Fischlin, J. Buchmann, and M. Manulis, Eds. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2012, pp. 1–16. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-642-30057-8 1

[18] J.-S. Coron, A. Mandal, D. Naccache, and M. Tibouchi, “Fully homomorphic
encryption over the integers with shorter public keys,” in Advances
in Cryptology – CRYPTO 2011, P. Rogaway, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 487–504. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-642-22792-9 28

[19] J.-S. Coron, D. Naccache, and M. Tibouchi, “Public key compression and modu-
lus switching for fully homomorphic encryption over the integers,” in Advances
in Cryptology – EUROCRYPT 2012, D. Pointcheval and T. Johansson, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 446–464. [Online].
Available: https://link.springer.com/chapter/10.1007/978-3-642-29011-4 27

[20] Z. Brakerski and V. Vaikuntanathan, “Fully homomorphic encryption from
ring-lwe and security for key dependent messages,” in Proceedings of
the 31st Annual Conference on Advances in Cryptology, ser. CRYPTO’11.

Berlin, Heidelberg: Springer-Verlag, 2011, pp. 505–524. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2033036.2033075

[21] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully homo-
morphic encryption without bootstrapping,” in Proceedings of the 3rd
Innovations in Theoretical Computer Science Conference, ser. ITCS ’12.
New York, NY, USA: ACM, 2012, pp. 309–325. [Online]. Available:
http://doi.acm.org/10.1145/2090236.2090262

[22] N. Howgrave-Graham, “Approximate integer common divisors,” in
Cryptography and Lattices, J. H. Silverman, Ed. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2001, pp. 51–66. [Online]. Available:
https://link.springer.com/chapter/10.1007/3-540-44670-2 6

[23] J. C. Lagarias, “The computational complexity of simultaneous diophantine
approximation problems,” SIAM J. Comput., vol. 14, no. 1, pp. 196–209, Feb.
1985. [Online]. Available: http://dx.doi.org/10.1137/0214016

[24] Y. Chen and P. Q. Nguyen, “Faster Algorithms for Approximate Common
Divisors: Breaking Fully-Homomorphic-Encryption Challenges over the
Integers,” in EUROCRYPT 2012, ser. Lecture Notes in Computer Science,
D. Pointcheval and T. Johansson, Eds., vol. 7237, IACR. Cambridge,
United Kingdom: Springer, Apr. 2012, pp. 502–519. [Online]. Available:
https://hal.inria.fr/hal-00864374

[25] O. Regev, “On lattices, learning with errors, random linear codes, and
cryptography,” in Proceedings of the Thirty-seventh Annual ACM Symposium
on Theory of Computing, ser. STOC ’05. New York, NY, USA: ACM, 2005,
pp. 84–93. [Online]. Available: http://doi.acm.org/10.1145/1060590.1060603

[26] E. Bach and J. Shallit, Algorithmic Number Theory. Cam-
bridge, MA, USA: MIT Press, 1996. [Online]. Available: https:
//link.springer.com/chapter/10.1007/978-3-662-04053-9 2

www.astesj.com 38

https://link.springer.com/chapter/10.1007/978-3-642-13190-5_2
https://link.springer.com/chapter/10.1007/978-3-642-20465-4_9
https://link.springer.com/chapter/10.1007/978-3-642-20465-4_9
https://link.springer.com/chapter/10.1007/978-3-642-30057-8_1
https://link.springer.com/chapter/10.1007/978-3-642-22792-9_28
https://link.springer.com/chapter/10.1007/978-3-642-29011-4_27
http://dl.acm.org/citation.cfm?id=2033036.2033075
http://doi.acm.org/10.1145/2090236.2090262
https://link.springer.com/chapter/10.1007/3-540-44670-2_6
http://dx.doi.org/10.1137/0214016
https://hal.inria.fr/hal-00864374
http://doi.acm.org/10.1145/1060590.1060603
https://link.springer.com/chapter/10.1007/978-3-662-04053-9_2
https://link.springer.com/chapter/10.1007/978-3-662-04053-9_2
http://www.astesj.com

	 Introduction
	Homomorphic Encryption
	Evaluation Function
	Homomorphic Properties

	Homomorphic Complex Scheme
	Parameters
	Somewhat Homomorphic Complex Scheme Construction
	Complex Homomorphic Properties
	Making the Complex Scheme Fully Homomorphic
	Bootstrapping:
	Squashing the Decryption Circuit:
	Practical Implementation of Squashing and Bootstrapping:

	Implementation and Security Analysis
	Implementations and Results
	Security Analysis:

	Conclusion

