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 Almost every cells in human’s body contain the same number of genes so what makes them 
different is which genes are expressed at any time. Measuring gene expression can be done 
by measuring the amount of mRNA molecules. However, it is a very expensive and time 
consuming task. Using computational methods can help biologists to perform gene 
expression measurements more efficiently by providing prediction techniques based on 
partial measurements. In this paper we describe how we can recover a gene expression 
dataset by employing Euclidean distance, Pearson correlation coefficient, Cosine similarity 
and Robust PCA. To do this, we can assume that the gene expression data is a matrix that 
has missing values. In that case the rows of the matrix are different genes and columns are 
different subjects. In order to find missing values, we assume that the data matrix is low 
rank. We then used different correlation metrics to find similar genes. In another approach, 
we employed RPCA method to differentiate the underlying low rank matrix from the sparse 
noise. We used existing implementations of state-of-the-art algorithms to compare their 
accuracy. We describe that RPCA approach outperforms the other approaches with 
reaching improvement factors beyond 4.8 in mean squared error. 
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1. Introduction  

This paper is an extension of works originally presented in 
ICCABS 2017 (International Conference on Computational 
Advances in Bio and Medical Sciences) [1] and CSCI 2017 
(International Conference on Computational Science and 
Computational Intelligence) [2]. 

Almost every cell in an organism’s body contain the same 
genetic information and series of genes, what makes cells different 
is which genes are expressed at any time. Gene expression is what 
makes a blood cell different from a liver cell and a normal healthy 
cell from an abnormal one (like a cancer cell) [3]. Gene expression 
process has two steps, transcription and translation. Transcription 
means a particular part of DNA is encoded into messenger RNA 
(mRNA) and in translation, mRNA is decoded to build a protein 
that contains a specific series of amino acids. We can measure the 
gene expression level by measuring the amount of mRNA inside 
the cell. Each step of the process is regulated by control points that 
determine the presence and the amount of proteins in any specific 
cell [4]. Usually a group of genes work accordingly to manage 
every simple or complex process that control the structure and 
actions of the cells. This means that group of genes must work 

together in order to control structure and actions of cells [5]. 
Knowing this, we can conclude that the gene expression levels 
should be highly correlated so if the data has missing values, we 
might be able to predict them based on the correlation between 
genes. 

Recently scientists have the opportunity to find the association 
between genes and diseases using some methods. Examples of this 
methods are RNA sequencing, northern blotting, western blotting, 
DNA microarray, fluorescent in situ hybridization and reporter 
gene. However the costs of measuring gene expression levels are 
extremely high and also the complete process needs a huge amount 
of time [6] which makes it difficult to measure and access this 
information. Also gene expression data usually suffers from 
missing values. This can happen due to some reasons like failures 
in hybridization, noise in data and also data corruption. Missing 
values in gene expression data can negatively affect gene disease 
studies [7]. Since due to the huge amount of time and money 
needed for repeating the measurements, an alternative way is to 
use computational methods which can be employed to predict the 
missing values and recover the dataset. So there is a high demand 
for novel techniques to find the missing values. 

The first step to make our model is to store gene expression 
data in matrices where each row is a different gene, each column 
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is a different disease and the entries of the matrix are the gene 
expression values (mRNA measurements) of corresponding rows 
and columns [8]. Based on this model we can assume that people 
with similar diseases show similar expression patterns so the gene 
expression data matrix must be highly overdetermined and 
significantly low rank [9].  

1.1. Recommendation system 

Recommendation systems rely on information filtering in order 
to deal with data overload by filtering necessary information which 
is significantly less than total data of users’ preferences, interests 
or observations about an item. Recommender systems have the 
ability to recommend a new movie to a specific user based on 
his/her previous preferences [10]. Recently different designs for 
recommendation systems have been proposed which are based on 
one of these methods: collaborative filtering method [11], content-
based filtering method [12] and hybrid filtering method [13]. 

