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 Birefringence is a known property of anisotropic media where incidence of a single 
propagating wave on a biaxial boundary gives rise to what scientists refer to as an ordinary 
wave and extraordinary wave.  This article explores the anisotropic electromagnetic theory 
that gives rise to the phenomenon of birefringence focusing on both ordinary and 
extraordinary plane wave propagation. The dispersion equation in an unbounded 
anisotropic medium leads to a fourth order polynomial solution for the wave number which 
is shown to be the root cause of birefringence.  Finally, a derivation of the unique properties 
for a partially filled biaxial rectangular waveguide that serves to suppress wave 
propagation in the vertical direction will negate the effect of birefringence in the case of 
the first propagating mode. 
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1. Introduction 

At the invitation of the associate editors of the Advances in 
Science, Technology and Engineering Systems Journal (ASTESJ), 
the author presents the following manuscript on an in-depth 
theoretical expansion of a conference paper previously submitted 
in the Applied Computational Electromagnetics Society (ACES) 
Symposium proceedings in 2018 [1].  Originally, the author only 
discussed the explanation of the suppression effect of anisotropic 
birefringence inside a rectangular waveguide in brief, and the 
author feels that scientific interest in the subject warrants a more 
in depth theoretical examination of the phenomenon.  The author 
has also presented other portions of the theory relating to 
anisotropic wave propagation in a second publication [2].  
Therefore, the author is happy to contribute an expansion on this 
aspect of the anisotropic birefringence theory to a special issue of 
ASTESJ at the invite of the associate editors.  The article will 
focus on how the derivation of the anisotropic wave equation in a 
biaxial anisotropic medium leads to birefringence through a 
fourth order dispersion equation.  The final section will explain 
how constraints on the boundary conditions of modes in 
rectangular waveguides can negate the effect of birefringence.  

 Scientists have understood electromagnetic wave propagation 
in homogeneous anisotropic optical media since the 1950s. At 
optical frequencies, one has to rely on naturally occurring 
crystalline media with anisotropic properties. However, as early 

as 1958 Collin showed that at microwave frequencies, where the 
wavelength is much greater, it is possible to fabricate artificial 
dielectric media having anisotropic properties [3]. 

Recently engineered materials have come to play a dominant 
role in the design and implementation of electromagnetic devices 
and especially antennas.  Metamaterials, MetaFerrites, and 
magneto-dielectrics have all come to play a crucial role in 
advances made in both the functionality and characterization of 
such devices.  In fact, a movement towards utilizing customized 
material properties to replace the functionality of traditional radio 
frequency (RF) components such as broadband matching circuitry, 
ground planes, and directive elements is apparent in the literature 
and not just replacement of traditional substrates and superstrates 
with engineered structures.  A firm theoretical understanding of 
the electromagnetic properties of these materials is necessary for 
both design and simulation of new and improved RF devices. 

Inherently, some of these engineered materials have 
anisotropic properties.  Previously, the study of anisotropy had 
been limited mostly to the realm of optical frequencies where the 
phenomenon occurs naturally in substances such as liquid crystals 
and plasmas.  However, the recent development of a separate class 
engineered materials at microwave frequencies has encouraged 
the study of electromagnetic anisotropy for RF applications.  Low 
loss anisotropic magneto-dielectrics greatly expands the current 
antenna design space.  Anisotropic media provide unique 
properties not available using isotropic media.  These include a 
high effective refractive index reducing the electrical size of 
wavelengths in a medium, relatively low magnetic loss at MHz 
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frequencies, and lower density and weight than traditional 
isotropic ferrite materials.  Anisotropic media can be up to five 
times less dense than traditional ferrites while exhibiting magnetic 
properties with lower loss tangents.  Relevant work in this area 
includes plane wave solutions to propagation in anisotropic media 
[4-6].  Researchers have also performed modal decomposition of 
rectangular waveguides filled with anisotropic magneto-
dielectrics along with in depth analysis of cut-off wave numbers 
and field distributions [7, 8]. 

An anisotropic electromagnetic medium defines permittivity 
(εr) and permeability (µr) as separate tensors where the values 
differ in all three Cartesian directions (εx≠εy≠εz and µx≠µy≠µz).  
This is known as the biaxial definition of anisotropic material 
which is more encompassing than the uniaxial definition which 
makes the simplifying assumption that εx=εy=εt and µx=µy=µt.  The 
anisotropic definition also differs from the traditional isotropic 
definition where εr and µr are the same in all three Cartesian 
directions defined by a single value.  Anisotropic media yield 
characteristics such as conformal surfaces, the focusing and 
refraction of electromagnetic waves as they propagate through a 
medium, high impedance surfaces for artificial magnetic 
conductors as well as high index, low loss, and lightweight ferrite 
materials.  The following sections aim to discuss in more detail 
some RF applications directly affected by the incorporation of 
anisotropic media and will also present a rigorous derivation of the 
wave equation and dispersion relationships for anisotropic 
magneto-dielectric media.  All results agree with those presented 
by Meng, et. al [7, 8].  Furthermore, setting µr = I, where I is the 
identity matrix, yields results that agree with those presented by 
Pozar and Graham for anisotropic dielectric media [6, 9]. 

