

www.astesj.com 358

A Practical Approach for Extending DSMLs by Composing their Metamodels

Anas Abouzahra*, Ayoub Sabraoui, Karim Afdel

Laboratory of Computer Systems and Vision LabSIV, Ibn Zohr University, Agadir, Morocco

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 27 August, 2018
Accepted: 21 November, 2018
Online: 05 December, 2018

 Domain specific modeling (DSM) has become popular in the software development field
during these last years. It allows to design an application using a domain specific modeling
language (DSML) and to generate an end-solution software product directly from models.
However providing a new DSML is a complex and costly job. This can be reduced by the
reuse of existing DSMLs to compose new ones trough a metamodel composition approach.
This paper provides a composition rules based code generator facility for extending
DSMLs. In doing so, it proposes three rules to compose DSMLs by composing there
metamodels: reference rule, specialization rule and fusion rule. The results of an
exploratory case study on using these rules are depicted. In addition a proof of concept of
the code generator facility which generates the necessary infrastructure to quickly build
new DSMLs is implemented and applied to the case study. The benefits of our approach are
measured relying on three indicators: the reduced development time, the reused software
components and the gain on learnability.

Keywords:
Model Driven Engineering
Domain Specific Modeling
Domain Specific Languages
Model Composition
Software Reuse
Code Generation
Experimental Software
Engineering

1. Introduction

This paper is an extension of work originally presented in 2017
European Conference on Electrical Engineering and Computer
Science (EECS) [1]. The motivation of this paper is to improve the
state of the art of quick development of new DSMLs based on
existing ones.

Software composition is a fundamental mean for the evolution
of complex software systems [2]. While initial approaches were
simply focused on textual composition, more efficient approaches
take into account syntax and semantics of the software. There was
a tendency over the last twenty years towards operation based
composition because of its increased expressiveness. In this
direction, Model Driven Engineering (MDE) [3,4] was concerned
about improving model composition approaches. From early, the
researchers have realized that the application of MDE to complex
systems will undoubtedly go through the development of smart and
agile model composition techniques [5–9].

A use that takes advantage of model composition is to speed
up the implementation of new Domain Specific Modeling
Languages (DSML). Designing DSMLS is a not an easy job and
generally consuming time [10]. This operation can be simplified
by reusing existing DSMLs, composing their metamodels, to get
new and larger ones [11]. In fact, the definition of a DSML is based
on a metamodel and often provides supporting tools as graphical

editors to create and handle models. Therefore, it would be
judicious to define the reuse of artifacts at the abstract level; i.e. at
metamodels level, then to deduce the projection of this
composition at the underneath levels; i.e. the supporting tools.

In the previous work [1], composing metamodels of DSMLs
was studied and consequences on their graphical editors were
investigated in order to provide a composition of metamodels
based approach to extend DSMLs. This work goes further and
presents an exploratory study that aims to evaluate the DSML
composition approach exposed in [1]. It implements a proof of
concept of this approach by developing a code generator facility to
make composing graphical editors of DSMLs easier. This
prototype provides an automatic code generator which starts from
a composition of metamodels of DSMLs, described using
composition rules, and generates a layer of code allowing a rapid
composition of a new DSML. The gain is measured in terms of
development time that can be estimated via the percentage of the
generated code. Then, in terms of reused components that can be
estimated via the percentage of reused code. As well as in terms of
learnability, that can be estimated via the part of kept features and
interfaces. These three parameters will be the indicators of
evaluation and performance to assess the contribution of this work.

The paper is organized as follows: In Section 2, a series of
related works is cited. In Section 3 the problem is stated and the
followed methodology is explained. In Section 4 the exploratory

ASTESJ

ISSN: 2415-6698

* Anas Abouzahra, Email: abouzahra.anas@gmail.com

Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 6, 358-371 (2018)

www.astesj.com

Special Issue on Recent Advances in Engineering Systems

https://dx.doi.org/10.25046/aj030644

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj030644

A. Abouzahra et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 6, 358-371 (2018)

www.astesj.com 359

study is developed. In Section 5 results are discussed. Finally the
Section 6 concludes the paper.

2. Related Works

In this Section a selection of works addressing the composition,
extension and reuse of DSMLs in an MDE context is exposed with
a brief summary of their features. Moreover, approaches coming
from Aspect Oriented Programming (AOP) [12] and Language-
oriented programming (LOP) [13] research fields are presented.
That is because they have inspired relevant methods for reusing
and extending DSMLs. Other approaches that use software
product line (SPL) [14] techniques exist [15] but they are minor.

2.1. In MDE

MDE addressed the problem of extending DSMLs by a
composition operation. However it varies according to the
meaning that each work gives to the composition. This can be a
merge operation between models conforming to the same
metamodel. As it can be a fusion operation between completely
heterogeneous models. It can also be just a resolution of
differences between different versions of the same model in order
to resolve existing conflicts. Besides, the composition operation
can be automatically generated based on mapping calculations or
completely custom based on a weaving definition. Furthermore,
other approaches provide complementary operations such as
checking the consistency of the composition.

Epsilon EML [16] is an Eclipse project which provided a
platform for developing substantial and interoperable operations
on DSLs among which there is a model composition operation
(merging) [17] provided through the Epsilon Merging Language
(EML) language [18,19]. EML is applied to compose a number of
potentially heterogeneous models. The composition operation is
achieved through four steps: comparison, conformance
verification, composition and reconciliation. EML was the first
language accommodate for model merging and made the case for
non-trivial merging of heterogeneous models. However it turned
out that it is too verbose for merging homogeneous models.
Although, EML is still maintained with significant evolution of its
syntax, semantics, capabilities and its underlying platform

AMW [20] is an Eclipse project which proposed a model
composition solution (weaving) in parallel of a higher level
transformation. In AMW, megamodeling has been introduced to
tackle advanced metamodel management, where often the
relationships between the metamodels can be considered as
composition links. Model weaving has been often used as a
solution to compose different DSLs, where the composition is not
only the simple gathering of concepts coming from different
metamodels, but might also include advanced semantic operators.
Unfortunately, and despite all the interest in this tool and its
various applications, especially for the traceability of model
transformation, the associated eclipse project has been archived. It
has not been maintained by the community and no longer by an
industrial.

MOMENT [21,22] is a project which aimed to provide a model
management platform that furnishes generic operators to handle
metamodels described using the Eclipse Modeling Framework
(EMF) [23]. In this context, Boronat et al. developed a practical
approach for generic model merging. It provides an automate
merge operator to merge DSLs artifacts with support for conflict
resolution and traceability [24] relying on the QVT Relations

language [25]. This work was applied, and specially proven, to
class diagrams integration [26].

Melange [27,28] is a project which treated the modularity and
the reuse of DSLs and brought a meta-language for implementing
DSLs by composing and specializing existing DSL units. It
specifies operators for language assembly, for language extensions
and language restrictions. Almost introduced operators by are
meant to reuse either the semantics or the metamodel as is, in
addition of merging code. Except the inheritance operator which is
able to modify the initial definitions in the new DSL. Nevertheless,
it is not clearly explained how the extended metamodel modify the
original one and which concepts can be overridden.

MetaEdit [29,30] is a graphical workbench which provided a
language for creating DSMLs. It introduced the concept of
joint/linked modeling constructs to reuse DSLs with code
generation facility. In MetaEdit+, the code generation is obtained
by the use of a template based on the target language.
Consequently, it limits the modularity scope of the generation to
the modularity capabilities of the target language. Nevertheless, in
MetaEdit+ each created DSL is an addition to, or an extension of,
the language workbench itself [31]. This extends the capabilities
of reuse to DSLs that are already defined in the workbench.