1.2. Collaborative Filtering Method 

Collaborative filtering method recommends item to users by 
recognizing users with similar tastes. It combines other ratings in 
order to recommend new items to each specific user. Collaborative 
filtering techniques are categorized into two groups: model-based 
technique and memory-based technique. The main goal for model 
based method is making a model and extract the necessary part of 
the data matrix so there is no need to use the entire dataset in order 
to make predictions [14]. Memory based technique uses previously 
collected data in order to predict the missing ratings and they use 
the entire user-item database. The common memory based method 
is based on nearest neighbors and uses a distance measure metric 
to find the neighbors [15]. This is also called neighborhood based 
approach which similar users are grouped together based on their 
interests [16]. 

Netflix is an example of recommendation systems that can 
benefit from collaborative filtering technique. For the Netflix 
example, the proposed model contains a *m n  matrix.  Each row 
of the matrix corresponds to a different user and each column 
corresponds to a different movie and the entries of the matrix are 
the ratings users gave to the movies. The data matrix is very sparse 
because most users usually tend to rate a very small fraction of the 
movies, the matrix is very sparse. So the goal is to find the hidden 
pattern and predict the missing values in order to make a 
recommendation to users for the movies that they have not 
watched yet.  

1.3. Low Rank Matrix Completion 

Matrix completion (MC) involves recovering an incomplete 
matrix where only a small fraction of its entries are known which 
is significantly smaller than the total size of the matrix. Low rank 
MC problem can be seen in different practical contexts such as 
image processing [17], machine learning [18] and bioinformatics 
[19]. To solve this problem, we should find the lowest rank matrix 
which is consistent with the known values of the incomplete 
matrix. We can write:   

 
minimize  rank (Y)

such that ( )  ( )R Y R Xω ω=  (1) 

Here X  is the incomplete matrix that we want to reconstruct, 
ω  shows the known values such that ( , )a b ω∈  if ,a bX  is known. 
Rω  is the orthogonal projection matrix where: 

 ,

,        ( , )
( )

0,         ( , )a b

X a b
R X

a bω

ω
ω

∈
=  ∉

  (2) 

Because the rank minimization problem is NP-hard, this   
problem can be remodeled as minimizing trace norm or nuclear 
norm. Nuclear norm is the sum of singular values of the given 
matrix [20]. The reason is that a rank r  matrix with has exactly r  
singular values which are greater than zero. The nuclear norm of 
matrix Z  is defined as: 

 *
1

r

a
a

Z σ
=

= ∑  (3) 

Where: 

 aσ  is the ath singular value (nonzero) of matrix Z  and r  is 
the rank of matrix Z . 

 So we can rewrite the problem as: 

 
*

minimize  ( Y )

such that ( )  ( )R Y R Xω ω=
 (4) 

The advantage of using nuclear norm over minimizing the rank 
is that its optimum point can be calculated efficiently and it is 
convex.   

1.4. Robust PCA method (RPCA) 

One problem with gene expression datasets is the presence of 
noise in expression measurements. This happens because of some 
reasons like different degrees of uniformity, small spots, process 
errors and also inconsistency in hybridization. 

For the aim of showing the most variability of the data for a 
noise free dataset, we can easily perform PCA using SVD (singular 
value decomposition). In the presence of noise we can use RPCA 
in order to reconstruct a low rank matrix and find the sparse noise. 
Assume that our data matrix E  is decomposed as: 

 E Y S= +  (5) 

Where Y is the underlying low rank matrix and S  is a sparse 
matrix capturing noise. Because the number of unknowns to infer 
for  and Y S  is considerably higher than known values in E , this 
problem is overdetermined. So we need to use tractable convex 
optimization as denoted by: 

 * 1
minimize  
subject to 

Y S
Y S E

λ+

+ =
 (6) 

Where ,1 , i ji j
S S= ∑  is the 1 -norm of S and λ is a 

parameter.  This should work even in the situations when the rank 
of Y  is not low rank (when rank is equal to the dimension of the 
matrix). For RPCA method to work efficiently, we need to know 
the location of the non-zero entries in matrix S . Problem (6) can 
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be solved at a cost not so much higher than classical PCA [21].  
One of the methods that can be employed here is the Alternating 
Direction Method of Multipliers (ADMM) that we will summarize 
in the next section. 