2. Applications of Anisotropy in Radio Frequency (RF) 
Devices 

Traditionally, the study of anisotropic properties for RF was 
limited to a narrow application space where traditional ferrites 
exhibiting natural anisotropy were the enabling technology.  
These types of applications included isolators, absorbers, 
circulators and phase shifters [10, 11].  Traditional ferrites are 
generally very heavy and very lossy at microwave frequencies and 
those are the two main limiting factors narrowing their use in RF 
devices; however, propagation loss is an important asset to 
devices such as absorbers.  Anisotropy itself leads to propagation 
of an electromagnetic wave in different directions. This 
phenomenon is already important in devices such as circulators 
and isolators [10].  For phase shifters and other control devices, 
changing the bias field across the ferrite controls the microwave 
signal [11].  However, newer versions of some of these devices, 
utilizing FETs and diodes in the case of phase shifters, rely on 
isotropic media to enable higher efficiency devices. 

As early as 1958, Collin showed that at microwave 
frequencies, where the wavelength is larger, it is possible to 
fabricate artificial dielectric media having anisotropic properties 
[3].  This has led some to investigate known theoretical solutions 
to typical RF problems, such as a microstrip patch antenna, and 
extend them utilizing anisotropic wave propagation in dielectric 
media [5, 6].  The anisotropic dielectric antenna shows interesting 
features of basic antenna applications featuring anisotropic 
substrates.  While these solutions establish a framework for 

electromagnetic wave propagation in anisotropic media, they 
simplify the problem by necessarily setting µr=1 and only 
focusing on dielectric phenomena of anisotropy. 

The proliferation of metamaterials research over the last few 
decades exemplifies the growing interest in the area of artificial 
media [12-22].  Metamaterials incorporate the use of artificial 
microstructures made of subwavelength inclusions implemented 
with periodic and/or multilayered structures known as unit cells 
[13]. These devices operate where the wavelength is much larger 
than the characteristic dimensions of the unit cell elements. One 
characteristic feature of some types of metamaterials is wave 
propagation anisotropy [14].  Applications such as directive 
lensing [15], cloaking [16], electronic beam steering [17], 
metasurfaces [18], anisotropic oscillators [19], and optics [20] 
among others all utilize anisotropic media as the enabling 
technology.  More recent research focuses on the proper modeling 
schemes for computational electromagnetics [21] or examining 
phenomenon such as scattering off of anisotropic objects [22]. 

A class of engineered materials exists, known as MetaFerrites, 
that exhibits positive refractive index, anisotropy, and magneto-
dielectric properties with reduced propagation loss at microwave 
frequencies compared to traditional ferrites.  These materials show 
the unique ability to provide broadband impedance matches for 
very low profile antennas by exploiting the inherent anisotropy to 
redirect surface waves thus improving the impedance match of the 
antenna when very close to a ground plane.  Designers have 
demonstrated antenna profiles at 200 MHz to 500 MHz on the 
orders of a fortieth of a wavelength using these anisotropic media 
with over an octave of bandwidth and positive realized gain [2, 23]. 

3. Anisotropic Wave Equation 

The recent development of low loss anisotropic magneto-
dielectrics greatly expands the current antenna design space.  Here 
we present a rigorous derivation of the wave equation and 
dispersion relationships for anisotropic magneto-dielectric media.  
All results agree with those presented by Meng, et. al [7, 8].  
Furthermore, setting µr = I, where I is the identity matrix, yields 
results that agree with those presented by Pozar and Graham for 
anisotropic dielectric media [6, 9]. Incorporating a fully 
developed derivation of anisotropic properties of both εr and µr 
expands upon the simplification imposed by both Pozar and 
Graham that uses an isotropic value of µr=1.  An expansion on the 
results of Meng, et. al given in section 4 develops the waveguide 
theory including a full modal decomposition utilizing the biaxial 
definition of anisotropy versus their simplified uniaxial definition.  
The derivation of anisotropic rectangular waveguide resonance in 
section 6 differs from that of Meng, et. al by addressing the direct 
relationship between boundary conditions and the existence of 
birefringence.  Furthermore, the analysis of anisotropic properties 
is not restricted to double negative materials, which is the case for 
the Meng, et. al studies. 

