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 The decision support systems regarding the Supply Chains (SCs) management services can 

be significantly improved if an effective viable method is utilised. This paper presents a 

robust simulation optimisation approach (SOA) for the design and analysis of a granularity 

controlled and complex system known as Consumer Supply Network (CSN) incorporating 

uncertain demand and capacity. Minimising the total cost of running the network, 

calculating optimum values of orders and optimum capacity of the inventory associated 

with each product family are the objectives pursued in this study. A mixed integer non-

linear programming (MINLP) model was formulated, mathematically described, simulated 

and optimised using Genetic Algorithms (GA). Also, the influence of the problem’s 

attributes (e.g. product classes, consumers, various planning horizons), and controllable 

parameters of the search algorithm (e.g. size of the population, crossover rate, and 

mutation rate) as well as the mutual interaction of various dependencies on the quality of 

the solution was scrutinised using Taguchi method along with regression. The robustness 

of the proposed SOA was demonstrated by a series of representative case studies.  
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1. Introduction  

The main challenges affecting today’s Supply Chains (SCs) are 

globalisation, environmental and technological turbulences and 

rapid changes in economy capacity. They have provoked 

companies to recognise that, in order to remain competitive in the 

global market, they need to gain more from their SCs. 

Supply Chains are defined as links (relationships) between 

every unit (enterprise) in a manufacturing process from raw 

materials to customers. Traditionally, products were made and 

flowed to consumers through SCs. However, due to globalisation 

and complexity of the economy, today’s SCs are better 

characterised as Supply Networks (SNs). 

Consumer Supply Networks (CSNs) refer to complex networks 

consisting of sets of companies working in unison to supply, 

manufacture, distribute and deliver final products and services to 

end-users (Figure 1), being controlled by information flow. 

CSNs are examples of industrial systems that are naturally 

large, complex, stochastic, and dynamic. These attributes translate 

into difficulties in representing the actual behaviour and in 

planning, optimising and anticipating performance. Also, the 

combination of these attributes makes the choice of an appropriate 

solution methodology difficult at best, if not simply impossible at 

this point in time [1].  

 

Figure 1  Three echelon Consumer Supply Network 

Different methodologies have been utilised to solve this class 

of complex problem; simulation and optimisation methods are 

widely used to tackle such problems. 

Simulation is a powerful tool for modelling, analysis, and 

validation of CSNs. However, its major disadvantage is that it will 

produce a very detailed analysis but strictly for a given 
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configuration. Simulation cannot change the configuration of the 

system, and any optimisation would be searching for the best 

combination of variables for a given system. 

A recurrent, key issue when attempting to optimise CSN is the 

granularity of the model. An appropriate granularity – the size of 

the smallest indivisible unit (of product, part, flow, time, etc.) of 

the process – makes the difference between a successful 

implementation of the optimisation methodology and an algorithm 

that does not converge or gets consistently stuck in local optima. 

Additionally, the choice of the granularity of the model has to be 

easy to translate in practice – a purely theoretical solution that 

cannot be implemented in real life is of little help. 

This paper is an extension of the work initially has been 

presented in Intellisys Conference [2] in which a unique simulation 

optimisation approach (SOA) within an integrated methodology 

was developed. A small-scale Multi-Period, Multi-Product 

Consumer Supply Network (MPMPCSN) model, using mixed 

integer non-linear programming (MINLP) was designed. Then, the 

optimum quantity of orders was determined incorporating GA 

optimisation algorithm which simultaneously results in the total 

inventory cost minimisation. This way, the unique advantages of 

simulation were incorporated with optimisation method and higher 

quality solutions were achieved. Also, the quality of the solutions 

that were obtained by the proposed framework was checked by 

fine-tuning of the search algorithm’s parameters combining the 

simulation model with the Taguchi method. Hence, in this study, a 

series of computational trials on realistic test problems are 

designed and analysed to demonstrate the generalisability of the 

proposed SOA for problems of similar size at different granularity 

levels.  

The rest of this article is organised as follows: Section 2 is 

devoted to reviewing modelling methodologies that were used to 

solve CSNs problems. Section 3 presents the proposed MINLP 

model. Section 4 provides details about granularity. The 

optimisation module of the SOA methodology is described in 

Section 4. The numerical examples are given in Section 6 and 

discussed in Section 7. Section 8 concludes the paper. 

2. Literature Review 

A number of potential solution methods for the class of 
problems of similar size and complexity have been developed in 
the literature ranging from classical mathematical programming to 
hybrid and systematic methods [1, 3].  

Optimisation methodologies combined with mathematical 
models are mainly contributed to solutions validation. A stable 
optimal solution can be obtained by a given objective function 
subject to several constraints. However, they are unable to provide 
the gradient of design space over time [4]. The extent of the 
optimisation problem cannot be expanded beyond a certain limit 
as the complexity of the problem adversely affects the 
computational costs which make less efficient and less practical 
[5]. This concern can be addressed by using, simulation 
methodologies.  

Simulation models can deal with all attributes of CSNs 
problems which makes them a powerful analytical tool in this area 
[6]. In particular, CSN simulation provides a model that suitably 
represents, processes associated with specific business units such 
as ordering system, manufacturing plant, distribution centres, etc. 

in the presence of uncertainty [7, 8]. Simulation modelling 
methods alongside with mathematical and models based on 
algorithms almost always come together. The main advantage of 
simulation approaches is a possibility to explore what-if scenarios 
that provide a deeper understanding of the dependencies in a 
system. The operations of a real system that are usually very 
dangerous, expensive, or impractical to implement can be 
evaluated according to their resilience and robustness subject to 
various predefined inputs (e.g. time horizon, resources, etc.) and at 
any desired granular level via simulation modelling. Using 
computer programming, the performance of a real system subject 
to controlled and environmental changes can be simulated. 
Therefore, many input values and their combinations can be 
explored through simulation models [9]. Also, simulation models 
offer flexibility in developing and assessment of different 
scenarios, with reasonably high-speed processing. In addition, an 
embedded standard reporting system make them unique in 
modelling, analysing, and validating of complex systems. 

As pointed out, independent deployment of optimisation and 
simulation methodologies has some benefits. However, it also has 
limitations. The main drawback of simulation models is that they 
can only work with a set configuration of a solution. On the other 
hand, finding the optimal solution by independently using the 
traditional optimisation approaches incurs heavy computational 
cost. Therefore, the integration of the two methods may lead to a 
uniquely efficient optimisation.  

SOA is a key factor of modern design across industries [3]. 
SOA is often used in the design, modelling and in analyses of 
systems. It can provide an optimal setting for set of parameters for 
a simulation model [10]. But due to high computational 
requirements, scientists have not given much attention to the use 
of SOA in CSNs [10-12]. Consequently, SOA turns into a hot 
research topic for optimisation of CSNs. The optimisation core 
together with a simulation model in SOA, can search the solution 
space globally (ergodicity of GA) whereas the simulation module 
acts as a quality assessment unit. 

Following the advances in computational power, increased 
efforts have been made to leverage simulation for 
optimisation/simulation-based optimisation of hybrid systems 
with behaviours that can be discrete or continuous [13]. CSNs are 
hybrid systems with a high level of complexity.  

Inventory control planning problems have been tackled using 
many metaheuristic algorithms [5, 14-18]. GA was widely used to 
solve related problems [19]. Through exploring the solution space, 
GA finds optimal or near optimal solutions. But, like in other 
evolutionary algorithms (EA), GA cannot carry out self-validation. 
GA risks to converge to local optima [20]. Hence, a valid question 
is whether or not the obtained solution is a high-quality candidate.  

The parameters of the search algorithm - population size, 
crossover and mutation and rates, as well as the interaction 
between these parameters have significant impacts on the quality 
of solutions. As the entire search population or its fitness function 
might be highly affected by variation of these parameters. This 
necessitates implementation of a mechanism that can offer 
parameters tunning is essential. However, it is very hard to perform 
perfect tuning due to complexity among the interactions of EA’s 
parameters. Most often, trial and error of EA’s parameters is used 
in OR studies. However, experimentally tuning the parameters is 
less practical and very expensive [21]. We thus, propose using 
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statistical methods based on experiments as a more robust 
approach [22]. 

In [23], the authors present a multi-echelon SN simulation-
based optimisation model for a multi-criteria P-D design. The 
model offers concurrent optimisation of the network’s structure, 
the set of the control strategies, and the quantitative parameters of 
the strategy for control. The modelling, simulation and then 
optimisation of networked entities are performed using a graphical 
interface designed in C++ programming. In this study, the 
candidate solutions are evaluated by a discrete-event simulation 
(DES) module. A multi-objective GA algorithm is developed 
aiming at finding compromised solutions regarding structural, 
qualitative and quantitative variables. The toolbox developed in 
the research considers a real Production-Distribution model which 
makes it a unique decision support system. However, there is no 
evidence shown with regards to parameters tuning of the GA 
algorithm.  

In [24], the authors describe a two-phase Mixed Integer Linear 
Programming model addressing planning and scheduling systems 
of a build-to-order SN system. They use GA to optimise the 
aggregate costs of both subsystems. Three different scenarios were 
developed, in which distinct recombination rates for genes was 
used to improve the quality of solutions.  

In [25], the researcher model a P-D network over a tactical 
planning horizon with uncertain demands and capacity. The 
proposed algorithm incorporates a simulation and an optimisation 
module; each calculates the total costs of the network for P-D. The 
problem is mathematically formulated by a MILP, and the fitness 
function (total cost) is evaluated via the simulation core. Then the 
solution resulting from the optimisation module is compared with 
the obtained output from the simulation module recursively. This 
procedure iterates until there is a set difference between two 
solutions. This study reports on data obtained from the 
implementation of the proposed SOA on a SN problem of a 
reduced scale. Although the simulation and the optimisation 
modules are both included in the proposed approach, there is no 
interaction or connection between them. The application of the 
simulation module is used to produce initial values for the 
parameters of the mathematical model. Also, the capacity to 
generalise the model for similar or larger problems was not 
addressed. Moreover, no evidence was shown around approaching 
a solution with better quality if different configurations were 
chosen for the optimisation parameters.   

In [15], the authors developed a modified Particle Swarm 
Optimisation model (MPSO) for a location-allocation Supply 
Network problem. They formulated a two-echelon Distribution 
Network (DN) considering multi-product and multi-period 
inventory, subject to uncertainty of seasonal demands. The 
determination of the orders quantity and the vendors’ location are 
pursued as the main objectives in this paper. They use Taguchi to 
tune the parameters of the MPSO. They considered parameter 
tuning in their model and they performed a sensitivity analysis for 
similar problems with different granularity levels.  