1.5. The ADMM method 

The ADMM method is a powerful method because it mixes 
two methods of multipliers and dual ascent. The algorithm solves 
the problems in the form: 

 
min   ( ) ( )
such that 

f a g b
Xa Yb z
+

+ =
 (7) 

Where  and f g  are both convex. The optimal value for the 
problem above is defined as: 

 * inf{ ( ) ( ) | }p f a g b Xa Yb z= + + =  (8) 

Here the augmented Lagrangian is: 

 2

( , , ) ( ) ( ) ( )

2

T

F

L a b m f a g b m Xa Yb z

Xa Yb z

ρ

ρ

= + + + − +

+ −‖ ‖
 (9) 

Where m  is the Lagrangian multiplier and 0ρ >  is a 
parameter. ADMM method consists of the multiple iterations as 
denoted below: 

 

1

1 1

1 1 1

( , , )

( , , )

( )

k k k k
a

k k k k
b

k k k k

a arg minL a b m

b arg minL a b m

m m Xa Yb z

ρ

ρ

ρ

+

+ +

+ + +

=

=

= + + −

 (10) 

The algorithm consists of multiple steps: 

1. An a-minimizing step 
2. A b-minimizing step and  
3. A variable update.  

In the last step (variable update step) the step size is equal to 
the m  (the augmented Lagrangian parameter).    

2. Methods 

2.1. Correlation based Matrix Completion method 

The main goal of the correlation based matrix completion 
method (CMC) is finding correlation between genes (neighbors). 
To predict a value for a missing entries, we need to consider all 
other subjects' expression values. If a gene is more similar to the 
one with a missing value, its expression value has more impact on 
the predicted value. For finding correlation between genes, we will 
use Pearson correlation coefficient (PCC), Euclidean distance 
(ED) and Cosine similarity (CS). 

Pearson Correlation Coefficient  

PCC is a common measure of linear dependency between two 
variables. The PCC can take any value from 1- (means negative 

association) to 1 (means positive association) with 0 indicating 
orthogonality. The PCC can be calculated by: 

 1

2 2

1 1

( )( )

( ) ( )

m

k k
k

m m

k
k k

k

x x y y
PCC

x x y y

=

= =

− −
=

− −

∑

∑ ∑
 (11) 

      Or: 

 
2 2 2 2

( ) ( )( )
[ ( ) ][ ( ) ]

n xy x yPCC
n x x n y y

Σ − Σ Σ=
Σ − Σ Σ − Σ

 (12) 

Where  and X Y  are two datasets.  

Euclidean Distance 

Euclidean distance (ED) is a metric that if x and y have zero 
distance, then x = y holds. ED between two points (x and y) can 
be calculated by: 

 2

1

n
i ii

ED x y x y
=

= − = −∑  (13) 

Cosine Similarity 

The Cosine Similarity (CS) is a metric of the cosine of the 
angle between two vectors. This is a measurement of orientation 
instead of magnitude. Like PCC, CS can take any value from 1- 
(means negative association) to 1 (means positive association) 
with 0 indicating orthogonality. The CS value can be calculated 
as shown below: 

 2

1

2

1 1

.

.

m

k k
k

m m

k
k k

k

x y
x ycos

x y
x y

θ =

= =

= =
∑

∑ ∑

 

 
‖ ‖‖ ‖  (14) 

And the dot product: 

 . . .x y x y cosθ=
   

‖ ‖‖ ‖  (15) 

CMC Approach  

Here we explain how CMC approach works in order to find 
missing values in partially known matrices. Let us assume that we 
have a complete (means all the entries are known) low rank matrix
Y . Now if we randomly remove some of the values, the problem 
becomes how to find missing values in a way that there was not a 
huge difference between the original values and the predictions. 
We will use PCC, ED and CS in order to reconstruct matrix X  
and the reconstructed matrices when using each of the 
aforementioned similarity metrics are Y_P, Y_E and Y_C 
respectively.  
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This is how the CMC method works:  

• First a PCC, an ED and a CS value should be calculated for 
each pair of the genes. 