Other works have treated the problem of model composition
and reuse from different angles. Indeed Berg et al. in [32] propose
an operational semantics based approach for composing and
reusing metamodels and models, by including their operational
semantics. Composition is performed relaying on a reusable
template that permit customizing the metamodel meta-concepts as
part of the composition operation. It uses a placeholder mechanism
where given meta-concepts of a given metamodel are reused in
another metamodel [33]. Schmidt et al. in [34] treated the problem
of model composition from a collaborative modeling point of
view. They proposed an approach to ease the merging of complex
models that are collaboratively developed in teams. This approach
aims to furnish collaborative development capabilities in much the
same quality as it is provided by version control software or text
document merging tools. A recent work in [35] contributed to the
same purpose. More, it focused not only on conflicts but also on
arbitrary syntactic and semantic consistency issues. Coherent
artifacts are merged automatically and only conflicting artifacts are
presented to the designer’s attention, along with a systematic
suggestion of resolution. Otherwise, some works focuses on
providing complementary operations to model composition such
as checking its consistency. In this direction, Zhang et al. [36]
implemented WMCF which is a models composition framework
relying on the Alloy language [37,38]. It furnishes a model
weaving capability with consistency checking of the resulting
composition provided by the Alloy Analyzer.

Besides, generating graphical editors from an abstract
definition of a DSL has been addressed by many works. Notably,
the EMF Edit, the Graphical Modeling Framework (GMF) [39,40]
and the Generic Modeling Environment (GME) [41,42] had
brought important contributions. They are mature frameworks
based on MDE concepts and furnish tools for defining grammars
and generating code for graphical editors.

GMF provides a set of capabilities and runtime infrastructures
for generating graphical editors for DSMLs based on their
metamodel definitions. Where GME allow decorating a
metamodel of a DSML with entities called views. This gathers
concepts that will be used to implement models, links between

http://www.astesj.com/

A. Abouzahra et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 6, 358-371 (2018)

www.astesj.com 360

those concepts and how the concepts will be organized and
displayed by the graphical editor. Nevertheless, these frameworks,
even if they make the generation of graphical editors of DSLMs
much easier, they did not elaborated proper features to support the
composition and reuse of DSMLs.
2.2. In AOP

The MDE was much inspired by AOP to deal with the problem
of large models for complex systems [43]. The AOP preconizes to
design a system by separating the model into different morsels.
Each corresponds to a different aspect of the system. This
decomposition permits to deal with properties on each aspect
before considering the model in its overall. This way we decrease
the analysis complexity [44]. However, this requires being able to
integrate the morsels of a model with each other’s. Thus, AOP has
addressed the problem of composition and reuse of models [45].

Hovsepyan et al. [46] elaborated an asymmetric approach to
compose artefacts of different DSMLs using an application base
model described with UML. This approach was driven by an AOP
methodology and was implemented using MDE tools. It
introduced the concept of a concern interface which plays the role
of a common language between a specific concern and the
application base. The composition is then achieved by defining
explicitly the syntactic and the semantic relationships between
artifacts coming from different concerns.

LARA [47] is a DSL inspired by AOP concepts which brought
a novel method for mapping applications to heterogeneous high
performance embedded systems. It allows to generate an
intermediate aspect representation from a configuration based on
different junction points, action models and attributes. This is then
given to be processed by the weavers. Pinto et al. [48] has
improved LARA by furnishing well-defined library interfaces with
concrete implementations for each supported target language. This
work contributes to make LARA aspects more concise and
improve their reuse. Moreover, it involve to substantial reductions
of job effort when developing weavers for new languages.

MATA [49] is an AOP tool built on the top of IBM Rational
Software Modeler. It uses model transformation to define and
perform composition operations on aspects of a model. The
particularity of MATA is that, even if it is inspired by AOP, it did
not deal with specific join points. In fact, any model artifact can be
considered a join point, and composition is implemented as a
special case of model transformation. In addition, critical pair
analysis is automatically applied in order to find structural
correspondences between various aspects of models. MATA was
intended to be a generic approach but it was above all proven on
UML models (class diagrams, sequence diagrams and state
diagrams) [50].
2.3. In LOP

The LOP field is rich in approaches that ease the design and the
reuse of DSLMs. Ones of the most presumably technologies to
perform it are the projectional language workbenches. In fact, they
provide relevant approaches for extending a DSL and often furnish
tools to project it on concrete spaces.

TouchRAM [51] provided a rich client tool for flexible software
modelling. It enable at developing reusable and scalable design
model through a large registry of design basic design models. It
takes advantage from model interfaces and aspect oriented model
weaving. The conception of a new design model can be obtained
by the composition of available design models in the registry. This

work has been improved with TouchCORE [52] which furnish
new features for model visualization, model editing model
assessment and composition traceability.

MPS [53] provided capabilities to define a DSL trough many
aspects: abstract aspects (metamodel), sematic aspects
(constraints), concrete syntaxes aspects (graphical editors),
generators aspects (model transformations) and many others (e.g.
behavior, type system, data flow or intentions) [54]. MPS furnish
two ways to reuse DSLs: the reference and the extension
mechanisms. The reference consists to use concepts from a given
DSL into another one. The extension allows extending a DSL from
another one by creating new concepts that inherit all the properties
and behavior of their parents [55].

MetaMod [56] is based on a metametamodel that provides
metatools to ease the creation and the reuse of DSLs. Convicted
that most of simple DSLs do not require more advanced
modularity, MetaMod defines the modularity at the value model
level provided by the metametamodel itself [57]. Furthermore,
having the same modularity mechanisms in many DSLs lead to
have robust DSLs, because easier to verify, more fit and easier to
learn as well. In addition, this facilitates the reuse of DSLs.
However, it limits capabilities of the DSLs if more advanced
modularity mechanisms are needed.

Cedalion [58,59] is built on top of Prolog. It provides features
for DSLs building with projectional editor trough the description
of model aspects such as semantics, structure, projection, and type
system definitions from other language workbenches. Cedalion
proposes a DSL reuse mechanism. However, because of the close
link between the structure of a language and its other aspects, this
makes the reuse difficult in Cedalion. In fact, all language aspects
of a DSL need to be reused. Nevertheless, extending a DSL with
only additional concepts is thus effortless [60].

Spoofax [61] is a language workbench dedicated to design
textual DSLs. The platform provides features for code generation,
parsers, type checkers, compilers, interpreters, and other tools from
language definitions. Spoofax furnishes an API for
programmatically composing abstract and concrete syntax of a
language. Within Spoofax, the management of modularity can be
managed directly in target generated language [62].

Xtext [63] is a textual language workbench based on EMF. It
provides tools to define textual DSLs. It furnishes a DSL reuse and
extending mechanisms. Reuse permits to cross reference concepts
between DSLs. Where, extending allows to a DSL to inherit from
another one and to override its grammar rules. However, it allows
only to completely overriding them. In addition, this extending
mechanism limits a DSL to only extend one other. Regarding the
dynamic semantics of the DSL, it can be implemented using other
languages such as Xtend [64].

Monticore [65,66] is a textual language workbench. It provides
modularity mechanisms that enable the compositional
development of textual DSLs and their supporting tools.
Especially, inheritance and embedding mechanisms are proposed.
Inheritance allow to extend a language where embedding allow to
compose different language fragments. Moreover, a special DSL
is proposed for the definition of compositional links between
languages.

Other works implemented approaches to provide DSMLs
composition and reuse capabilities. Pedro et al. [67] have

http://www.astesj.com/

A. Abouzahra et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 6, 358-371 (2018)

www.astesj.com 361

contributed with an automatic projection approach from
metamodels composition patterns into graphical syntax. In [68]
they go further more with a definition of operators to compose
DSMLs with a proposal for automatic mapping to graphical
syntax. Meyers et al. [69,70] proposes a template based technique
for the modular definition and composition of DSMLs, including
their abstract syntax, semantics, and concrete syntax (relying on
metaDepth [71]).

3. Problem Statement & Methodology

Software engineering is essentially involved in providing
textual or graphical languages to describe and set out artefacts of a
system; their structures, behaviors and interactions. DSMLs
provide capabilities to achieve this and allow designers to handle
these artefacts as models. Models are intended to be used by tools.
Thus, it should be defined a formal description of their concepts.
This well-established set of concepts is called a metamodel. This
is the principle of DSMLs design. Accordingly, composing
DSMLs is primarily a composition of their metamodels.