In a similar study, In [26], the researcher developed a PSO 
algorithm attempting to find the maximum profit for a channel of 
a two-echelon SN for a single product. Sales quantity and 
production rate were used as decision variables of their model. 
Using a combination of GA, PSO, and simulated annealing (SA), 
they conduct a detailed sensitivity analysis. However, the 

improvement of the proposed heuristic is computed by using 
another heuristic. This seems very inefficient. 

In [27], the authors proposed a simulation optimisation 
approach to reduce the number of delayed customer orders while 
costs are kept under control for an integrated production-
distribution supply chain. The hybrid modelling combined linear 
programming and discrete event simulation. This research is a 
great potential of using SOA approach; however, no effort was 
made considering the tunning of the control factors of the GA 
algorithm. 

In [28], the researchers developed an agent-based simulation 
optimisation model through which an online auction policy within 
the context of the agricultural supply chain was optimised. Three 
different scenarios namely, oversupply, balance and insufficient 
supply with different demand and supply quantities were presented 
to obtain the optimal lot-size and to determine the optimum online 
auction policy to control inventory. The investigation towards 
improving the solution quality derived from the proposed 
methodology was not provided.   

An important observation concerning SOA studies is that, in 
almost all studies, the tuning of the model’s variables (e.g. lead 
time, production rate, etc.) was only attempted in the optimisation 
module for small problems. Good examples are included in [20] 
and [22]. On the other hand, evidence in this regard seems to be 
missing in some studies [23, 29]. Furthermore, very few ([15, 24]) 
indicated efforts for tuning the optimisation parameters - selection 
methodology, mutation, and crossover in GA or swarm’s cognitive 
and social components in PSO. They reported that this had been 
done by trial and error - a typical approach used in the majority of 
OR studies [21]. The simulation model is run several times, then 
the better solution is selected. Due to the complexity of the 
interaction of parameters of the search algorithm as well as the 
high computational cost, it is unclear how many iterations would 
be sufficient for a given size problem. Besides, as the scale of the 
problem increases, the complexity of interactions increases 
exponentially. Therefore, the difficulties corresponding to this 
class of SNP problems will further escalate if a more detailed 
model is simulated. So, it is necessary to study in more depth the 
variation of the solution quality. 

This paper presents an integrated simulation-optimisation 
approach to solve a class of CSN problem using GA. The objective 
is to minimise the total cost while an optimum/near optimum 
inventory level associated to each product family is obtained. An 
important feature of the under-investigated problem is that both 
demand and the inventory capacity are uncertain. The randomness 
of the uncertain parameters is captured by the simulation model. 
The optimal quantities are searched by GA. Also, a fine-tunning 
mechanism for the optimisation algorithm’s controllable 
parameters is applied using Taguchi experimental design and 
ANOVA to improve the quality of the solution. In Section III, the 
mathematical model, parameters and notations of the proposed 
problem are summarised.  

3. Mathematical Model  

This section presents a mathematical model for a multi-product 
multi-period consumer supply network. The mathematical model 
presented here consider a planning period of T (indexed by t), a set 
of product family P (indexed by i) and a set of retailers R (indexed 
by j) with the limited budget and inventory restrictions. 
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The parameters in the model are the following: 

𝐷𝑖𝑗𝑡 Demand for product family 𝑖 by retailer 𝑗 in period 𝑡 

𝐷𝑖𝑗𝑇 Demand for product family 𝑖 by retailer 𝑗 at the end of 

period 𝑇 

𝐼0𝑖
      Initial inventory level for product family 𝑖   

𝑂min𝑖𝑗𝑡
 Minimum quantity of product family 𝑖 manufactured for 

retailer 𝑗 in period 𝑡 

𝑂max𝑖𝑗𝑡
 Maximum quantity of product family 𝑖 manufactured for 

retailer 𝑗 in period 𝑡 

Vmax        Maximum capacity of the inventory at DC 

𝑉𝑡  Total capacity of inventory at DC in period 𝑡 

𝑎𝑖𝑗𝑡  Cost for the ordering of product family 𝑖 

𝑏𝑖𝑗𝑡  Cost for purchasing one unit of product family 𝑖 at time 𝑡 

𝑐𝑖𝑗𝑡  Storage cost for one unit of product family 𝑖 in period 𝑡  

𝑑𝑖𝑗𝑡  Handling cost at DC for one unit of product family 𝑖 in 

period 𝑡 

𝑒𝑖𝑗𝑡  Cost for backordering one unit of product family 𝑖 in 

period 𝑡  

𝑓𝑖𝑗𝑡 Cost for transporting one unit of product family 𝑖 in 

period 𝑡 

𝒜𝑇𝑂 Total cost of ordering at the end of period 𝑇 

ℬT𝐼 Total cost of storage in inventory at the end period 𝑇 

𝒞T𝐼 Total cost of handling in inventory at the end of period 𝑇 

𝒟T𝐷 Total cost of purchasing at the end of period 𝑇 

ℰT𝑂 Total cost of order shortage at the end period 𝑇 

ℱ𝑇𝑂 Total cost of transportation at the end of period 𝑇 

𝐶𝑇 The total network costs at the end of period 𝑇 

𝜎1 The backorder intensity rate for product family 𝑖 at the 

end of period 𝑇 

σ2 The capacity severity rate for product family 𝑖 at the end 

of period 𝑇 

The objective function (1) comprises the minimisation of the 
total CSN costs, consisting of ordering costs, purchasing costs, 
transportation costs from manufacturing plants (MP) to retailers 
(RE), inventory holding and handling costs at the distribution 
centre (DC), and backordering costs subject to a set of constraints 
present in (2-4). Constraint (1) represents the quantity of order of 
a product family 𝑖 in a period 𝑡 bounded by the upper and the lower 
limits. Note, the maximum quantity of an order for product 
family  𝑖  from retailer 𝑗  cannot exceed maximum 𝑛  folds of the 
maximum quantity of the demand for the entire planning period 𝑇. 
Constrain (2) is the capacity of the inventory denoted by 𝑉𝑇. The 
order quantity is a positive integer that is normalised between 0 

and 1 by (4) denoted by 𝑂́. Table 1 and Table 2 shows a numerical 

representation of 𝑂𝑖𝑗𝑡 , 𝑂𝑖𝑗𝑡
́  and 𝐷𝑖𝑗𝑡 for 𝑖 = 3, 𝑗 =5 and  𝑡 = 2. 

𝑚𝑖𝑛 ∑ ∑ ∑ 𝐶𝑖𝑗𝑡(𝑂𝑖𝑗𝑡 , 𝐼𝑖𝑗𝑡)

𝑃

𝑖=1

𝑅

𝑗=1

𝑇

𝑡=1

 

(1) 

𝐶𝑇(𝑂𝑖𝑗𝑡, 𝐼𝑖𝑗𝑡)  =   𝒜𝑇(𝑂𝑖𝑗𝑡) + ℬ𝑇(𝐼𝑖𝑗𝑡) + 𝒞𝑇(𝐼𝑖𝑗𝑡)

+ 𝒟𝑇(𝐷𝑖𝑗𝑡) + ℰ𝑇(𝐼𝑖𝑗𝑡)

+  ℱ𝑇(𝑂𝑖𝑗𝑡)    ; ∀ 𝑖, 𝑗 ≥ 0 

{

𝒜𝑇(𝑂𝑖𝑗𝑡)  =  𝑎𝑖𝑗𝑡 . 𝑂𝑖𝑗𝑡

ℬ𝑇(𝐼𝑖𝑗𝑡) =  𝑏𝑖𝑗𝑡 . 𝐼𝑖𝑗𝑡

𝒞𝑇(𝐼𝑖𝑗𝑡) =  𝑐𝑖𝑗𝑡 . 𝐼𝑖𝑗𝑡

 {

𝒟𝑇(𝐷𝑖𝑗𝑡) =  𝑑𝑖𝑗𝑡 . 𝐷𝑖𝑗𝑡

ℰ𝑇(𝐼𝑖𝑗𝑡) = 𝑒𝑖𝑗𝑡 . 𝐼𝑖𝑗𝑡

ℱ𝑇(𝑂𝑖𝑗𝑡) = 𝑓𝑖𝑗𝑡 . 𝑂𝑖𝑗𝑡

 

𝐶𝑇(𝑂𝑖𝑗𝑡, 𝐼𝑖𝑗𝑡)  = 𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 ∑ ∑ ∑ 𝑎𝑖𝑗𝑡 . 𝑂𝑖𝑗𝑡 +

𝑃

𝑖=1

𝑅

𝑗=1

𝑇

𝑡=1

𝑏𝑖𝑗𝑡 . 𝐼𝑖𝑗𝑡

+ 𝑐𝑖𝑗𝑡 . 𝐼𝑖𝑗𝑡 + 𝑑𝑖𝑗𝑡 . 𝐷𝑖𝑗𝑡 + 𝑒𝑖𝑗𝑡 . 𝐼𝑖𝑗𝑡

+ 𝑓𝑖𝑗𝑡 . 𝑂𝑖𝑗𝑡 

subject to: 

 𝑂𝑚𝑖𝑛 ≤ 𝑂𝑖𝑗𝑡 ≤  𝑂𝑚𝑎𝑥 (2) 
 

𝑂𝑚𝑖𝑛, 𝑂𝑚𝑎𝑥 = [0        𝑛 ∗ max(𝐷𝑖𝑗𝑇)]   ;      𝑛 > 1  (3) 
  𝑉𝑚𝑎𝑥 ≤ 𝑉𝑇 

𝑂𝑖𝑗𝑡 = min(⌈𝑂𝑚𝑖𝑛 + (𝑂𝑚𝑎𝑥 − 𝑂𝑚𝑖𝑛 + 1) × 𝑂́⌉ , 𝑂𝑚𝑎𝑥) (4) 
 