In order to solve for the propagation constants we will need to 
formulate the dispersion relationship from the anisotropic wave 
equation.  This allows us to solve for the propagation constant in 
the normal direction of the anisotropic medium.  We start with the 
anisotropic, time harmonic form of Maxwell’s source free 
equations for the electric and magnetic fields  
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 ∇xE = -jωµoµr⋅H, (1) 

 ∇xH = jωεoεr⋅E, (2) 

where ω is the frequency in radians, εo is the permittivity of free 
space, µo is the permeability of free space, E=xoEx+yoEy+zoEz, 
and H=xoHx+yoHy+zoHz.  We define µr and εr as 
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Combining (1-4) yields  

 
( )

Z Y X Z Y X
oo o

oo x X o y Y z Zo

dE dE dE dE dE dEx y z
dy dz dz dx dx dy

j H x H y H zωµ µ µ µ

    − + − + −    
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= − + +
, (5) 

 
( )

Z Y X Z Y X
oo o

oo x X o y Y z Zo

dH dH dH dH dH dHx y z
dy dz dz dx dx dy

j E x E y E zωε ε ε ε

    − + − + −    
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= + +
. (6) 

Using the radiation condition, we assume a solution of 
E(r)=E(x,y)exp(-jkzz).  Now isolate the individual components of 
(5) by taking the dot product with xo, yo, and zo respectively.  This 
operation yields the following equations 

 z z y o x xdE dy jk E j Hωµ µ− = − , (7) 

 z x z o y yjk E dE dx j Hωµ µ− = − , (8) 

 y x o z zdE dx dE dy j Hωµ µ− = − . (9) 

The same procedure assuming a solution of H(r)=H(x,y) exp(-jkzz) 
for (6) yields 
 z z y o x xdH dy jk H j Eωε ε− = , (10) 

 z x z o y yjk H dH dx j Eωε ε− = , (11) 

 y x o z zdH dx dH dy j Eωε ε− = . (12) 

Equations (7-12) allow us to solve for the transverse field 
components of the electric and magnetic fields in terms of the 
derivatives of Hz and Ez as 

 2 2
z z

x o y z
o y x z

dH dEjE k
dy dxk k

ωµ µ
µ ε

 
= − + −  

, (13) 

 2 2
z z

y o x z
o x y z

dH dEjE k
dx dyk k

ωµ µ
µ ε

 
= − −  

,  (14) 

 2 2
z z

x o y z
o x y z

dE dHjH k
dy dxk k

ωε ε
µ ε

 
= − −  

,  (15) 

 2 2
z z

y o x z
o y x z

dE dHjH k
dx dyk k

ωε ε
µ ε

 
= − + −  

.  (16) 

Now that we have relationships for the transverse field 
components, we can solve (1) and (2) for H and E respectively 

 ( ) ( )1
or

H xE jµ ωµ−= − ⋅ ∇ , (17) 

 ( ) ( )1
r oE xH jε ωε−= ⋅ ∇ . (18) 

Taking the cross product of both sides and substituting (1) for 
∇xE and (2) for ∇xH yields [8] 

 ( ) ( )1
r oE xH jε ωε−∇× = ∇× ⋅ ∇ , (19) 

 ( ) ( )1
or

H xE jµ ωµ−∇× = −∇× ⋅ ∇ , (20) 

 ( )1 2
o rr

x xE k Eµ ε−∇ ⋅ ∇ = − ⋅ , (21) 

 ( )1 2
o rr

x xE k Eµ ε−∇ ⋅ ∇ = − ⋅ . (22) 

Equations (21) and (22) represent the vector wave equations in 
an anisotropic medium. 

4. Dispersion Equation for Hz 

We expand the ∇xH term of (22) in terms of (13-16), and take 
the dot product with εr-1 
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Evaluating (23) and taking the dot product with the zo direction 
allows us to isolate the Hz component of the magnetic field on the 
right hand side of the equation 
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Setting Ez=0, if we differentiate (13) by d2/dxdz and (14) by 
d2/dydz, keeping in mind that d/dz = -jkz, we arrive at the following 
result 

 ( ) ( )
2 2 2 2

2 22 2 2 2
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µ
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+
− −
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, (25) 

Combining the d2Hz/dx2 and d2Hz/dy2 terms in (25) gives the 
following second order differential dispersion equation for Hz 
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5. Dispersion Equation for Ez 

We expand the ∇xE term of (21) in terms of (13-16), and take the 
dot product with µr

-1 
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Evaluating (27) and taking the dot product with the zo direction 
allows us to isolate the Ez component of the magnetic field on the 
right hand side of the equation 

 
222 2

2
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1 1 1 1 yxz z
o z z

y x y x

d Ed Ed E d E k E
dxdz dydzdx dy

ε
µ µ µ µ

− − + + = . (28) 

Setting Hz=0, if we differentiate (15) by d2/dxdz and (16) by 
d2/dydz, keeping in mind that d/dz = -jkz, and plug the results into 
(28), then we arrive at the following result 