The composition of metamodels is special issue of a larger
problem in MDE, model composition. The composition of the
models is a topic of research in continual but very slow evolution
in the MDE. This is partly due to the miss of inspiration of patterns
from programming languages [72]. It also never has been the
subject to standardization like model transformation.

We can define a composition of models simply with a
composition operator ⊗ which is a function producing a composed
model C by using artifacts of two input models A and B:

  : A  B = C (1)

However, model composition can scope various meaning and
reach at least three dimensions: abstract syntax, concrete syntax,
and semantics [73]. As a DSML is a modeling language we can
take inspiration from the composition operation as it is defined in
modeling languages; an association of sub languages into one
integral language. Where sub artifacts are handled in their original
languages and the composed artifact acquire its semantics and its
syntax from the composition [74]. In addition, we can draw
inspiration from the composition operation as it is defined in
programming languages. There is a frank conjunction between the
semantic unit (i.e. class) that has a specific interface and the
syntactic unit (i.e. file) that is the encapsulation of the
implementation [72]. When semantic units are composed,
logically de facto the language tool composes the syntactic units.
Therefore, a successful approach of composition of DSMLs must
deal with the three composition dimensions and maintain the link
between abstract syntax (metamodels), concrete syntax and
semantics.

In the respect of the aforementioned, this work is an
exploratory study whose purpose is to explore means of composing
DSMLs by composing their metamodels and studies the projection
on their associated graphical editors. Indeed, an appropriate reuse
of their syntaxes and graphical editors can be performed. Defining
the way that metamodels will be composed implies the way that
syntaxes can be merged and editors can be reused. Furthermore, it
explores how to automate the composition of graphical editors of
the composed DSMLs by implementing a prototype of a
composition rules based code generator facility. For that the

proposed exploratory study is segmented into five steps as
described in Figure 1.

Figure 1. The process of the exploratory study.

A case study is first described. Then the rules for composition
of metamodels are defined; on the basis of which DSMLs artifacts
can be reused. Later, each is applied to a use case from the case
study in order to illustrate it. Next, to prove the concept of this
work, an implemented prototype of code generator facility for
extending new DSMLs based on the aforementioned composition
rules is presented. Finally, three parameters as indicators of
evaluation and performance are used to assess the contribution of
this study:

• The gain in terms of saved development time that can be
estimated via the percentage of the generated code.

• The gain in terms of reused components that can be estimated
via the percentage of reused code.

• The gain in terms of learnability, that can be estimated via the
part of kept features and interfaces.

These three parameters are measured and discussed in the
Section 5.

4. Exploratory Study

4.1. Case Study

Figure 2 represents excerpts of three simple metamodels
representing small DSMLs. Each metamodel relies on a different
concept.

Figure 2. Multipage, Sheet and Expression metamodels.

http://www.astesj.com/

A. Abouzahra et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 6, 358-371 (2018)

www.astesj.com 362

The first metamodel is the Multipage metamodel (MMMultipage).
It can be used to describe a multiple page structure. It allows
multiple pages to be contained under a single parent page.
According to (a), an instance of the metaclass MultiPage may
contain one or more children instances of the metaclass Page. The
second metamodel is the Sheet metamodel (MMSheet). It can be
used to describe a sheet containing a two dimension table.
According to (b), an instance of the metaclass Sheet contains a
collection of instances of the metaclass Row. Each of which
containing a collection of instances of the metaclass Cell. In
addition, the instance of Sheet defines instances of the metaclass
Column. Each defined instance of Cell is related to one of them.
The third metamodel is the Binary Expression metamodel
(MMExp). It can be used to describe a binary expression tree which
can contain numbers, variables, and unary or binary operators.
According to (c), an instance of the metaclass Expression is a tree
of nodes which can be instances of three metaclasses:
OperatorExp, IntegerExp and VariableExp. The OperatorExp
instances are contained in the internal nodes of the tree, where
instances of IntegerExp and VariableExp are contained in the leaf
nodes. Withal, an OperatorExp node may have two children nodes
for binary operators (left and right expressions), or one child node
for unary operators (only right expression). Each of these DSMLs
metamodels relies on a graphical or textual syntax that allows
expressing conforming models. Therewith, they are supported by
graphical interfaces: editors. Figure 3 shows screen shots of the
editors. The graphical syntax of the MMMultipage DSML (a)
expresses a MultiPage instance as a multiple tabs window. The
children instances of Page are embedded as a sequence of tabs in
the parent MultiPage instance. The associated editor has buttons to
add new tabs. The graphical syntax of the MMSheet DSML (b)
expresses an instance of Sheet as a two dimensions table with
indexed instances of Row and named instances of Column.
Instances of Cell are represented by the boxes of the table with
their values inside. The associated editor permits to extend or
reduce the table using a hold and move button. This way, the editor
allows creating new instances of Row and Column or deleting
existing ones. Indexes of Row instances are represented at the left
side of the table. Editing names of instances of Column and values
of instances of Cell is done via the textual edition of the related
boxes. The textual syntax of the MMExp DSML (c) expresses an
instance of Expression using a mathematical grammar where
parentheses represent internal nodes. The associated editor is a
textual file editor with syntax highlighting.

Figure 3. Multipage, Sheet and Expression concrete syntaxes.

This case study is used later to create step by step a new DSML
that meets the following requirements reusing DSMLs (a), (b) and
(c):

• RQ1. A sheet cell must be able to contain a binary
expression.

• RQ2. A binary expression defined inside a cell must be
able to reference the value of another cell of the sheet’s
table.

• RQ3. A multiple page must be able to be composed of
multiple sheet tabs.

In the following Subsections three rules for composing
metamodels are defined. Next, they are illustrated relying on the
above requirements. Each time a requirement is fulfilled it uses an
application of a defined rule. Besides, an investigation of the reuse
of the syntax and graphical artifacts of original DSMLs is realized.
It aims to obtain an extended DSMLs based on the performed
composition of metamodels expressed by means of the proposed
composition rules.

4.2. Composition Rules

To describe a composition rule, the following formalism is
used :

 Rule: MMA  MMB (arguments …) = MMC (2)

Where;

• MMA and MMB are metamodels to be composed.

• ⊗Rule is the composition rule.

• MMC is the composed metamodel.

Reference Rule

A reference rule allows the establishment of discrete
connections between instances of a model, conforming to MMC,
defined by concepts coming from MMA and MMB. It defines an
oriented binary association in MMC from a metaclass MT1 of MMA
toward a metaclass MT2 of MMB. It is used to connect one instance
of MT1 to many instances of MT2. It could be a simple link, an
aggregation or a composition. It must specify multiplicity to mean
how many instances of MT2 can be referenced from an instance of
MT1. The 𝑅𝑅𝑅𝑅𝑅𝑅 rule can be defined as follows :

Ref: MMA  MMB (MT1, MT2, [m1, m2], c1, c2) = MMC (3)

• [m1, m2] are integers to express multiplicity with a
minimum value m1 and a maximum value m2.

• c1 is a Boolean value to mean whether the reference
expresses a containment association (i.e. aggregation).

• c2 is a Boolean value to mean whether the reference
expresses a container association (i.e. composition).

• MMC is the composed metamodel.