0 ≤ 𝑂́ ≤ 1 

 Numerical representation of 𝑂𝑖𝑗𝑡
́ , 𝑂𝑖𝑗𝑡 

𝑶́𝒊𝒋𝒕 𝑶́𝟏𝟏𝒕 𝑶́𝟏𝟐𝒕 𝑶́𝟏𝟑𝒕 … 𝑶́𝟏𝒋𝒕 

 𝑂́21𝑡  𝑂́22𝑡  𝑂́23𝑡  … 𝑂́2𝑗𝑡 

 ⋮ ⋮ ⋮ ⋮ ⋮ 

 𝑂́𝑖1𝑡 𝑂́𝑖2𝑡 𝑂́𝑖3𝑡 … 𝑂́𝑖𝑗𝑡 

      𝑶́𝒊𝒋𝟏 0.771 0.134 0.681 0.414 0.820 

 0.699 0.568 0.332 0.247 0.962 

 0.697 0.425 0.106 0.929 0.581 

      
𝑶́𝒊𝒋𝟐 0.338 0.040 0.182 0.887 0.991 

 0.670 0.306 0.771 0.135 0.092 

 0.017 0.394 0.973 0.116 0.447 

      
𝑶𝒊𝒋𝒕 𝑶𝟏𝟏𝒕 𝑶𝟏𝟐𝒕 𝑶𝟏𝟑𝒕 … 𝑶𝟏𝒋𝒕 

 𝑂21𝑡  𝑂22𝑡  𝑂23𝑡  … 𝑂2𝑗𝑡 

 ⋮ ⋮ ⋮ ⋮ ⋮ 

 𝑂𝑖1𝑡 𝑂𝑖2𝑡 𝑂𝑖3𝑡 … 𝑂𝑖𝑗𝑡 

      
𝑶𝒊𝒋𝟏 161 240 36 111 57 

 176 172 52 145 231 

 103 96 97 58 56 

      
𝑶𝒊𝒋𝟐 259 248 53 237 288 

 212 158 87 124 68 

 110 99 196 164 132 

 numerical representation of 𝐷𝑖𝑗𝑡 

𝑫𝒊𝒋𝒕 𝑫𝟏𝟏𝒕 𝑫𝟏𝟐𝒕 𝑫𝟏𝟑𝒕 … 𝑫𝟏𝒋𝒕 

 𝐷21𝑡 𝐷22𝑡 𝐷23𝑡 … 𝐷2𝑗𝑡 

 ⋮ ⋮ ⋮ ⋮ ⋮ 

 𝐷𝑖1𝑡 𝐷𝑖2𝑡 𝐷𝑖3𝑡 … 𝐷𝑖𝑗𝑡 

      
𝑫𝒊𝒋𝟏 259 248 53 237 288 

 212 158 87 124 68 

 110 99 196 164 132 

      
𝑫𝒊𝒋𝟐 11 26 17 35 38 

 72 93 80 42 6 
 69 61 87 39 85 

 Note: 𝐷11𝑡 presents the quantity of product family 1 to be manufactured for consumer 1 in time 

interval 𝑡 = 1 is 259 unit. 

The 𝐼𝑖𝑗𝑡  and 𝑂𝑖𝑗𝑡  are related to the decisions regarding the 

inventory level and the quantity of orders that are calculated by (5). 
𝑂𝑖𝑗𝑡 is the main decision variable, since 𝐼𝑖𝑗𝑡  is obtained recursively 

from 𝑂𝑖𝑗𝑡 . The demand quantity, 𝐷𝑖𝑗𝑡 , is unknown but bounded. It 

can be expressed by probabilistic distribution functions such as 
normal or uniform distribution functions. In this model, a uniform 
distribution is used to model 𝐷𝑖𝑗𝑡 using (6), where 𝐷𝑚𝑖𝑛 , 𝐷𝑚𝑎𝑥 are 

the lower and upper bounds, respectively.   

Also, each product family has a set volume (𝑣𝑖) so the total 
volume of the order i.e. the total volume occupied by the inventory, 
𝑉𝑚𝑎𝑥 , is calculated by (7) 

 𝑂𝑖𝑗𝑡 =  𝐼𝑖𝑗𝑡 − 𝐼𝑖𝑗𝑡−1 + 𝐷𝑖𝑗𝑡  (5) 
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𝐷𝑖𝑗𝑡   ~ 𝑈 (𝐷𝑚𝑖𝑛  , 𝐷𝑚𝑎𝑥) (6) 
 

𝑉𝑚𝑎𝑥 = ∑ ∑ ∑ 𝑣𝑖 × 𝐼𝑖𝑗𝑡

𝐻

𝑡=1

𝑅

𝑗=1

𝑃

𝑖=1

  
(7) 

𝑣𝑖  ~ 𝑈 (0,1) 

If a solution breaks any constraint (𝑐𝑖 ) it is infeasible and 
therefore the associated evaluation should be penalised in 
proportion to how violently they break the constraints. In this 
problem ∝1  and ∝2  are defined and assigned to the fitness 
function via (8). The problem size and substantially the changes in 
the planning period result in changes of  ∝1, ∝2. 

𝐶𝑇(𝑂𝑖𝑗𝑡 , 𝐼𝑖𝑗𝑡)  = {(∑ ∑ ∑ 𝒜𝑇 . 𝑂𝑖𝑗𝑡 + ℬ𝑇. 𝐼𝑖𝑗𝑡

𝑃

𝑖=1

𝑅

𝑗

𝑇

𝑡=1

+ 𝒞𝑇. 𝐼𝑖𝑗𝑡 + 𝔇𝑇. 𝐷𝑖𝑗𝑡 + ℰ𝑇. 𝐼𝑖𝑗𝑡

+ ℱ𝑇. 𝑂𝑖𝑗𝑡) + 𝛼 𝜎1} × (1 + 𝛽 𝜎2) 

(8) 

𝜎1 =  
∑ ∑ ∑ 𝐼𝑖𝑗𝑡

𝑃
𝑖

𝑅
𝑗

𝑇
𝑡

𝑇𝑅𝑃
 

      
               𝐼𝑖𝑗𝑘 < 0    

𝜎2 =
(𝑉𝑚𝑎𝑥 −

∑ 𝑉𝑡
𝑇
𝑡

𝑉𝑚𝑎𝑥
)

𝑇
 

Also, the average backlogged orders, and the average volume 

occupied by the inventory are denoted by 𝜎1 and 𝜎2, respectively. 

In associate with the planning policy in-use, the values of 𝜎1 , 𝜎2 

may vary. For example, if the customer satisfaction rate is %100, 

which means shortages are not allowed and 𝜎1 = 0. Conversely, if 

a company unable to deliver their promises on time then 𝜎1 can be 

set according to the safety stock level. Note, in both cases, the 

inventory capacity cannot be exceeded, thus 𝜎2 = 0. So, a solution 

candidate is regarded feasible if both conditions are satisfied. 

4. Granularity 

In systems engineering literature, granularity translates into the 

level of detail one can decide to consider in a model or decision-

making process where the same functionality is expressed with 

different ‘sized’ designs [30]. In SN, the size of the problem 

determines the granularity level of the problem which has a 

significant influence on the computation time and the algorithm’s 

efficiency. Measures such as the number of product families, the 

number of facilities, planning periods, etc. are some important 

factors which affect the granularity level [31]. In this study, in 

order to verify the robustness of the proposed methodology, three 

case studies with different granularity levels are considered for the 

design of experiments represented by a tree structure with two 

levels 𝐿1 and 𝐿2  (Figure 2). The leaves at 𝐿1  denoted 

by  [𝑃𝑆, 𝑃𝑀 ,  𝑃𝐿] , correspond to an individual scenario with a 

distinct problem size, known as Small, Medium and Large-scale 

problems. 𝐿1  is developed based on the problem size categories 

proposed by Mousavi, Bahreininejad, Musa and Yusof [15], 

shown in Table 3. The roots at 𝐿2 are the number of experiments 

considered for each category. This is determined according to the 

number of parameters and the levels of variation of a specific 

parameter which will be developed using Taguchi method  (see 

Section 6). 

 𝐿1 𝐿2 

 
Figure 2  Hierarchical structure proposed for implementation phase 

 Sizes of the proposed instances [15] 

Problem Size Product 

Family (𝑷) 

Manufacturing 

Plants (𝑴𝑷) 

Retailer 

(𝑹𝑬) 

Periods 

(𝑻) 

Small [1-5] [1-5] [5-10] [1-3] 

Medium [6-10] [1-10] [11-20] [1-5] 

Large [11-15] [11-15] [20-30] [6-10] 

Note: a problem with 𝑃 = 7, 𝑀𝑃 = 6, 𝑅𝐸 = 11 and 𝑇 = 2 is counted as a Medium-scale problem. 

5. Solution Approach 

To solve the MPMPCSN problem discussed in this paper, GA 

optimisation method is used. GA are based on principles of natural 

selection and genetics to evolve better solutions through multiple 

consecutive generations. Selection, Crossover and Mutation are 

implementations in GA of similar phenomena occurring in the 

natural world. [23]. Based on the quality of solutions, they have a 

probability to be selected and evolve in new generations and 

converge towards optimality. Finally, the solutions are tested 

against termination criteria (evolving procedure). A good search 

space and genetic operators must maintain an equilibrium between 

exploration and exploitation and this is key in reaching optimality 

[32-34] 

5.1. Generation and Initialisation 

The first step in implementing the GA is to generate a random 

population of solutions (chromosomes). Chromosomes are 

resizable according to problem’s attributes and vary based on the 

problem type, level of complexity, number and type of variables, 

granularity, etc. Each chromosome consists of several atomic 

structures - genes representing the characteristics of the solution  

(e.g. number of suppliers, position of manufacturing plants, types 

of products considered, etc.) [35]. Real coding has been used for 

this type of problem (Figure 3).  

 

Figure 3  Chromosome representation 

The performance of the GA is affected by two opposing 
factors; population size and computation time. The larger the 
population size; the longer takes the computation time. The 
population size should be large enough to incorporate sufficient 
variation in one generation from which the children in the next 
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generations are produced. GA is designed to evolve over a number 
of generations. Hence, having a large population has a serious 
impact on the computation time. A carefully selected population 
size that offers sufficient variety but does permit a fast-enough 
evolution is needed. 

5.2. Genetic Operators: Selection, Crossover, and Mutation 

Genetic operators may affect the optimal fitness value for the 

designed algorithm. The GA operators presented in this paper are 

selection, crossover and mutation. Roulette Wheel, Tournament 

and Ranked are the most popular selection mechanisms that are 

used in this study [33, 36]. 

In the following step, the offspring population is created by 

applying single point crossover and mutation. So, new offsprings 

are produced by combining the characteristics of two parents that 

can be better than both parents if they take the best characteristics 

from each of the parents. This mechanism should be performed 

with a certain probability. Throughout this study, 𝑃𝑐  and 𝑃𝑚  are 

refferring to crossover and mutation probabilities respectively. 

Two individuals are produced per randomly selected parents 

followed by mutating gens of offspring population with specified 

probability. The mutation is implemented to preserve the variety 

of the solution pool and prevent GA getting stuck in local optima 

by exploring the entire search space and maintaining diversity in 

the population [37]. It is likely that some randomly lost genetic 

information recovered through mutation. Pm should be set carefully 

too as such the diversity in the population is preserved but does not 

negatively affect the overall, fitness of the current population by 

removing good solutions. Mutation can finely tune the balance 

between exploration and exploitation. Typically, the mutation rate 

is small (<2-5%). 