 ( ) ( )
2 2 2 2

2 22 2 2 2

2 2
2

2 2

1 1

z z z z
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z z
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y x
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ε
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+
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Combining the d2Ez/dx2 and d2Ez/dy2 terms in (38) gives the 
following second order differential dispersion equation for Ez 

 
22 2 2

2
2 2 2 2 2 2 0o yo x z z

o z z
o y x z o x y z

kk d E d E k E
k k dx k k dy

εε
ε

µ ε µ ε
+ + =

− −
. (30) 

6. Suppression of Birefringence in a Rectangular 
Waveguide 

Birefringence is a characteristic of anisotropic media where a 
single incident wave entering the boundary of an anisotropic 
medium gives rise to two refracted waves as shown in Figure 1 or 
a single incident wave leaving gives rise to two reflected waves 
as shown in Figure 2. We call these two waves the ordinary wave 
and the extraordinary wave. For low order modes, and especially 
the first mode, a rectangular waveguide suppresses the 
birefringence inherent to anisotropic media by suppressing 
propagation in the vertical direction.  This suppression assumes 
that the dimensions of the waveguide are such that the horizontal 
dimension is at least twice the size of the vertical dimension [10].  
To see how the geometry of the waveguide acts to cancel out the 
extraordinary wave, we need to solve for kz from our dispersion 
equations. 

Equations (26) and (30) yield the following solutions in 
unbounded anisotropic media restricted by the radiation condition 
(previously stated in section 3) 

 ( ) ( ), , x y z
z o

j k x k y k z
E x y z E e

− + +
= , (31) 

 ( ) ( ), , x y z
z o

j k x k y k z
H x y z H e

− + +
= . (32) 

 
Figure 1:  Free space plane wave incident on an anisotropic boundary [9]. 

 
Figure 2:  Anisotropic plane wave incident on a free space boundary [9]. 

Plugging (31) into (30) (equivalently we could substitute (32) 
into (26)) yields a polynomial equation whose solutions give the 
values of kz in the anisotropic medium.  Noting that d2/dx2 = -kx

2 
and d2/dy2 = -ky

2, (30) simplifies to 
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Dividing out the 2
o zk E term and multiplying through by both 

denominators gives us the following factored polynomial 

 ( )( ) ( )
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− − − −

− − =
. (34) 

Finally, multiplying out (34) yields a fourth order polynomial 
whose roots yield the four values of kz describing the ordinary 
wave and extraordinary wave in the positive and negative 
propagation directions 

 
4 2 2 2 2

4 2 2

( )
0

z z x x y y x y y x o z z

o x y x y z o x x y x o y y x y

k k k k k
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µ µ µ ε µ ε µ µ
ε ε µ µ µ ε µ µ ε µ µ

 + + − + 
 + − − = 

. (35) 

Equation (35) is directly responsible for the existence of the 
two ordinary and extraordinary waves that are characteristic of the 
birefringence phenomenon.  In an isotropic medium, the resulting 
polynomial for kz is a second order polynomial, which yields only 
the values for the positive and negative propagation of the single 
ordinary wave.  A fourth order polynomial allows for positive and 
negative propagation of both the ordinary and extraordinary wave 
shown in Figures 1 and 2.   

The suppression of birefringence requires (35) to reduce to a 
second order polynomial.  This is clearly not possible in an 
unbounded anisotropic medium as currently formulated.  
However, the boundary conditions in a rectangular waveguide 
assume that the first resonance suppresses the propagation 
constant in the vertical direction [10].  In other words, ky=0 and 
d2/dy2=0, and this completely eliminates the second Ez term in 
(33).  This simplifies (34) to 

 
2 2

2
2 2 0o x x

z o z z
o y x z

k k
E k E

k k
ε

ε
µ ε

− + =
−

, (36) 

which resembles the form of the traditional second order wave 
equation.  Solving for kz thus leads to the following second order 
polynomial 
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 ( )2 2 2
z x o y x zk k kε µ ε= − . (37) 

Since (37) yields the positive and negative square root of the 
right-hand-side as the two solutions for kz, this indicates the 
existence of only a single propagating wave.  The suppression of 
the ky term in the first resonant mode of the rectangular waveguide 
yields a second order differential equation for the wave number in 
the propagation direction, thereby eliminating the property of 
birefringence for this case.   For a practical validation of this 
theory, the author would point the reader to reference [2].  This 
paper shows an antenna application that exploits the suppression 
of anisotropic birefringence to facilitate wideband impedance 
matching of a cavity backed antenna. 

The reader should remember that (37) applies only to the first 
order resonance mode of the rectangular waveguide.  As higher 
order modes are introduced propagation birefringence will exist 
for some modes depending on the boundary conditions. A similar 
analysis should be carried out for each propagating mode. 
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