Specialization Rule

The specialization rule permits to compose metamodels with
an inheritance concept similar to the concept of specialization in
object oriented programming. It allows to a metaclass MT1 from a
metamodel MMA to acquire all the properties and behaviors of
another metaclass MT2 from a metamodel MMB. Thus, attributes,

http://www.astesj.com/

A. Abouzahra et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 6, 358-371 (2018)

www.astesj.com 363

associations, or methods can be reused. The ⊗Spe rule can be
defined as follows :

 Spe: MMA  MMB (MT1, MT2) = MMC (4)

Fusion Rule

The fusion rule is used to bind metaclasses coming from
different metamodels in order to fusion them in the composed
metamodel. It allows a metaclass MT1 from a metamodel MMA and
a metaclass MT2 from a metamodel 𝑀𝑀𝑀𝑀𝐵𝐵 to form a new hybrid
metaclass 𝑀𝑀𝑀𝑀3 in the composed metamodel through over a
customized binding. The binding defines the matching between the
properties of metaclasses MT1 and MT2: attributes references and
methods. In addition it specifies those to keep and those to delete.
The ⊗Fus rule can be defined as follows:

 Fus: MMA  MMB (MT1, MT2, {bindings}) = MMC (5)

4.3. Rules Application

A ⊗Ref rule can be applied to fulfill the requirement RQ1.
Considering that MT1 is the Cell metaclass as defined in the
MMSheet metamodel and MT2 is the Expression metaclass as
defined in the MMExp metamodel. The ⊗Ref rule can be applied as
follows:

Refexpression:
MMSheet  MMExp (Cell, Expression, [0, 1], true, true) = MMC1

 (6)

By applying the ⊗Refexpression rule, the composed metamodel
MMC1 is obtained. MMC1 is shown in Figure 4, where the
⊗Refexpression rule is represented with the bold line starting with a
lozenge. The designed composition allows an instance of Cell to
contain an instance of Expression. The achieved composition is
projected in order to create a new extended graphical editor for the
new DSML (d). It is based on the MMC1 metamodel and reuses the
graphical artifacts of DSMLs (b) and (c). A mock-up of the
extended editor of (d) is shown in Figure 4 where the textual editor
of the DSML (c) is included in the top of the editor of the DSML
(b). According to (d), a sheet’s cell is able to contain the value of
a binary expression. Therefore, the cell’s value is the computed
value of an expression which can be edited in the top textual editor.

Similarly, another ⊗Ref rule can be applied to fulfill the
requirement RQ2. However, this time the ⊗Ref rule has to define
a simple link reference, from the metaclass VariableExp toward
the metaclass Cell. The ⊗Ref rule can be applied as follows :

RefrefersTo:
MMC1  MMC1 (VariableExp, Cell, [0, 1], false, false) = MMC2

 (7)

By applying the ⊗RefrefersTo rule, the composed metamodel
MMC2 is obtained. MMC2 is shown in Figure 4, where the
⊗RefrefersTo rule is represented with the bold arrow. The designed
composition allows the definition of cross references between cells
expression. In this way, an instance of Expression contained inside
an instance of Cell can reference the value of another instance of
Cell present in the table. Explained otherwise, an instance of
Expression which is structured as a tree can include in its nodes a

reference to an instance of Cell through an instance of
VariableExp. It is important to observe that this design adapts the
Cell’s instances to behave as Expression’s instances. It is worth
mentioning that such pattern, applied with the ⊗Ref rule can be
useful to solve situations where it is need to adapt concepts of
different metamodels when composing them. The achieved
composition is projected in order to create a new extended
graphical editor for the new DSML (e). It is based on the MMC2
metamodel and reuses the graphical artifacts of the DSML (d). A
mock-up of the extended editor of (e) is shown in Figure 4.
According to (e), a binary expression defined inside a cell must be
able to reference the value of another cell of the sheet’s table.
Therefore, the cell’s value is the computed value of an expression
which can use the computed values of expressions defined
elsewhere in the sheet.

A ⊗Spe rule can be applied to fulfill the requirement RQ3.
Considering that MT1 is the Sheet metaclass as defined in the MMC2
metamodel and MT2 is the Page metaclass as defined in the
MMMultipage metamodel. The ⊗Spe rule can be applied as follows:

 Spepage: MMc2  MMMultipahge (Sheet, Page) = MMc3 (8)

By applying the ⊗Spepage rule, the composed metamodel MMC3 is
obtained. MMC3 is shown in Figure 4, where the ⊗Spepage rule is
represented with the bold arrow. The designed composition allows
a sheet to be a kind of page and then to be a candidate to be a tab
of the multiple page. In this way an instance of Multipage can
contain instances of Sheet. Therefore, a multiple page is able to be
composed of multiple sheet tabs. The achieved composition is
projected in order to create a new extended graphical editor for the
new DSML (f). It is based on the MMC3 metamodel and reuses the
graphical artifacts of the DSML (f). A mock-up of the extended
editor of (f) is shown in Figure 4. According to (f), it is possible to
create multiple tabs of sheets using the means of the multipage
editor; i.e. the button that creates pages. The graphical interface of
a sheet is then embedded in the graphical container provided for a
page and behaves autonomously. However a question may arise
about the semantic and utility of the metaclass Page in MMC3. The
answer depends on the understanding of the requirement RQ3. If
it requires obtaining a multiple pages editor composed "only" of
sheet tabs. It is probably cleaner to merge metaclasses Page and
Sheet. Moreover, it would be clearer to give a new semantic to the
metaclass Multipage to indicate that it is a multiple sheets tabs.
This leads to define a new rule: the fusion rule.

A ⊗Fus rule can fulfill the requirement RQ3 in case it requires
obtaining a multiple pages editor composed only of sheet tabs.
Considering that MT1 is the Sheet metaclass as defined in the MMC3
metamodel and MT2 is the Page metaclass as defined in the
MMMultipage metamodel. The ⊗Fus rule can be applied as follows:

Fussheet:
MMc2  MMMultipage(Sheet, Page, {Sheet.name, Page.name})=MMc4

 (9)

By applying the ⊗Fussheet rule, the composed metamodel MMC4
is obtained. MMC4 is shown in Figure 4, where the ⊗Fussheet rule
had the apparent effect to superimpose the metaclasses Page and
Sheet in one metaclass. Additionally, the metaclass Multipage can
be renamed to Worksheet in order to give a better representative
name to the container of sheet tabs. The achieved composition
projected in order to create the extended graphical editor for the

http://www.astesj.com/

A. Abouzahra et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 6, 358-371 (2018)

www.astesj.com 364

The applications of composition rules on the case study.

http://www.astesj.com/

A. Abouzahra et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 6, 358-371 (2018)

www.astesj.com 365

new DSML. It is based on the MMC4 and leads to the graphical
editor of the DSML (g). It very close to the DSML (f) except that
the content of the multiple sheets (worksheet) can only be sheet
tabs. According to this new DSML, an instance of Worksheet can
be composed, and only composed, of multiple instances of Sheet.

4.4. Proof of Concept

In order to validate the approach exposed in this paper and
going further than the theoretical exposition, a Proof of Concept
(PoC) was achieved. For this purpose, a prototype of code
generator facility based on the aforementioned composition rules
was implemented. Then it was applied to our case study. However,
before doing so, it is necessary to implement the DSMLs (a) and
(b) used in the case study. Next, the metamodels of these DSMLs
are composed using one of the rules previously defined. Finally the
implemented prototype is used to project the composition onto the
graphical editors of DSMLs.

EMF is used to implement the PoC. EMF allows the generation
of class architecture that represents metamodel concepts. EMF
does not only generate Java classes, but also an associated
infrastructure. Thus, one benefits from the persistence of the model
in XML Metadata Interchange (XMI) [75] format, but also from a
set of tools to handle the model completely independent from the
objects it contains. This infrastructure makes it possible to build
higher level tools for processing models created with EMF. Within
this framework, one of the functionalities is notably the
visualization and the edition of models thanks to the EMF Edit
framework. Using the capabilities of EMF, the prototype of the
PoC aims to generate an overlay layer of code following the EMF
code generation. It must provide the necessary infrastructure to
make quick building of new DSMLs based on the composition of
their metamodels possible.

Figure 5. A class diagram representing EMF Impl generated classes for the

metaclass Page and an example of code usage.