5.3. Simulation 

After initialising the first population, each chromosome is 

evaluated for fitness. Fitness function is a metric used to measure 

the quality of the represented solution. The fitness value of a 

chromosome is the most important factor in GA evaluation that is 

always problem dependent [38]. The fitness function defined for 

MPMPCSN is the minimum cost of running the network. So the 

lower the fitness value, the higher is the survival chance of a 

chromosome.  

5.4. Stopping Conditions 

The optimal/near optimal solution is achieved through an 

iterative procedure until the stopping condition is satisfied. 

Choosing the termination criteria depends on the complexity of the 

problem structure as well as the size of the solution pool [39]. 

Often, the maximum number of generation is adopted which is the 

case in this study.  

The traditional GA has several shortcomings. As a result of 
premature convergence, the search parameters (selection, 
crossover, mutation) may not be very useful towards the end of a 
search procedure [40]. Also, obtaining an absolute global optimum 
is not guaranteed, however providing good solutions within a 
reasonable time is generally expected [41, 42]. Also, GA may not 
be effective if the starting point in search space was at a great 
distance from optimal solutions [43]. This deficiency limits the use 
of GA in real-time applications. However, it can be overcome if 
GA is hybridised with other local search methods where a closed-
form expression of the objective function can be appropriately 

performed [42]. Simulation tools are unique methods that are 
tightly integrated with mathematical and algorithmic based 
models. Overall, to improve GA performance and obtain accurate 
solutions, the population size, selection mechanism, crossover and 
mutation rates and the computational time are required to be 
turned. Further validation and evaluation of the proposed model 
and the solution approach is discussed in the following section. 

6. Computational Experiments 

This section provides experimental results obtained from 

applying the proposed SOA methodology on practical tests 

associated to MPMPCSN problems with different granularity 

levels. 

A manufacturing CSN with a central distribution centre is 

considered in which orders received from consumers are being 

processed. The demand quantities for 𝑃𝑆 , 𝑃𝑀  and 𝑃𝐿  were 

randomly generated first and remained unchanged throughout the 

rest of the optimisation algorithm (see. Appendix A, Table 22-

Table 24), because the variation of 𝐷𝑖𝑗𝑡  causes changes of other 

parameters. Also, associated purchase cost per unit of product 

family 𝑃𝑖  and the corresponding volume 𝑣𝑖  for 𝑃𝑆 , 𝑃𝑀  and 𝑃𝐿 are 

given in Appendix A (Table 21). All other related costs of running 

the network consist of ordering cost, backordering cost, holding 

cost, handling cost and transportation cost are computed via (9)-

(14). In addition, the fixed parameters of the model are presented 

in Table 4. 

𝑎𝑖𝑗𝑡 = 0.1 ×  𝑑𝑖𝑗𝑡   

 

(9) 

𝑏𝑖𝑗𝑡 = 0.05 × 𝑑𝑖𝑗𝑡 

 

(10) 

𝑐𝑖𝑗𝑡 = 0.05 ×  𝑑𝑖𝑗𝑡 

 

(11) 

1 ≤ 𝑑𝑖𝑗𝑡  ≤ 100 
 

(12) 

𝑒𝑖𝑗𝑡 =  0.05 × 𝑑𝑖𝑗𝑡 
 

(13) 

𝑓𝑖𝑗𝑡 =  0.05 ×  𝑑𝑖𝑗𝑡  (14) 

 fixed parameters of the model 

Parameters P R T 𝑽𝑻 

Small-Scale 5 2 2 1000 

Medium-Scale 6 11 5 10000 

Large-Scale 10 25 8 100000 

Note: P, R, and T are referred to the Product family, Retailer and Planning period respectively. 

7. Results and Discussion 

As discussed above, the performance of the GA optimisation 

algorithm is mostly influenced by its controllable parameters. 

These parameters are selection method ( 𝑃𝑠 ), crossover and 

mutation rate (𝑃𝑐 , 𝑃𝑚), population size (𝑛𝑃𝑜𝑝) and the maximum 

number of iteration ( 𝑀𝑎𝑥𝐼𝑡 ). Thus, though utilising Taguchi 

Orthogonal Array Design along with Regression Analysis and 

Optimisation Solver the optimal parameter set was determined. 

More details are given in the following sections. 

7.1. Process of Experiment Design 

The main two components of the Taguchi method are the 

number of parameters and their variation levels. In order to analyse 

the results obtained from ANOVA (analysis of variance) and S/N 

ratio (signal to noise), it is required to create a set of tables of 
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numbers known as orthogonal arrays. These tables are then used 

first to reduce the number of experiments, next to determine the 

most critical parameters with high impact on the outcomes. In this 

study, we consider the GA controllable parameters as significant 

factors in 3 levels (Table 7). The Taguchi Orthogonal Array 

Design (𝐿27 − 35) shown in Table 6 is proposed and created by 

Minitab. 

 The  𝐺𝐴 parameters’ level 

Granularity Level Small-scale Medium-Scale Large-Scale 

Parameters Level 1 Level 2 Level 3 

𝑷𝐬 𝑅𝑊 𝑇 𝑅 

𝑷𝒄 0.9 0.85 0.8 

𝑷𝒎 0.1 0.05 0.025 

𝒏𝑷𝒐𝒑 [30 60 120] [100 150 200] [100 200 300] 

𝑴𝒂𝒙𝑰𝒕 [200 100 50] [500 400 300] [3500 3000 2000] 

𝑅𝑊, 𝑇 and 𝑅 referred to Roulette Wheel, Tournament and Ranked Selection method respectively 

  The layout of the orthogonal array for 5 factors in 3 levels 

No. 𝑷𝒔 𝑷𝒄 𝑷𝒎 𝒏𝑷𝒐𝒑 𝑴𝒂𝒙𝑰𝒕 

S1 1 1 1 1 1 
S2 1 1 1 1 2 
S3 1 1 1 1 3 
S4 1 2 2 2 1 
S5 1 2 2 2 2 
S6 1 2 2 2 3 
S7 1 3 3 3 1 
S8 1 3 3 3 2 
S9 1 3 3 3 3 

S10 2 1 2 3 1 
S11 2 1 2 3 2 
S12 2 1 2 3 3 
S13 2 2 3 1 1 
S14 2 2 3 1 2 
S15 2 2 3 1 3 
S16 2 3 1 2 1 
S17 2 3 1 2 2 
S18 2 3 1 2 3 
S19 3 1 3 2 1 
S20 3 1 3 2 2 
S21 3 1 3 2 3 
S22 3 2 1 3 1 
S23 3 2 1 3 2 
S24 3 2 1 3 3 
S25 3 3 2 1 1 
S26 3 3 2 1 2 
S27 3 3 2 1 3 

7.2. Signal-to-Noise (S/N) Ratio Method 

S/N ratios evaluate the size of the apparent effect (signal) 

against the size of random fluctuations (noise) witnessed in the 

data. The higher this indicator, the better the compromise is which 

can be calculated in different ways according to the optimisation 

problem (minimisation/maximisation) [44]. In this study, S/N ratio 

values are calculated to determine the best combination of GA 

control factors. The proposed optimisation algorithm was run four 

times for each parameter set to obtain more refined solutions. The 

numerical results for the Small, Medium and Large-scale problem 

are reported in Table 7, Table 8 and Table 9, respectively. 

This problem is aimed to minimise the response value (y). 
Therefore, to minimise the mean-square deviation (MSD) from the 
target value 0 and maximise the S/N ratio, MSD has to be 

calculated using (15). The signal to noise (S/N) ratio, in this case, 
is defined by (16), where 𝑛 is the sample size.  

 Taguchi experimental design and design data of 𝐺𝐴  for small-scale 
problem 

T
ri

al
 

N
o

. Function Evaluation (TC) 
𝝁 𝝈 𝑷𝒔 𝑷𝒄 𝑷𝒎 𝒏𝑷𝒐𝒑 𝑴𝒂𝒙𝑰𝒕 

Run 1 Run 2 Run 3 Run 4 

1 52545.31 52838.97 52824.62 52798.99 52751.97 138.76 RW 0.9 0.1 30 200 

2 57736.13 57984.64 54800.67 56440.22 56740.41 1459.71 RW 0.9 0.1 30 100 

3 55082.79 54767.13 55334.41 55983.30 55291.91 516.06 RW 0.9 0.1 30 50 

4 57348.28 56895.83 58086.99 58118.95 57612.51 595.84 RW 0.85 0.05 60 200 

5 59594.91 58612.27 61314.77 61253.54 60193.87 1321.56 RW 0.85 0.05 60 100 

6 60380.16 62646.26 60710.87 59366.54 60775.96 1371.79 RW 0.85 0.05 60 50 

7 55536.78 54608.65 55060.74 54506.04 54928.05 471.97 RW 0.8 0.025 120 200 

8 55135.85 54540.19 54946.94 56517.07 55285.01 858.15 RW 0.8 0.025 120 100 

9 57518.01 59179.99 56537.55 57925.29 57790.21 1094.37 RW 0.8 0.025 120 50 

10 52410.97 52718.79 52428.90 52416.20 52493.72 150.24 T 0.9 0.05 120 200 

11 53368.53 52881.84 53767.00 52857.57 53218.73 434.73 T 0.9 0.05 120 100 

12 58698.26 55432.41 56344.90 57940.46 57104.01 1484.56 T 0.9 0.05 120 50 

13 54263.36 56283.66 55064.54 55837.51 55362.27 889.02 T 0.85 0.025 30 200 

14 56139.17 56388.68 57656.13 56204.80 56597.20 713.81 T 0.85 0.025 30 100 

15 62448.49 94741.69 60631.15 98432.34 79063.42 20304.09 T 0.85 0.025 30 50 

16 52413.82 52417.87 52439.46 52418.27 52422.36 11.58 T 0.8 0.1 60 200 

17 53546.80 54432.52 53665.56 52804.39 53612.32 666.48 T 0.8 0.1 60 100 

18 62686.18 56408.68 56602.45 56552.31 58062.41 3083.61 T 0.8 0.1 60 50 

19 54034.56 53650.51 53214.02 53760.76 53664.96 341.24 R 0.9 0.025 60 200 

20 56947.05 58519.69 57332.37 56946.45 57436.39 744.73 R 0.9 0.025 60 100 

21 62368.65 58889.81 64213.45 64114.90 62396.70 2486.75 R 0.9 0.025 60 50 

22 52472.93 52454.69 52466.57 52462.89 52464.27 7.61 R 0.85 0.1 120 200 

23 54151.02 54381.73 54913.21 54443.82 54472.45 319.71 R 0.85 0.1 120 100 

24 59054.53 58677.67 59390.45 59848.09 59242.69 497.66 R 0.85 0.1 120 50 

25 54123.74 53139.69 53600.31 53588.71 53613.11 402.34 R 0.8 0.05 30 200 

26 62582.39 57133.15 57636.73 58226.32 58894.65 2498.75 R 0.8 0.05 30 100 

27 76782.74 63219.40 67855.77 65419.86 68319.44 5951.48 R 0.8 0.05 30 50 

Note: (𝝁: m ean , 𝝈: St andard deviation) 