The first step is obviously to implement metamodels. The PoC
use case relies only on the two metamodels Multipage and Sheet.
The EMF essential MOF [76] implementation (Ecore) is used to
describe metamodels. As aforementioned, EMF provides a code
generator facility to generate Java code from a metamodel
described in Ecore. It generates, inter-alia, two based packages:
One for model implementation (EMF Impl) and another one for
graphical user interface editing (EMF Edit). Figure 5 shows an
excerpt of the classes generated for the implementation of the
Multipage metamodel and an example of code usage for creating
and manipulating a Page instance.

Furthermore, EMF Edit provides capabilities to build a
graphical editor. It enables the visualization of model elements and
their command-based editing. Figure 6 shows an overview of the
architecture of a graphical editor build using the EMF Edit
generated code. This will be needed in order to understand the
solution exposed further in the paper since it extends the
mechanism of EMF Edit. The generated code includes:

• ItemProvider(s): They are generated for each class of the
metamodel. They are used to display model elements in a
graphical editor via an Adapter design pattern (a delegation
mechanism that makes it possible to "act as if" an object of
type A was an object of type B).

• ItemProviderAdapterFactory: It is used to group all
ItemProvider classes and provide a centralized mechanism to
request them.

• ContentProvider(s) and LabelProvider(s): They are used to
provide the display of an item. A ContentProvider retrieves
the content of an item displayed by a graphical interface where
the LabelProvider takes care of the visualization (image and
text) of the item. The ContentProvider(s) and
LabelProvider(s) can (and usually should) delegate to the
same AdapterFactory and, therefore, to the same
ItemProvider(s).

• ComposedAdapterFactory: It is useful in order to stick
different adapter factories (for individual models).

• EditingDomain: It is an editing command structure, including
a set of generic command implementation classes to build
editors that fully support, cancel and redo actions.

Figure 6. The architecture of a graphical editor built using EMF Edit.

http://www.astesj.com/

A. Abouzahra et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 6, 358-371 (2018)

www.astesj.com 366

Figure 7 shows a class diagram representing the EMF Edit
generated code for the Page class from the Multipage metamodel.

Figure 7. A class diagram representing EMF Edit generated classes for the

metaclass Page.

 8 shows an excerpt of
the Sheet editor implementation. It is important to mention that the
provision of the graphical content for each element of the model
was centralized in a creatCon-trol() method attached to its adapter
ItemProvider. The resulted editors match the screenshots shown in
Figure 3.

The code generator facility

As mentioned earlier, the PoC aims to implement a code
generator facility that allows generating a Java code overlay of the
generated EMF Edit code. It must provide the necessary
infrastructure to make it possible to quickly build (compose) new
DSMLs based on the composition of their metamodels; using the
composition rules defined in Subsection 4.2.

Figure 8. An excerpt from the code of the Sheet Editor.

http://www.astesj.com/

A. Abouzahra et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 6, 358-371 (2018)

www.astesj.com 367

Therefore, the adapters mechanism used by EMF Edit is
extended with the definition of a Java interface called
IExtendedGraphicalItemProvider. It specifies a contract of five
methods sufficient to create a graphical component connected to
an element of the model, to refresh it and to dispose it:

• createControl(): It centralizes the provision of the graphical
content of the model element.

• setModelElement(): It attaches the model element to its
provider.

• getModelElement(): It accesses the model element from the
provider.

• refresh(): It refreshes the graphical content of the model
element.

• dispose(): It disposes the graphical content of the model
element.

The implemented code generator facility modifies each edit
ItemAdapter class, already generated by EMF Edit, in order to
make it extend the IExtendedGraphicalItemProvider interface.
These methods must be implemented and used for the construction
of a new graphical editor. So far nothing new compared to the
classic use of EMF Edit adapters. Now, if a composition rule is
applied between two metamodels, these extended adapters come
into play with the use of the aforementioned methods.

Let us consider the following example to better illustrate these
statements. Let MMA and MMB be two metamodels related to two
DSMLs (α) and (β). Let MA be a model conforming to MMA and
MB be a model conforming to MMB. Let ⊗RuleC be a composition
rule MMA and MMB in order to create a new DSML (∂).
Considering that ⊗RuleC implies that an element A of the model
MA has to be linked to an element B of the model MB. A graphical
editor built using the architecture shown in Figure 6 makes that the
ItemProviderAdapterFactor calls the ItemProvider IPA related to
the element A to display it in the editor of (α). Likewise, the
ItemProviderAdapterFactor calls the ItemProvider IPB related to
the element B to display it in the editor of (β). In a new architecture
built using the extended code generator facility, the generated
adapters IPA and IPB will be linked with a generated link which
reflects the ⊗RuleC rule. Thus, IPA will directly call IPB for
displaying element B in the editor of (∂). Figure 9 schematizes this
new architecture. For example, a specialization rule will imply, at
the generated code, inheritance between IPA and IPB. Whereas
containment reference rule will imply encapsulation of methods
(defined by the interface IExtendedGraphicalItemProvider) of IPB
by those of IPA.

Demonstration of the generator
Let us return back to our case study to illustrate the extended

code generator facility through a second example. Let us consider
the composition rule ⊗Spepage outlined in Subsection 4.3. The rule
was applied on the implemented Ecore metamodels Sheet and
Multipage. Indeed, Ecore makes it possible to describe a link of
specialization between two metaclasses of two different
metamodels. Then, the EMF generator facility was used to
generate the EMF Impl code and the EMF Edit code. Finally, the
implemented code generator prototype was used to generate the
extension layer with the ItemProvider(s) that extend the
IExtendedGraphicalItemProvider interface. Figure 10 shows a
class diagram representing the generated ItemProvider(s).

The generated code was used to re-implement the graphical
editor of the composed DSML resulting of ⊗Spepage. An extended

Multipage editor has been obtained. It allows a multiple page to be
composed of multiple sheet tabs. Figure 11 shows an excerpt from
the code of the extended Multipage editor. It demonstrates how the
PageItemProvider delegates the creation of the graphical
component of an instance of Sheet, included under a Multipage
instance, to a SheetItemProvider. It takes advantage of the
polymorphism between the PageItemProvider and the
SheetItemProvider to call the appropriate graphical interface
creation method. In the same way, the code of the
MultipageItemProvider demonstrates how the refresh and dispose
methods can be called for each instance of Page contained in an
instance of Multipage. It takes advantage of polymorphism to
apply the appropriate method depending on whether the displayed
instance is an instance of Page or an instance of Sheet.

Figure 9. The architecture of a graphical editor built using the extended code

generator facility.

Figure 10. A class diagram representing the generated Item Providers using the

extended code generator facility.

In this paper we have conducted an exploratory study whose
goal is to explore means of composing DSMLs by composing their

http://www.astesj.com/

A. Abouzahra et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 6, 358-371 (2018)

www.astesj.com 368

Figure 11. An excerpt from the code of the Extended Multipage Editor.

http://www.astesj.com/

A. Abouzahra et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 6, 358-371 (2018)

www.astesj.com 369

metamodels and studies the projection on their associated
graphical editors. Three rules of composition were defined:
Reference, Specification and Fusion. Each has been applied to a
case study to illustrate its use. The impact of this composition on
graphic editors has been studied. We have shown how the actual
syntaxes of the originals DSMLs have been reused and composed
to give shape to the concrete syntax of the composed DSML.

5.1. Development Time
Saving time is saving money. Development time is a major

factor in software development. Indeed, with the multitude of
technology and the vertiginous speed with which languages of
programming develop. It is essential to minimize the development
time of new software. It is one of the MDE's battle horses as it
introduces the necessary abstraction to safeguard knowledge and
automate the projection to technological spaces. In our exploratory
study we have implemented a code generation prototype that
allows taking advantage of our composition rules. It allows
generating a layer of code that facilitates the composition of the
concrete syntaxes of composed DSMLs. We have implemented it
on our case study and we have shown an example in the previous
section. After the method usage, we can measure about some
preliminary results about the gain obtained by our approach in term
of development time by measuring the percentage of generated of
code. Because the percentage of code generated is directly
correlated to the development time earned. Indeed, the less time
spent writing the automatically generated code represents a time
gained directly on the development time. In addition, we measure
this value on both EMF Edit and our prototype. In this way we
show what we also gain compared to the EMF Edit Framework.