 Taguchi experimental design and design data of 𝐺𝐴  for medium-
scale problem 

T
ri

al
 

N
o

. Function Evaluation (TC) 
𝝁 𝝈 𝑷𝒔 𝑷𝒄 𝑷𝒎 𝒏𝑷𝒐𝒑 𝑴𝒂𝒙𝑰𝒕 

Run 1 Run 2 Run 3 Run 4 

1 3055303 3053526 3046047 3050184 3051265.00 4074.87 RW 0.9 0.1 200 500 

2 3149794 3154852 3180213 3164676 3162383.75 13396.09 RW 0.9 0.1 200 400 

3 3372901 3350114 3335613 3323874 3345625.50 21114.59 RW 0.9 0.1 200 300 

4 3200575 3185842 3197118 3191536 3193767.75 6464.29 RW 0.85 0.05 150 500 

5 3355893 3308538 3369709 3382514 3354163.50 32301.14 RW 0.85 0.05 150 400 

6 3499418 3511169 3529597 3529401 3517396.25 14775.75 RW 0.85 0.05 150 300 

7 3432256 3440475 3410509 3433997 3429309.25 13022.82 RW 0.8 0.025 100 500 

8 3575145 3520148 3586398 3537586 3554819.25 31141.79 RW 0.8 0.025 100 400 

9 4555883 4146796 3846552 4203898 4188282.25 290903.67 RW 0.8 0.025 100 300 

10 3051447 3066724 3034552 3045986 3049677.25 13368.15 T 0.9 0.05 100 500 

11 3156857 3217344 3129544 3179152 3170724.25 37114.87 T 0.9 0.05 100 400 

12 3281164 3310920 3406627 3340245 3334739.00 53652.67 T 0.9 0.05 100 300 

13 3077422 3072374 3047223 3078703 3068930.50 14727.31 T 0.85 0.025 200 500 

14 3182456 3188477 3166677 3221685 3189823.75 23144.54 T 0.85 0.025 200 400 

15 3436084 3441521 3417875 3435688 3432792.00 10294.60 T 0.85 0.025 200 300 

16 2991777 2972519 2986549 2982617 2983365.50 8146.47 T 0.8 0.1 150 500 

17 3057430 3030744 3064818 3033992 3046746.00 16926.05 T 0.8 0.1 150 400 

18 3172227 3184862 3188181 3173263 3179633.25 8079.53 T 0.8 0.1 150 300 

19 3360788 3373308 3403272 3440016 3394346.00 35280.59 R 0.9 0.025 150 500 

20 3503662 3492818 3501245 3457735 3488865.00 21267.49 R 0.9 0.025 150 400 

21 6083231 6707308 6357912 5970323 6279693.50 328268.14 R 0.9 0.025 150 300 

22 3099402 3117656 3130297 3111689 3114761.00 12846.33 R 0.85 0.1 100 500 

23 3243754 3249067 3272814 3255208 3255210.75 12634.31 R 0.85 0.1 100 400 

24 3410574 3462829 3421737 3409948 3426272.00 24965.85 R 0.85 0.1 100 300 

25 3232477 3281042 3288839 3245727 3262021.25 27198.93 R 0.8 0.05 200 500 

26 3372780 3354390 3375793 3360978 3365985.25 10031.33 R 0.8 0.05 200 400 

27 3542951 3526380 3567064 3540808 3544300.75 16865.55 R 0.8 0.05 200 300 

Note: (𝝁: m ean , 𝝈: St andard deviation) 
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 Taguchi experimental design and design data of 𝐺𝐴  for large-scale 
problem 

T
ri

al
 

N
o

. Function Evaluation (TC) 
𝝁 𝝈 𝑷𝒔 𝑷𝒄 𝑷𝒎 𝒏𝑷𝒐𝒑 𝑴𝒂𝒙𝑰𝒕 

Run 1 Run 2 Run 3 Run 4 

1 6197853 6182641 6205040 6171968 6189375 14895.51 RW 0.9 0.1 100 3500 

2 6171968 6197853 6182641 6205040 6189375 14895.51 RW 0.9 0.1 100 3000 

3 6026883 6036349 6064389 6092117 6054934 29462.9 RW 0.9 0.1 100 2000 

4 6171329 6156044 6162801 6148266 6159610 9813.874 RW 0.85 0.05 200 3500 

5 6189910 6160183 6168566 6183770 6175607 13646.61 RW 0.85 0.05 200 3000 

6 6276588 6197853 6256788 6232034 6240816 33949.63 RW 0.85 0.05 200 2000 

7 5609430 5583614 5604952 5587145 5596285 12806.33 RW 0.8 0.025 300 3500 

8 6219773 6220941 6220798 6296291 6239450 37896.94 RW 0.8 0.025 300 3000 

9 6393839 6421235 6397965 6500502 6428385 49567.4 RW 0.8 0.025 300 2000 

10 5765313 5783485 5797242 5786545 5783146 13270.95 T 0.9 0.05 300 3500 

11 6145198 6115210 6141100 6146131 6136910 14630.8 T 0.9 0.05 300 3000 

12 6181667 6166755 6174604 6150186 6168303 13526.68 T 0.9 0.05 300 2000 

13 5766122 5797580 5768570 5819409 5787920 25393.04 T 0.85 0.025 100 3500 

14 6330538 6295429 6350012 6405480 6345365 46003.23 T 0.85 0.025 100 3000 

15 6421425 6446814 6429805 6425072 6430779 11227.04 T 0.85 0.025 100 2000 

16 6124129 6234488 6150018 6149727 6164591 48152.91 T 0.8 0.1 200 3500 

17 6132648 6141044 6166400 6151393 6147871 14537.94 T 0.8 0.1 200 3000 

18 5803931 5783648 5803967 5805327 5799218 10400.52 T 0.8 0.1 200 2000 

19 5930494 5953702 5898563 5878441 5915300 33387.83 R 0.9 0.025 200 3500 

20 6231820 6227294 6232032 6276543 6241922 23183.89 R 0.9 0.025 200 3000 

21 6401559 6416416 6425043 6414352 6414342 9699.475 R 0.9 0.025 200 2000 

22 6103190 6123392 6079358 6102566 6102126 17999.54 R 0.85 0.1 300 3500 

23 5729010 5873701 5867909 5715137 5796439 86089.04 R 0.85 0.1 300 3000 

24 6103190 6123392 6079358 6122019 6106989 20598.34 R 0.85 0.1 300 2000 

25 6271088 6235294 6240251 6212358 6239748 24169.66 R 0.8 0.05 100 3500 

26 6219361 6297088 6249893 6228781 6248781 34642.66 R 0.8 0.05 100 3000 

27 6402903 6433575 6407674 6422437 6416647 14017.7 R 0.8 0.05 100 2000 

Note: (𝝁: m ean , 𝝈: St andard deviation) 

𝑀𝑆𝐷 =
1

𝑛
 ∑ 𝑦𝑖

2

𝑛

𝑖=1

 
(15) 

𝑆

𝑁
= −10 log(𝑀𝑆𝐷) 

(16) 

The example of the calculation of S/N ratio for the control 
parameter 𝑃𝑠  is shown below (column 1 of Table 10) and the 
results correspond to each case study are summarised in Table 10, 
Table 11 and Table 12. The difference between the levels of factors 
in the Table 10- Table 12 determines which parameter has more 
effect on the quality characteristics (the total cost of the network). 

𝐿𝑒𝑣𝑒𝑙 1 =
(−94.44 − 95.08 − 94.85 − 95.21 − 95.59 − 95.68 − 94.80 − 94.85 − 94.24)

9
= −95.08 

𝐿𝑒𝑣𝑒𝑙 2 =
(−94.40 − 94.52 − 95.13 − 94.86 − 95.05 − 98.16 − 94.39 − 94.58 − 95.28)

9
= −95.16 

𝐿𝑒𝑣𝑒𝑙 3 =
(−94.60 − 95.18 − 95.91 − 94.40 − 94. 𝑡ℎ𝑒 72 − 95.45 − 94.59 − 95.41 − 96.72)

9
= −95.22 

      𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =  | ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑣𝑎𝑙𝑢𝑒 | − | 𝑙𝑜𝑤𝑒𝑠𝑡 𝑣𝑎𝑙𝑢𝑒 | 

=  | −95.22 | − | −95.08 | =  0.14 

As it can be seen from Table 10, the control factor 𝑀𝑎𝑥𝐼𝑡, by 
far is the most important factor that impacts on S/N ratio (1.19), 
𝑛𝑃𝑜𝑝 , 𝑃𝑚 , 𝑃𝑐  and 𝑃𝑠  are also significant factors. Table 11 

shows 𝑀𝑎𝑥𝐼𝑡, 𝑃𝑠 and 𝑃𝑚 are approximately double of 𝑃𝑐 and 𝑛𝑃𝑜𝑝. 

Also, in Table 12 while control factor 𝑃𝑐 has a negligible effect in 
influencing the S/N ratio in 𝑃𝐿  problem, the contribution of all 
other four parameters (𝑃𝑠 , 𝑃𝑚 , 𝑛𝑃𝑜𝑝 and 𝑀𝑎𝑥𝐼𝑡) to the S/N is more 

than 10%. 

The S/N ratios computed for the data set 𝑃𝑠, 𝑃𝑐 , 𝑃𝑚 , 𝑛𝑃𝑜𝑝  and 

𝑀𝑎𝑥𝐼𝑡  (Table 10-Table 12) are essential for sketching the S/N 

ratio response diagrams for 𝑃𝑆 , 𝑃𝑀  and 𝑃𝐿  problems (0). So, a 
higher S/N ratio is related to a data set with the minimum variation 
which is considered as the best data set. 

 The response table of S/N ratio of 𝑃𝑆 Problem 

 

Selection 
(𝑷𝒔) 

Crossover 
Rate (𝑷𝒄) 

Mutation 
Rate (𝑷𝒎) 

Population 
Size (𝒏𝑷𝒐𝒑) 

Generation 
(𝑴𝒂𝒙𝑰𝒕) 

Level 1 -95.08 -94.90 -94.80 -95.46 -94.63 
Level 2 -95.16 -95.46 -95.25 -95.16 -95.00 
Level 3 -95.22 -95.10 -95.41 -94.84 -95.83 
Difference 0.14 0.56 0.61 0.63 1.19 

 The response table of S/N ratio 𝑃𝑀 Problem 

 

Selection 
(𝑷𝒔) 

Crossover 
Rate (𝑷𝒄) 

Mutation 
Rate (𝑷𝒎) 

Population 
Size (𝒏𝑷𝒐𝒑) 

Generation 
(𝑴𝒂𝒙𝑰𝒕) 

Level 1 -130.7 -130.9 -130 -130.3 -130 
Level 2 -130 -130.3 -130.4 -130.9 -130.3 
Level 3 -131.1 -130.6 -131.3 -130.6 -131.4 

Difference 1.1 0.5 1.3 0.6 1.4 

 The response table of S/N ratio 𝑃𝐿 Problem 

 

Selection 
(𝑷𝒔) 

Crossover 
Rate (𝑷𝒄) 

Mutation 
Rate (𝑷𝒎) 

Population 
Size (𝒏𝑷𝒐𝒑) 

Generation 
(𝑴𝒂𝒙𝑰𝒕) 

Level 1 -135.8 -135.6 -135.6 -135.9 -135.5 
Level 2 -135.7 -135.7 -135.8 -135.8 -135.8 

Level 3 -135.8 -135.8 -135.7 -135.6 -135.9 
Difference 0.1 0.2 0.2 0.3 0.4 

Therefore, the best values associated with 𝑃𝑠, 𝑃𝑐 , 𝑃𝑚 , 𝑛𝑃𝑜𝑝 and 

𝑀𝑎𝑥𝐼𝑡  corresponding to 𝑃𝑆 , 𝑃𝑀  and 𝑃𝐿  problems are as follows: 
for 𝑷𝑺, level 1(Roulette Wheel selection), level 1 (90% crossover), 
level 1 (10% mutation), level 2 (120 chromosomes) and level 1 
(200 iterations), respectively; for 𝑷𝑴  level 2 (Tournament 
selection), level 2 (85% crossover), level 1 (10% mutation), level 
1 (200 chromosomes) and level 1 (500 iterations), respectively; 
For 𝑷𝑳 level 2 (Tournament selection), level 1 (90% crossover), 
level 1 (10% mutation), level 3 (300 chromosomes) and level 1 
(3500 iterations), respectively. This can be observed from S/N 
ratio response diagrams too (Figure 4). The rows show difference 
values in Table 10-Table 12 determine the contribution level of 
each parameter in obtaining lower cost. So, the total cost of 
running the network, for example for 𝑃𝑀  problem, is mostly 
affected by the number of generation, mutation rate, the selection 
method, population size and crossover rates of the GA algorithm. 
To determine the significant level of these parameters, ANOVA 
method is utilised for which the data given in Table 7- Table 9 are 
going to be used again. Results obtained from ANOVA are 
summarised in Table 13-Table 15.  

7.3. ANOVA Method 

From ANOVA, the percentage contribution ratio (PCR) of 
each parameter can be calculated. PCR indicates the significance 
of all main factors and their interactions on the output. The 
calculation is performed by comparing the mean square (𝑀𝑆 ) 
against an estimate of the experimental errors at specific 
confidence levels. The total sum of squared deviations (𝑆𝑆𝑇) from 
the total mean S/N ratio is calculated via (17). 

𝑆𝑆𝑇 =  ∑(

𝑛

𝑖=1

𝜂𝑖 − 𝑛𝑚)2 
(17) 

where 𝑛 is the number of experiments in the orthogonal array and 

𝜂𝑖 is the mean S/N ratio for the 𝑖𝑡ℎ experiment.  
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Small-scale problem 

 
Medium-scale problem 

 
Large-scale problem 

Figure 4 The main effect diagram for S/N Ratio response diagram for 𝐺𝐴 

parameters (𝑃𝑠, 𝑃𝑐, 𝑃𝑚, 𝑛𝑃𝑜𝑝, 𝑀𝑎𝑥𝐼𝑡) 

The ANOVA tables for S/N ratios corresponding to the data in 
Table 10-Table 12 are summarised in Table 13- Table 15. The 
terms 𝑆𝑆𝑇 and 𝑆𝑀𝑇 are corresponding to the total sum of squared 
and the total mean square, respectively. Also, the F-ratios and P-
values provided in “F” and “P” columns are calculated via (18) and 
(19), respectively. F-ratio indicates which parameter 
( 𝑃𝑠 , 𝑃𝑐 , 𝑃𝑚, 𝑚𝑎𝑥𝐼𝑡 ) have a significant effect on the quality 
characteristic ( 𝑇𝐶 ) and P-value determines the significant 
percentage of the parameters on the quality characteristic (𝑇𝐶).  

𝐹 =  
𝑆𝑆𝑇

𝑀𝑆𝑇

 
(18) 

𝑃 =  
𝑆𝑆𝑇

𝑆𝑆𝑇
  (19) 

 Results obtained from ANOVA for Small-scale problem 

Source 𝑫𝑭 𝑺𝑺𝑻 𝑴𝑺𝑻 𝑭 𝑷 

𝑷𝒔 2 19727169 9863585 0.38 0.685 

𝑷𝒄 2 2.76E+08 1.38E+08 5.32 0.006 

𝑷𝒎 2 3.33E+08 1.66E+08 6.41 0.002 

𝒏𝑷𝒐𝒑 2 3.49E+08 1.75E+08 6.72 0.002 

𝑴𝒂𝒙𝑰𝒕 2 1.24E+09 6.22E+08 23.96 0 

Error 97 2.52E+09 25971697   

 Results obtained from ANOVA for medium-scale problem 

Source 𝑫𝑭 𝑺𝑺𝑻 𝑴𝑺𝑻 𝑭 𝑷 

𝑷𝒔 2 4.86E+12 2.43E+12 14.27 0 

𝑷𝒄 2 1.69E+12 8.44E+11 4.96 0.009 

𝑷𝒎 2 7.30E+12 3.65E+12 21.45 0 

𝒏𝑷𝒐𝒑 2 2.07E+12 1.03E+12 6.08 0.003 

𝑴𝒂𝒙𝑰𝒕 2 8.19E+12 4.10E+12 24.08 0 

Error 97 1.65E+13 1.70E+11   

 Results obtained from ANOVA for large-scale problem 

Source 𝑫𝑭 𝑺𝑺𝑻 𝑴𝑺𝑻 𝑭 𝑷 

𝑷𝒔 2 1.02E+11 5.1E+10 1.52 0.223 

𝑷𝒄 2 1.2E+10 5.98E+09 0.18 0.837 

𝑷𝒎 2 3.09E+11 1.55E+11 4.61 0.012 

𝒏𝑷𝒐𝒑 2 5.93E+11 2.96E+11 8.85 0 

𝑴𝒂𝒙𝑰𝒕 2 1.06E+12 5.30E+11 15.82 0 

Error 97 3.25E+12 3.35E+10   

Note: 𝑆𝑆 and 𝑉 stand for the sum of squared and the variance respectively. 

It can be observed from Table 13 that the difference between 
the mean values of the level of the control factor 𝑃𝑠  (selection 
method) is insignificant (0.68 >  𝛼 = 0.05). Therefore, any 
selection strategy can be chosen for implementation of the 
proposed SOA for small-scale problem. However, the difference 
between the mean values of crossover rates (𝑃𝑐), mutation rate (𝑃𝑚) 
and the number of iteration (Ma𝑥𝐼𝑡) is significant (0.006, 0.002 
and 0.002 <  𝛼 = 0.05). Thus, the best control factor setting for 
maximising the S/N ratio is 𝑃𝑐 at level 1, 𝑃𝑚 at level 1, 𝑛𝑃𝑜𝑝at level 

2 and 𝑀𝑎𝑥𝐼𝑡 at level 1. In the Medium-scale problem, all of the 
control factors are highly contributing to the performance of the 
SOA (Table 14). According to Table 15, only 𝑃𝑚, 𝑛𝑃𝑜𝑝 and 𝑀𝑎𝑥𝐼𝑡 

are significantly influenced on the performance of the SOA in 
Large-scale problem, while there is no restriction in choosing the 
selection strategy and the crossover rate.  

7.4. Confirmation test 

The final step of the verification phase is to perform the 
confirmation test with the optimal level of the GA parameters 
drawn based on the Taguchi’s design approach for each case study 
(Table 16).  

 The best combination of the 𝐺𝐴 parameters 

 𝑃𝑆 𝑃𝑐 𝑃𝑚 𝑛𝑃𝑜𝑝 𝑀𝑎𝑥𝐼𝑡 

Small-Scale R 0.9 0.1 120 200 

Medium-Scale T 0.85 0.1 200 500 

Large-Scale R 0.9 0.05 100 3500 

The results obtained from the proposed methodology and GA 
solver associated with 𝑃𝑆 , 𝑃𝑀  and 𝑃𝐿  problems along with the 
average of the best and the worst results are summarised in Table 
17. The quality measurement of the solution is determined 
according to the value of standard deviation (𝜎).  Therefore, the 
solution candidate with the maximum 𝜎 is considered as the worst 
solution and the one with the minimum value is regarded as the 
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best solution. Hence, the experiments No. 15 and No. 22 are the 
worst and the best scenario for the Small-scale problem, 
respectively.  

 The total optimised cost 

Problem Size Small-scale Medium-scale Large-scale 

Optimal Scenario 49966.28($) 2921429.2($) 5971604 ($) 

Best Scenario 52464.27($) 3051265($) 6102126 ($) 

Worst Scenario 79063.41($) 6279694($) 6239450 ($) 

As can be seen from Figure 5, the proposed algorithm shows 
better performance compared with the best and the worst solutions 
acquired from GA solver (5%  ≅ $ 2498). A similar improvement 
was also experienced in Medium-scale and the Large-scale 
problem with 4% ≅ $ 129835.5 and 2% ≅ $ 130522 , 
respectively. 

 

Figure 5 Improvement rates obtained from the tuning procedure  

Also, the results obtained from the proposed SOA algorithm, 
and the GA solver associated with 𝑃𝑆, 𝑃𝑀, and 𝑃𝐿  case studies are 
depicted in Figure 6-Figure 8.  
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Figure 6 Results obtained from (a) the proposed SOA methodology, (b) the GA 

optimiser (𝑆22) and (c) the GA optimiser (𝑆15) for 𝑃𝑆 
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Figure 7 Total cost achieved from implementing  (a) the proposed SOA 

methodology, (b) the GA optimiser (𝑆21) and (c) the GA optimiser (𝑆1) for 𝑃𝑀 
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Figure 8 Total cost achieved from implementing  (a) the proposed SOA, (b) the 

GA optimiser (𝑆23) and (c) the GA optimiser (𝑆9) for 𝑃𝐿 

Table 18-Table 20 present the optimum quantities associated 
with each product family to be manufactured for consumers over 
the given planning horizon. 