Table 1 presents a comparison results summary. The first
column lists the global number of line of code of each DSML. The
second column compares the number of line of generated code by
EMF Edit and by our generator facility. It worth to note that our
generator is only used after a composition. Therefore, it has been
used only for DSMLs (d), (e), (f) and (g). The third column shows
a percentage comparing between the two tools. This last result is
exploited in Fig. 12 to show by interpolation the potential gain in
terms of development time. It is important to remember that our
generator is an overlay of EMF Edit.

5.2. Code Ruse
One of our stated objectives in this study was the reuse of

software components. We explored the reuse of existing DSMLs
to extend or compose new ones. This reuse is reflected on the code
of the obtained DSML. Thus we measured the percentage of reused
code each time we extended our DSML in the application of the
exploratory study to the case study.

Table 2 shows the percentage of code reuse each time we
extended our DSMLs of the case study. It represents what we
reused after applying each composition rule.

5.3. Learnability

In our case study, 100% of the graphic components of the
original DSMLs were reused. Very few new graphical features
have been introduced in composed DSMLs. This is a very
important factor for the ease of learning of users. The learnability
of software is often overlooked. However, it is the most influential
aspect leading to the success of a software application.

In [78], authors noted that experience with similar software is a
major dimension of learnability.

Table 1. Comparison between EMF Edit and Our Generator.

 lines of
code

generated Lines % of generated code

EMF
Edit

Our
Generator

EMF
Edit

Our
Generator

DSML(a) 1108 803 72%
DSML(b) 2637 2369 90%
DSML(c) 2735 1112 41%
DSML(d) 3581 1532 3481 43% 97%
DSML(e) 3631 1532 3481 42% 96%
DSML(f) 4589 1916 4309 42% 94%
DSML(g) 4535 1901 4264 42% 94%

Figure 12. Gain in terms of development time.

Table 2. Percentage of reused after extending DSMLs.

 lines of code % of reused code

DSML(d) 3581 97%
DSML(e) 3631 99%
DSML(f) 4589 97%
DSML(g) 4535 97%

6. Conclusions

This paper investigated the problem of extending DSMLs by
composition their metamodels through an exploratory study. It
exposes how DSMLs can be reused to rapidly create new ones with
low cost. For this purpose three rules to compose DSMLs
metamodels were specified: reference, specialization and fusion.
A case study was used to illustrate the approach. In addition, the
paper presented the implementation of a prototype of a code
generator facility based on the aforesaid three composition rules.
This prototype is then applied to the case study in order to validate
our approach and measure its advantages. Compared to other
works, our approach presents advantages, mainly by providing a
higher level of reuse of DSMLs artefacts and by providing an
automatic generation that facilitates the implementation of DSMLs
tools and save development time. In addition, it keeps the graphics
interfaces of the original DSMLs thus significantly improving the
ease of learning of the new DSMLs.

The main contributions of the paper were: (i) the evaluation of
the approach through an exploratory method; and (ii) the

http://www.astesj.com/

A. Abouzahra et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 6, 358-371 (2018)

www.astesj.com 370

implementation and the experimentation of the code generator
facility prototype. Nevertheless, this work is only at its beginning.
Indeed, it can be interesting to enlarge the set of composition rules,
getting inspired by other principles and patterns coming from
modeling languages and programming languages such as:
encapsulation, substitution, adaptation and many others.
Moreover, it can be interesting to take into account the
composability properties of metamodels. Otherwise, the case study
used in this study is very simple. It is a choice of writers to better
illustrate the approach. However, it can exaggerate the results
obtained from the fact of this simplicity.

Conflict of Interest

The authors declare no conflict of interest.

Acknowledgment

We express our respected gratitude goes to Ibn Zohr University,
LabSIV laboratory, Ibn Zohr Doctoral Study Center and Faculty
of Sciences of Ibn Zohr University for funding this research..

References

[1] A. Abouzahra, A. Sabraoui, K. Afdel, “A Metamodel Composition Driven
Approach to Design New Domain Specific Modeling Languages” in 1st
European Conference on Electrical Engineering and Computer Science, Bern,
Switzerland, 2017. https://doi.org/10.1109/EECS.2017.30

[2] T. Mens, "A State-of-the-Art Survey on Software Merging" IEEE Trans.
Softw. Eng. 28(5), 449-462, 2002.
https://doi.org/10.1109/TSE.2002.1000449

[3] S. Kent, "Model Driven Engineering" Lect. Notes. Comput. Sc., 2335, 286-
298, 2002. https://doi.org/10.1007/3-540-47884-1_16

[4] D. C. Schmidt, "Guest Editor's Introduction: Model-Driven Engineering"
Computer., 39(2), 25-31,2006.https://doi.org/10.1109/MC.2006.58

[5] R. Reddy, R. France, S. Ghosh, F. Fleurey, B. Baudry, “Providing Support for
Model Composition in Metamodels” in 11th IEEE International Enterprise
Distributed Object Computing Conference, Annapolis, MD, USA, 2007.
https://doi.org/ 10.1109/EDOC.2007.55

[6] J. Estublier, G. Vega, A. D. Ionita, “Composing Domain-Specific Languages
for Wide-Scope Software Engineering Applications” Lect. Notes. Comput.
Sc., 3713, 69-83, 2005. https://doi.org/10.1007/11557432_6

[7] F. Fleurey, B. Baudry, R. France, S. Ghosh, “A Generic Approach for
Automatic Model Composition” Lect. Notes. Comput. Sc., 5002, 7-15, 2008.
https://doi.org/10.1007/978-3-540-69073-3_2

[8] J. Bézivin, R. F. Paige, U. Assmann, B. Rumpe, D. C. Schmidt, “Manifesto -
Model Engineering for Complex Systems” Dagstuhl Seminar Proceedings,
08331, 2008.

[9] D. S. Kolovos, L. M. Rose, N. Matragkas, R. F. Paige, E. Guerra, J. S.
Cuadrado, J. De Lara, I. Ráth, D. Varró, M. Tisi, J. Cabot, "A research
roadmap towards achieving scalability in model driven engineering" in
Workshop on Scalability in Model Driven Engineering (BigMDE '13), New
York, USA, 2013.https://doi.org/10.1145/2487766.2487768

[10] B. Rumpe, “Towards model and language composition” in 1st Workshop on
the Globalization of Domain Specific Languages (GlobalDSL '13), New
York, USA, 2013.https:// doi.org/10.1145/2489812.2489814

[11] A. Horst, B., Rumpe, “Towards Compositional Domain Specific Languages”
Ceur. Workshop. Procee., 1112, 7-16, 2013.

[12] U. Hohenstein and C. Elsner, “Model-driven development versus aspect-
oriented programming a case study” in 9th International Conference on
Software Paradigm Trends (ICSOFT-PT), Vienna, Austria, 2014.
https://doi.org/ 10.5220/0004999901330144

[13] S. Dmitriev, Language oriented programming - the next programming
paradigm, http://www.onboard.jetbrains.com/articles/04/10/lop/, accessed 21
November 2018.

[14] J.A. Pereira, K. Constantino, E. Figueiredo, “A Systematic Literature Review
of Software Product Line Management Tools” Lect. Notes. Comput. Sc.,
8919, 73-89, 2014. https://doi.org/10.1007/978-3-319-14130-5_6

[15] J. White, J. H. Hill, J. Gray, S. Tambe, A. S. Gokhale, D. C. Schmidt,
“Improving Domain-Specific Language Reuse with Software Product Line
Techniques” IEEE Software., 26(4), 47-53, 2009.
https://doi.org/10.1109/MS.2009.95

[16] The Epsilon Homepage, https://www.eclipse.org/epsilon/, accessed 21
November 2018.

[17] The Epsilon Merging Language (EML) Homepage,
http://www.eclipse.org/epsilon/doc/eml/, accessed 21 November 2018.

[18] D. S. Kolovos, R. F. Paige, F. A. C. Polack, “Merging models with the epsilon
merging language (EML)” Lect. Notes. Comput. Sc., 4199, 215-229, 2006.
https://doi.org/10.1007/11880240_16

[19] D. Kolovos, “Merging Models with the Epsilon Merging Language - A
Decade Later”, in 19th ACM/IEEE International Conference on Model
Driven Engineering languages and Systems, Saint-Malo, France, 2016.

[20] M. D. Del Fabro, P. Valduriez, “Towards the efficient development of model
transformations using model weaving and matching transformations” Softw.
Syst. Model., 8(3), 305-324, 2009. https://doi.org/10.1007/s10270-008-0094-
z

[21] The MOMENT web site, http://moment.dsic.upv.es//, accessed 21 November
2018.

[22] A. Boronat, “MOMENT: A Formal Framework for MOdel managemMENT”
Ph.D Thesis, Universitat Politècnica de València, 2007.

[23] The Eclipse Modeling Framework (EMF) Homepage,
http://www.eclipse.org/modeling/emf/, accessed 21 November 2018.

[24] A. Boronat, J. Á. Carsí, I. Ramos, “Automatic Support for Traceability in a
Generic Model Management Framework” Lect. Notes. Comput. Sc., 3748,
316-330, 2005. https://doi.org/10.1007/11581741_23

[25] QVT, The MOF Query/View/Transformation specification page,
http://www.omg.org/spec/QVT/, accessed 21 November 2018.

[26] A. Boronat, J. Á. Carsí, I. Ramos, P. Letelier, “Formal model merging applied
to class diagram integration” Electron. Notes Theor. Comput. Sci., 166, 5-26,
2007. https://doi.org/10.1016/j.entcs.2006.06.013

[27] T. Degueule, B. Combemale, A. Blouin, O. Barais, J.M. Jézéquel, “Melange:
a meta-language for modular and reusable development of DSLs” in 2015
ACM SIGPLAN International Conference on Software Language
Engineering (SLE 2015), New York, USA, 2015.
https://doi.org/10.1145/2814251.2814252.

[28] T. Degueule, B. Combemale, A. Blouin, O. Barais, J. M. Jézéquel,
“Safemodel polymorphism for flexible modeling” Comput. Lang. Syst.
Struct, 49(C),176-195, 2017. https://doi.org/10.1016/j.cl.2016.09.001

[29] S. Kelly, K. Lyytinen, M. Rossi, “Metaedit + a fully configurable multi-user
and multi-tool case and came environment” Lect. Notes. Comput. Sc., 1080,
1-21, 1996. https://doi.org/10.1007/3-540-61292-0_1

[30] S. Kelly, J. P. Tolvanen, Domain-specific modeling: enabling full code
generation , John Wiley & Sons, 2008.

[31] S. Erdweg, T. van der Storm, M. Völter, L. Tratt, R. Bosman, W. R. Cook, A.
Gerritsen f, Angelo Hulshout g, Steven Kelly h, Alex Loh c, Gabriël Konat i,
Pedro J. Molina j, Martin Palatnik, R. Pohjonen, E. Schindler, K. Schindler,
R. Solmi, V. Vergu, E. Visser, K. van der Vlist, G. Wachsmuth, J. van der
Woning, “Evaluating and comparing language workbenches: existing results
and benchmarks for the future” Comput. Lang. Syst. Struct., 44(PA), 24-47,
2015. https://doi.org/10.1016/j.cl.2015.08.007

[32] H. Berg, B. Møller-Pedersen, “Type-Safe Symmetric Composition of
Metamodels Using Templates” Lect. Notes. Comput. Sc., 7744, 160-178,
2012. https://doi.org/10.1007/978-3-642-36757-1_10

[33] H. Berg, B. Møller-Pedersen, “Metamodel and Model Composition by
Integration of Operational Semantics” Comm. Com. Inf. Sc., 580, 172-189,
2015. https://doi.org/10.1007/978-3-319-27869-8_10

[34] Schmidt, M., Wenzel, S., Kehrer, T., Kelter, U., “History-based merging of
models” in 2009 ICSE Workshop on Comparison and Versioning of Software
Models (CVSM '09), Washington, USA, 2009.
https://doi.org/10.1109/CVSM.2009.5071716

[35] H. K. Dam, A. Egyed, M. Winikoff, A. Reder, R. E. Lopez-Herrejon,
“Consistent merging of model versions” J. Syst. Softw., 112(C), 137-155,
2016. https://doi.org/10.1016/j.jss.2015.06.044

[36] D. Zhang, S. Li, X. Liu, “An Approach for Model Composition and
Verification” in 1th IEEE Computer Society International Joint Conference
on INC, IMS and IDC, Seoul, South Korea, 2009.
https://doi.org/10.1109/NCM.2009.271

[37] The Alloy Homepage. http://alloy.mit.edu, accessed 21 November 2018.
[38] D. Jackson, “a lightweight object modelling notation” ACM Trans. Softw.

Eng. Methodol., 11(2), 256-290, 2002.
https://doi.org/10.1145/505145.505149.

[39] The Eclipse Graphical Modeling Framework (GMF) Homepage,
http://www.eclipse.org/modeling/gmf/, accessed 21 November 2018.

[40] The Eclipse Modeling Project (EMP) Homepage,
http://www.eclipse.org/modeling/, accessed 21 November 2018.

[41] Á. Lédeczi, A. Bakay, M. Maroti, P. Volgyesi, G. Nordstrom, J. Sprinkle, G.
Karsai, “Composing domain-specific design environments”, Computer.,
34(11), 44-51, 2001. https://doi.org/10.1109/2.963443

[42] Á. Lédeczi, G. Nordstrom, G. Karsai, P. Volgyesi, M. Maroti, “On metamodel
composition” in 2001 IEEE International Conference on Control Applications
(CCA'01), Mexico City, Mexico, 2001.
https://doi.org/10.1109/CCA.2001.973959

http://www.astesj.com/

A. Abouzahra et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 6, 358-371 (2018)

www.astesj.com 371

[43] J. M. Jézéquel, “Model driven design and aspect weaving” Softw. Syst.
Model., 7(2), 209-218, 2008. https://doi.org/10.1007/s10270-008-0080-5

[44] O. Barais, J. Klein, B. Baudry, A. Jackson, S. Clarke, “Composing multi-view
aspect models” in 7th International Conference on Composition-Based
Software Systems (ICCBSS 2008), Washington, USA, 2008.
https://doi.org/10.1109/ICCBSS.2008.12 2008

[45] P. Sánchez, L. Fuentes, D. Stein, S. Hanenberg, R. Unland, “Aspect-oriented
model weaving beyond model composition and model transformation” Lect.
Notes. Comput. Sc., 5301, 766-781, 2008. https://doi.org/10.1007/978-3-540-
87875-9_53

[46] A. Hovsepyan, S. Van Baelen, Y. Berbers, W. Joosen, “Specifying and
Composing Concerns Expressed in Domain-Specific Modeling Languages”,
In M. Oriol, B. Meyer (Ed.), Objects, Components, Models and Patterns, Lect.
Notes. Bus. Inf., 33, 116-135, 2009. https://doi.org/10.1007/978-3-642-
02571-6_8

[47] M. P. Cardoso, T. Carvalho, J. G. F. Coutinho, W. Luk, R. Nobre, P. Diniz,
Z. Petrov, “LARA: an aspect-oriented programming language for embedded
systems” in 11th annual international conference on Aspect-oriented Software
Development, New York, USA, 2012.
https://doi.org/10.1145/2162049.2162071