  The Optimum Solution for Small-scale problem 

 𝑷𝟏 𝑷𝟐 𝑷𝟑 𝑷𝟒 𝑷𝟓 

T1 11 1 54 4 1 
T2 10 11 1 5 80 

Total 21 12 55 9 81 

 The Optimum Solution for Medium-scale problem 

 𝑷𝟏 𝑷𝟐 𝑷𝟑 𝑷𝟒 𝑷𝟓 𝑷𝟔 

T1 136 314 362 220 450 276 

T2 391 396 292 575 403 197 

T3 369 658 557 574 464 349 

T4 499 656 831 433 404 509 

T5 577 622 727 681 1013 1086 

Total 1972 2646 2769 2483 2734 2417 

 The Optimum Solution for large-scale problem 

 𝑷𝟏 𝑷𝟐 𝑷𝟑 𝑷𝟒 𝑷𝟓 𝑷𝟔 𝑷𝟕 𝑷𝟖 𝑷𝟗 𝑷𝟏𝟎 

T1 802 706 543 477 471 488 1026 768 670 590 
T2 579 480 740 915 561 771 994 820 775 822 
T3 710 811 917 608 877 703 952 791 946 1077 
T4 1354 1128 630 1161 1058 1222 1090 1099 1427 1187 
T5 1507 1771 1624 1429 1524 1229 1145 1537 1254 1554 
T6 1685 1935 1762 1952 2055 1802 1848 1903 1397 1698 
T7 1997 2192 2097 2037 2118 2435 1883 1918 2276 2854 
T8 1904 2411 2159 2765 2271 2542 2309 2604 2437 1998 
Total 10252 10371 10455 10606 10575 9608 9815 10685 10187 9990 

8. Conclusion and outlook to future  

In this paper, an advanced decision-making system for a class 
of CSN problems was proposed. A novel SOA algorithm 
incorporating GA as its optimisation module was designed for 
MPMPCSN problem. The robustness and effectiveness of the 
proposed methodology was verified through performing twenty-
seven computational trials on three practical test problems at 
different granularity levels (small-scale, medium-scale, large-
scale). In addition, a tuning mechanism was recommended to 
improve the quality of the obtained solutions that was affected by 
controllable parameters of the optimisation module. To this end, 
two statistical techniques known as ANOVA and Taguchi methods 
were utilised. The optimum levels associated to the controllable 
parameters of GA were determined as following: for 𝑷𝑺 , level 
1(Roulette Wheel selection), level 1 (90% crossover), level 1 (10% 
mutation), level 2 (120 chromosomes) and level 1 (200 iterations), 
respectively; for 𝑷𝑴 level 2 (Tournament selection), level 2 (85% 
crossover), level 1 (10% mutation), level 1 (200 chromosomes) 
and level 1 (500 iterations), respectively; For 𝑷𝑳  level 2 
(Tournament selection), level 1 (90% crossover), level 1 (10% 
mutation), level 3 (300 chromosomes) and level 1 (3500 
iterations), respectively. The proposed SOA was resulted in 5%, 
4% and 2% improvement in total cost of CSN associated to 𝑃𝑆, 
𝑃𝑀 and 𝑃𝐿 problems respectively, in contrast to only using GA 
solver. Also, it was observed that the computational cost and time 
were reduced significantly.  
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Appendix A 

 The volume of product family 𝑃 (𝑣𝑃=1:𝑖
𝐺={𝑀,𝐿}

) used in Medium and Large -scale problem (non-linear Constraint) 

Product Family 𝑷𝟏 𝑷𝟐 𝑷𝟑 𝑷𝟒 𝑷𝟓 𝑷𝟔 𝑷𝟕 𝑷𝟖 𝑷𝟗 𝑷𝟏𝟎 
Purchase Cost ($) 72 51 16 74 100      

𝒗𝑮=𝑺
𝒊 3 4 2 5 1      

Purchase Cost ($) 161 138 148 185 162 113     

𝒗𝑮=𝑴
𝒊 5 6 1 3 5 3     

Purchase Cost ($) 103 167 159 197 171 160 118 109 178 104 

𝒗𝑮=𝑳
𝒊 1 2 3 3 4 5 4 1 6 2 

Note: The volume of product family 𝑃1 in the Medium-scale problem is 𝑣1
𝑀 = 5 

 

 The DEMAND QUANTITY ASSOCIATED TO product FAMILY 𝑖 ordered by consumer 𝑗 at PERIOD 𝑡 for 𝑃𝑆 

𝑇1 

 𝑹𝑬𝟏 𝑹𝑬𝟐 

𝑇2 

 𝑹𝑬𝟏 𝑹𝑬𝟐 

𝑷𝟏 50 60 𝑷𝟏 64 74 

𝑷𝟐 1 64 𝑷𝟐 42 96 

𝑷𝟑 32 74 𝑷𝟑 18 29 

𝑷𝟒 7 25 𝑷𝟒 40 45 

𝑷𝟓 10 78 𝑷𝟓 24 69 

 The DEMAND QUANTITY ASSOCIATED TO product FAMILY 𝑖 ordered by consumer 𝑗 at PERIOD 𝑡 for 𝑃𝑀 

𝑇1 

 𝑹𝑬𝟏 𝑹𝑬𝟐 𝑹𝑬𝟑 𝑹𝑬𝟒 𝑹𝑬𝟓 𝑹𝑬𝟔 𝑹𝑬𝟕 𝑹𝑬𝟖 𝑹𝑬𝟗 𝑹𝑬𝟏𝟎 𝑹𝑬𝟏𝟏 

𝑷𝟏 58 4 37 98 76 81 8 4 52 94 76 

𝑷𝟐 17 6 54 8 100 43 60 95 100 48 100 

𝑷𝟑 15 81 72 59 19 73 92 77 86 24 97 

𝑷𝟒 48 46 88 42 79 50 20 56 97 40 54 

𝑷𝟓 91 39 33 31 20 81 44 19 68 71 97 

𝑷𝟔 56 79 66 27 100 36 75 50 41 56 12 
             

𝑇2 

𝑷𝟏 6 44 48 20 18 88 34 96 10 4 36 

𝑷𝟐 31 55 26 20 97 79 60 55 47 21 79 

𝑷𝟑 59 72 37 33 41 47 91 55 1 46 44 

𝑷𝟒 54 2 67 89 85 82 71 32 92 13 44 

𝑷𝟓 91 81 17 48 62 90 38 8 65 1 5 

𝑷𝟔 55 15 28 41 38 43 74 19 1 73 5 
             

𝑇3 

𝑷𝟏 10 49 47 44 33 3 37 86 69 35 81 

𝑷𝟐 60 23 64 89 81 61 21 5 91 42 7 

𝑷𝟑 25 23 92 40 100 12 45 70 62 16 96 

𝑷𝟒 85 54 17 18 99 41 96 98 90 82 50 

𝑷𝟓 86 77 72 64 13 89 13 29 20 63 76 

𝑷𝟔 97 35 58 63 24 55 48 14 76 74 75 
             

𝑇4 

𝑷𝟏 84 90 41 26 17 75 53 69 76 61 55 

𝑷𝟐 16 59 4 33 19 70 33 24 99 86 21 

𝑷𝟑 46 59 75 41 10 83 84 46 24 99 22 

𝑷𝟒 62 86 16 41 33 83 82 39 53 93 33 

𝑷𝟓 94 4 15 39 77 30 56 54 6 41 10 

𝑷𝟔 84 89 61 61 24 31 27 100 76 1 75 
             

𝑇5 

𝑷𝟏 75 90 75 79 23 17 5 69 81 80 30 

𝑷𝟐 55 36 13 37 36 84 22 97 24 33 41 

𝑷𝟑 34 55 83 75 29 17 40 44 94 23 87 

𝑷𝟒 84 35 3 90 93 51 34 95 77 32 62 

𝑷𝟓 56 63 42 25 6 100 23 1 83 59 100 

𝑷𝟔 96 80 74 13 60 36 94 62 58 83 21 
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 The DEMAND QUANTITY ASSOCITED TO product FAMILY 𝑖 ordered by consumer 𝑗 at PERIOD 𝑡 for 𝑃𝐿 
  

𝑹𝑬𝟏 𝑹𝑬𝟐 𝑹𝑬𝟑 𝑹𝑬𝟒 𝑹𝑬𝟓 𝑹𝑬𝟔 𝑹𝑬𝟕 𝑹𝑬𝟖 𝑹𝑬𝟗 𝑹𝑬𝟏𝟎 𝑹𝑬𝟏𝟏 𝑹𝑬𝟏𝟐 𝑹𝟏𝟑 𝑹𝑬𝟏𝟒 𝑹𝑬𝟏𝟓 𝑹𝑬𝟏𝟔 𝑹𝑬𝟏𝟕 𝑹𝑬𝟏𝟖 𝑹𝑬𝟏𝟗 𝑹𝑬𝟐𝟎 𝑹𝑬𝟐𝟏 𝑹𝑬𝟐𝟐 𝑹𝑬𝟐𝟑 𝑹𝑬𝟐𝟒 𝑹𝑬𝟐𝟓 

𝑻𝟏 

𝑷𝟏 32 92 33 68 98 7 10 39 73 48 33 38 69 4 3 27 67 22 26 41 64 59 18 70 61 

𝑷𝟐 60 43 24 58 65 18 76 82 17 76 66 1 45 97 37 43 5 6 43 30 56 3 43 9 14 

𝑷𝟑 45 40 48 40 85 63 87 52 65 99 2 5 60 10 20 23 12 64 77 46 47 44 94 20 51 

𝑷𝟒 41 61 49 73 71 77 41 32 8 25 96 3 21 4 78 62 53 7 32 37 39 70 83 88 52 

𝑷𝟓 59 18 20 38 12 54 99 59 24 21 17 91 78 49 22 19 94 23 60 24 83 90 51 38 11 

𝑷𝟔 85 7 23 66 81 46 2 90 89 55 28 5 35 82 27 80 39 36 82 60 94 100 72 14 27 

𝑷𝟕 29 38 71 27 31 78 77 38 92 69 22 23 52 74 80 66 79 45 44 76 71 4 87 40 7 

𝐏𝟖 66 38 25 84 25 41 43 3 46 50 33 80 68 60 2 99 63 92 95 33 3 71 2 23 64 

𝑷𝟗 17 5 53 77 60 41 62 44 67 74 29 91 60 31 76 8 79 34 7 31 58 96 97 88 31 

𝑷𝟏𝟎 89 63 63 27 44 9 43 5 34 84 61 31 97 75 66 2 88 13 86 52 1 5 74 6 66 

                           

𝑻𝟐 

𝑷𝟏 23 74 81 32 73 63 90 46 80 94 68 94 95 7 60 94 12 54 48 96 17 23 25 4 66 

𝑷𝟐 18 30 87 13 26 49 96 86 91 93 66 40 45 28 75 83 17 7 47 6 27 63 61 88 79 

𝑷𝟑 61 66 66 99 86 15 45 50 24 41 33 37 55 68 41 91 57 29 54 52 76 9 57 33 75 

𝑷𝟒 85 45 16 40 44 23 16 42 70 16 76 99 59 92 12 7 34 37 58 98 60 71 55 85 26 

𝑷𝟓 26 46 61 12 18 18 21 27 93 20 79 60 91 60 11 75 7 7 42 64 63 80 96 92 79 

𝑷𝟔 17 62 74 10 91 38 43 62 69 67 52 34 50 34 32 58 21 35 61 37 34 10 67 4 77 

𝑷𝟕 27 79 6 82 52 91 84 38 97 1 60 26 87 40 50 70 86 91 89 56 33 94 98 7 47 

𝐏𝟖 18 41 62 54 35 31 84 44 43 67 6 41 41 98 65 23 76 10 58 85 94 15 33 60 65 

𝑷𝟗 53 74 6 25 14 2 31 46 35 43 84 20 89 17 99 52 78 57 50 72 17 44 79 13 78 

𝑷𝟏𝟎 62 87 81 26 62 3 11 80 16 32 46 21 41 51 76 12 19 84 16 95 78 6 83 76 59 

                           

𝑻𝟑 

𝑷𝟏 38 50 78 66 43 80 19 41 85 53 42 80 86 11 38 30 96 48 94 97 80 41 57 91 43 

𝑷𝟐 32 73 63 53 59 33 88 6 11 75 10 6 15 16 86 6 62 84 41 2 20 67 59 57 17 

𝑷𝟑 9 28 34 33 77 74 74 60 48 40 10 76 34 82 12 25 14 68 48 6 45 3 61 65 61 

𝑷𝟒 65 64 88 47 27 26 99 66 62 93 93 24 71 33 12 95 26 28 43 45 71 25 80 97 64 

𝑷𝟓 1 89 71 52 35 48 96 96 4 35 46 18 54 4 54 60 2 27 99 14 99 29 70 78 87 

𝑷𝟔 43 73 37 77 60 2 73 5 6 20 82 89 40 27 22 56 82 98 80 7 42 28 57 47 88 

𝑷𝟕 5 33 46 57 58 9 68 36 81 82 61 50 18 58 78 32 2 32 39 16 53 9 18 15 96 

𝐏𝟖 29 42 72 71 32 92 87 6 64 10 32 87 72 81 100 12 19 28 77 4 67 20 55 44 86 

𝑷𝟗 99 67 73 22 97 89 20 93 29 30 39 23 17 84 47 63 82 97 58 17 96 45 21 67 89 

𝑷𝟏𝟎 48 95 41 50 67 41 12 49 72 80 39 50 92 50 49 3 25 99 66 87 62 84 55 10 44 

                           

𝑻𝟒 

𝑷𝟏 81 34 10 12 36 99 33 44 95 86 71 58 42 28 9 64 54 1 52 99 32 19 26 62 90 

𝑷𝟐 82 61 59 94 46 54 33 75 55 64 23 74 77 100 15 9 96 20 45 91 85 45 27 86 16 

𝑷𝟑 44 80 25 49 87 96 71 48 49 95 59 10 80 35 61 81 33 57 11 28 80 21 31 49 95 

𝑷𝟒 48 46 75 32 13 62 70 7 98 25 44 43 59 38 89 45 32 71 76 25 22 75 24 15 26 

𝑷𝟓 33 16 90 51 12 2 79 88 88 46 14 46 24 11 37 42 5 78 6 89 95 32 74 19 27 

𝑷𝟔 22 37 45 26 71 32 1 16 80 10 23 54 83 85 91 17 71 83 17 93 10 10 88 4 88 

𝑷𝟕 17 52 39 79 6 82 18 100 23 92 62 90 43 11 81 88 55 23 38 40 43 33 69 89 50 

𝐏𝟖 73 28 75 56 53 37 69 92 79 20 54 92 7 87 4 54 74 60 66 78 100 100 82 15 76 

𝑷𝟗 28 58 71 75 28 27 22 52 59 57 51 74 94 26 28 86 29 18 99 97 70 9 58 51 22 

𝑷𝟏𝟎 60 52 2 45 59 18 88 11 35 28 51 50 85 60 88 40 43 25 6 79 37 53 51 64 9 

                           

𝑻𝟓 

𝑷𝟏 47 12 3 29 57 31 59 71 80 37 70 12 87 25 72 70 70 84 47 85 12 49 60 32 17 

𝑷𝟐 75 16 41 37 25 41 81 98 41 73 38 28 24 52 45 61 51 54 63 98 27 31 46 76 19 

𝑷𝟑 31 44 98 4 66 2 14 76 16 86 36 47 66 21 77 46 38 10 57 45 26 92 71 58 53 

𝑷𝟒 64 89 8 71 84 2 47 99 90 65 19 73 28 98 62 59 38 7 43 7 81 9 53 31 29 

𝑷𝟓 57 86 81 91 15 71 44 91 6 80 38 34 63 12 28 57 94 20 95 44 26 79 82 37 89 

𝑷𝟔 33 58 9 41 72 94 86 29 21 6 38 47 14 21 89 46 24 33 80 75 86 75 64 40 16 

𝑷𝟕 5 56 21 11 98 42 29 19 96 33 44 9 45 58 49 83 29 21 46 49 88 58 15 35 20 

𝐏𝟖 43 88 21 48 83 41 11 50 70 28 8 12 93 97 82 39 19 62 19 39 47 32 38 79 52 

𝑷𝟗 89 53 51 50 76 77 53 9 29 36 26 20 74 3 49 58 27 2 5 43 56 62 87 50 65 

𝑷𝟏𝟎 88 5 34 34 2 51 34 13 6 64 8 68 26 27 24 4 46 36 2 86 87 70 41 58 74 

                           

𝑻𝟔 

𝑷𝟏 29 71 70 31 35 30 44 2 57 2 68 100 87 30 8 19 41 72 53 68 35 17 59 12 19 

𝑷𝟐 63 84 72 4 94 70 46 15 57 66 53 12 44 92 32 16 70 9 44 85 2 44 97 93 90 

𝑷𝟑 27 52 34 60 66 53 25 69 42 48 33 87 5 31 48 83 47 47 59 38 84 67 17 73 91 

𝑷𝟒 5 41 92 97 82 83 93 83 93 83 29 86 36 70 98 35 81 67 11 93 67 59 29 7 82 

𝑷𝟓 5 46 99 88 53 99 32 12 17 69 100 7 6 92 80 81 90 44 55 31 56 46 57 49 94 

𝑷𝟔 87 2 89 80 73 77 48 37 78 62 10 77 69 19 14 71 62 10 85 14 25 23 39 60 56 

𝑷𝟕 85 9 91 96 83 52 97 37 98 1 61 28 99 94 45 99 94 38 77 51 33 6 87 27 78 

𝐏𝟖 6 71 70 62 85 47 33 42 48 69 40 81 55 3 65 89 12 82 100 81 84 37 93 14 87 

𝑷𝟗 81 7 56 100 6 85 22 3 86 41 9 84 74 27 2 26 87 55 22 20 96 98 17 88 10 

𝑷𝟏𝟎 75 91 24 84 87 22 7 60 93 5 90 46 13 80 51 11 3 9 22 77 76 74 39 94 69 

                           

𝑻𝟕 

𝑷𝟏 25 91 72 2 28 5 42 15 76 59 32 16 45 82 62 5 87 79 6 25 5 36 19 35 98 

𝑷𝟐 30 51 67 86 37 83 69 12 73 58 77 97 2 57 31 63 7 46 94 71 21 80 99 2 42 

𝑷𝟑 28 80 5 30 95 33 83 3 50 64 83 69 66 40 96 71 90 31 17 95 64 67 59 16 23 

𝑷𝟒 33 68 59 88 17 33 97 18 6 9 47 50 85 54 48 65 16 88 60 92 73 34 49 80 76 

𝑷𝟓 97 45 64 18 57 85 92 66 15 70 8 16 44 76 53 48 37 61 49 73 3 44 13 84 3 

𝑷𝟔 8 16 72 62 96 2 79 49 23 83 49 89 86 29 23 61 33 100 42 15 75 73 40 89 1 

𝑷𝟕 69 63 76 47 60 23 17 48 81 34 42 76 34 47 17 11 69 55 79 37 5 8 28 80 81 

𝐏𝟖 81 98 24 72 29 29 8 30 71 87 31 64 72 39 67 70 95 6 99 47 48 92 23 96 25 

𝑷𝟗 34 14 10 31 52 86 35 74 12 8 4 19 28 32 73 17 2 90 36 72 16 63 1 96 36 

𝑷𝟏𝟎 74 5 60 38 33 65 68 27 14 8 75 9 72 16 24 54 44 69 100 75 1 15 69 68 59 

                           

𝑻𝟖 

𝑷𝟏 65 25 64 75 12 70 77 47 81 4 54 21 90 67 71 22 62 27 19 46 53 39 46 62 21 

𝑷𝟐 39 33 44 54 23 92 43 12 3 71 69 86 69 61 67 10 9 10 32 24 99 21 48 31 44 

𝑷𝟑 24 30 22 20 75 71 51 78 72 64 27 5 15 15 66 30 78 36 100 64 45 13 68 62 16 

𝑷𝟒 44 74 2 68 100 47 90 62 34 45 72 52 5 51 14 10 6 56 100 30 68 28 93 3 30 

𝑷𝟓 52 48 97 50 51 35 43 7 82 53 75 18 94 37 81 98 21 69 11 63 22 55 47 70 14 

𝑷𝟔 40 57 19 61 64 54 93 6 84 33 48 29 58 25 100 4 23 95 6 67 11 85 13 22 14 

𝑷𝟕 79 52 91 16 70 2 38 96 13 54 50 90 84 15 97 87 66 25 93 31 23 99 80 5 25 

𝐏𝟖 49 39 52 39 49 57 82 52 6 34 9 77 71 97 4 16 56 73 7 25 99 45 82 7 35 

𝑷𝟗 30 18 42 47 92 10 36 58 86 45 35 24 76 7 78 79 65 76 30 69 84 35 33 34 24 

𝑷𝟏𝟎 75 36 37 23 7 47 76 78 29 51 87 86 74 100 95 17 69 47 93 84 94 70 72 60 65 
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