[48] P. Pinto, T. Carvalho, J. Bispo, M. A. Ramalho, J. M. P. Cardoso, “Aspect
composition for multiple target languages using LARA” Comput. Lang. Syst.
Struct, 53, 1-26, 2018. https://doi.org/10.1016/j.cl.2017.12.003

[49] J. Whittle, P. Jayaraman, A. Elkhodary, A. Moreira, J. Araúj, “MATA: A
unified approach for composing UML aspect models based on graph
transformation” Lect. Notes. Comput. Sc., 5560, 191-237, 2009.
https://doi.org/10.1007/978-3-642-03764-1_6

[50] J. Whittle, P. Jayaraman, “MATA: A Tool for Aspect-Oriented Modeling
Based on Graph Transformation” Lect. Notes. Comput. Sc., 5002, 16-27,
2008. https://doi.org/10.1007/978-3-540-69073-3_3

[51] M. Schöttle, O. Alam, FP. Garcia, G. Mussbacher, J. Kienzle, “TouchRAM:
a multitouch-enabled software design tool supporting concern-oriented reuse”
in 13th International Conference on Modularity. New York, USA, 2014.
https://doi.org/10.1145/2584469.2584475

[52] M. Schöttle, N. Thimmegowda, O. Alam, J. Kienzle, G. Mussbacher, “Feature
modelling and traceability for concern-driven software development with
TouchCORE” in 14th International Conference on Modularity, New York,
USA, 2015. https:// doi.org/10.1145/2735386.2735922

[53] M. Voelter, “Language and IDE modularization, extension and composition
with MPS” Lect. Notes. Comput. Sc., 7680, 383-430, 2013.
https://doi.org/10.1007/978-3-642-35992-7_11

[54] M. Voelter, J. Warmer, B. Kolb, “Projecting a modular future” IEEE.
Software., 32(5), 46-52, 2015. https://doi.org/10.1109/MS.2014.103

[55] M. Voelter, B. Kolb, T. Szabó, D. Ratiu, A. van Deursen, “Lessons learned
from developing mbeddr: a case study in language engineering with MPS”
Softw. Syst. Model., 17(66), 1-46, 2017. https://doi.org/10.1007/s10270-016-
0575-4

[56] A. M. Şutîi, “MetaMod: a modeling formalism with modularity at its core” in
30th IEEE/ACM International Conference on Automated Software
Engineering, Lincoln, USA, 2015. https://doi.org/10.1109/ASE.2015.29

[57] A. M. Şutîi, M. Van Den Brand, T. Verhoeff, “Exploration of modularity and
reusability of domain-specific languages: an expression DSL in MetaMod”
Comput. Lang. Syst. Struct., 51(C), 48-70, 2018.
https://doi.org/10.1016/j.cl.2017.07.004

[58] D. H. Lorenz, B. Rosenan, “Cedalion: a language for language oriented
programming” SIGPLAN. Not., 46(10), 733-752, 2011.
https://doi.org/10.1145/2076021.2048123

[59] D. H. Lorenz, B. Rosenan, “Code reuse with language oriented programming”
Lect. Notes. Comput. Sc., 6727, 167-182, 2011. https://doi.org/10.1007/978-
3-642-21347-2_13

[60] D. H., Lorenz, B. Rosenan, “CEDALIONs Response to the 2016 Language
Workbench Challenge”, in LWC@SLE 2016 Language Workbench
Challenge at the 2016 ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications, Amsterdam,
Netherlands, 2016.

[61] L. C. L. Kats, E. Visser, “The Spoofax language workbench: rules for
declarative specification of languages and IDEs” SIGPLAN. Not., 45(10),
444-463, 2010. https://doi.org/10.1145/1932682.1869497

[62] M. Voelter, S. Benz, C. Dietrich, B. Engelmann, M. Helander, L. C. L. Kats
Kats, E. Visser, G. Wachsmuth, DSL engineering: Designing, implementing
and using domain-specific languages, dslbook.org, 2013.

[63] The Xtext Homepage, http://www.eclipse.org/Xtext/, accessed 21 November
2018.

[64] L. Bettini, Implementing domain-specific languages with Xtext and Xtend,
Packt Publishing Ltd, 2016.

[65] H. Krahn, B. Rumpe, S. Völkel, “Monticore: Modular development of textual
domain specific languages” Lect. Notes. Bus. Inf., 11, 297-315, 2008.
https://doi.org/10.1007/978-3-540-69824-1_17

[66] H. Krahn, B. Rumpe, S. Völkel, “MontiCore: a framework for compositional
development of domain specific languages” Int. J. Softw. Tools Technol.
Transf., 12(5), 353-372, 2010. https://doi.org/10.1007/s10009-010-0142-1

[67] L. Pedro, V. Amaral, D. Buchs, “Foundations for a domain specific modeling
language prototyping environment: A compositional approach” in 8th
OOPSLA workshop on domain-specific modeling. In Companion to the 23rd
ACM SIGPLAN conference on Object-oriented programming systems
languages and applications (OOPSLA Companion '08). ACM, New York,
USA, 2008. https://doi.org/10.1145/1449814.1449886

[68] L. Pedro, M. Risoldi, D. Buchs, B. Barroca, V. Amaral, “Composing Visual
Syntax for Domain Specific Languages” Lect. Notes. Comput. Sc., 5611, 889-
898, 2009. https://doi.org/10.1007/978-3-642-02577-8_97

[69] B. Meyers, “A Multi-Paradigm Modelling Approach for the Engineering of
Modelling Languages” Ceur. Workshop. Procee., 1321, 2-9, 2015.

[70] B. Meyers, A. Cicchetti, E. Guerra, J. de Lara, “Composing textual modelling
languages in practice” in 6th International Workshop on Multi-Paradigm
Modeling, New York, USA, 2012. https://doi.org/10.1145/2508443.2508449

[71] J. De Lara, E. Guerra, “Deep metamodelling with metaDepth” Lect. Notes.
Comput. Sc., 6141, 1-20, 2009. https://doi.org/10.1007/978-3-642-13953-6_1

[72] C. Herrmann, H. Krahn, B, Rumpe, M. Schindler, S. Völkel, “An Algebraic
View on the Semantics of Model Composition” Lect. Notes. Comput. Sc.,
4530, 99-113, 2007. https://doi.org/10.1007/978-3-540-72901-3_8

[73] S. Kelly, J. P. Tolvanen, Domain-Specific Modeling: Enabling Full Code
Generation, Wiley, 2008.

[74] S. Völkel, “Kompositionale entwicklung domänenspezifischer sprachen,”
Ph.D Thesis, Technical University Carolo-Wilhelmina, 2011.

[75] The Xml Metadata Interchange (XMI) Specification page,
http://www.omg.org/mof/ http://www.omg.org/spec/XMI/, accessed 21
November 2018.

[76] The MetaObject Facility (MOF) Specification page,
http://www.omg.org/mof/, accessed 21 November 2018.

[77] The Eclipse Standard Widget Toolkit (SWT) Homepage,
https://www.eclipse.org/swt/, accessed 21 November 2018.

[78] T. Grossman, G. W. Fitzmaurice, R. Attar, “A survey of software learnability:
metrics, methodologies and guidelines” in 27th International Conference on
Human Factors in Computing Systems, New York, USA, 2009.
https://doi.org/10.1145/1518701.1518803

http://www.astesj.com/
http://www.omg.org/spec/XMI/
http://www.omg.org/mof/

	2. Related Works
	2.1. In MDE
	2.2. In AOP
	2.3. In LOP

	3. Problem Statement & Methodology
	4. Exploratory Study
	4.1. Case Study
	4.2. Composition Rules
	Reference Rule
	Specialization Rule
	Fusion Rule

	4.3. Rules Application
	4.4. Proof of Concept
	Implementation of original DSMLs
	The code generator facility
	Demonstration of the generator

	5. Results and Discussion
	5.1. Development Time
	5.2. Code Ruse
	5.3. Learnability

	6. Conclusions
	Conflict of Interest
	Acknowledgment
	References