• When there is a missing value, we need to calculate the mean 
of all known entries in that column weighted by how 
correlated they are (based on their PCC, ED and CS values). 

• Finally we will measure the accuracy of each method by 
calculating the error between the reconstructed matrices and 
the original matrix. 

For finding a missing value at Y (m,n) we will calculate:   

 
' ''

,1

1

( , , ) *
_ ( , )

( , )

K
r nr

N

r

PCC m n r y
Y P m n

x r n

=

=

= ∑
∑

  (16) 

 
' ''

,1

1

( , , ) *
_ (m,n)

( , )

K
r nr

K

r

ED m n r y
Y E

x r n

=

=

= ∑
∑

  (17) 

 
' ''

,1

1

( , , ) *
_ ( , )

( , )

K
r nr

K

r

CS m n r y
Y C m n

x r n

=

=

= ∑
∑

   (18) 

Where r! = m is matrix Y’s row, and: 

  ,

( , )  ( , )
'   

0               ( , )r n

PCC m r r n
PCC

r n
ω

ω
∈

=  ∉
  (19) 

 ,

( , )    ( , )
'   

0               ( , )r n

ED m r r n
ED

r n
ω

ω
∈

=  ∉
  (20) 

 ,

CS( , )    ( , )
CS'   

0               ( , )r n

m r r n
r n

ω
ω

∈
=  ∉

  (21) 

 ,
,

'  ( , )
''   

0       ( , )
r n

r n

y r n
y

r n
ω

ω

∈
= 

∉
  (22) 

 
1    ( , )

 ( , )
0    ( , )

r n
x r n

r n
ω
ω

∈
=  ∉

  (23) 

Algorithm 1 shows the pseudo code for correlation based 
matrix completion approach. 

 
Algorithm 1. Correlation based matrix completion 
approach 

 
Input: Y, ω 

For row m of Y: 
    For row n of Y: 
        If m != n : 

            Find PCC (m,n) 
            Find ED(m,n) 
            Find CS (m,n) 
 
For row m of Y: 
    For row r of Y: 
        If (m,r) in ω: 
            Y_p(m,r) = Y(m,r) 
            Y_e(m,r) = Y(m,r) 
            Y_c(m,r) = Y(m,r) 
        Else if (m,r) not in ω: 
            Y_p(m,r) = 0 
            Y_e(m,r) = 0 
            Y_c(m,r) = 0 
            x = 0 
            for row p of Y: 
                if (p,n) in ω: 
                    Y_p(m,r) += Y_p(r,n) *PCC(m,p)  
                    Y_e(m,r) += Y_e(r,n) * ED(m,p)  
                    Y_c(m,r) += Y_c(r,n) * CS(m,p)  
                    x++ 
           Y_p(m,r) /= x 
           Y_e(m,r) /= x 
           Y_c(m,r) /= x 

output: Y_P, Y_E, Y_C 

 

2.2. Convex Optimization Formulation of RPCA method 

The ADMM formulation of our RPCA model (6) is defined by: 

 
* 1

2

( , , ) ( )

( ( )) ( )
2

T
F

L Y S m Y R S

m R E Y S R E Y S

ρ ω

ω ω

λ

ρ

= + +

− − + − −

‖ ‖ ‖ ‖

‖ ‖
 (24) 

       In each iteration we repeat: 

Updating matrix Y 

We update Y by: 

 
1 1 2

*

1 1

( )
2

( ( ))

k k k
Y F

T k k

Y min Y R E S Y

m R E S Y

ω

ω

ρ − −

− −

= + − −

+ − −

‖ ‖ ‖ ‖
 (25) 

Which can be rewritten as: 

 2
* ( )

2
k k

Y F
mmin Y P Y S Eρ
ρΩ+ + − −‖ ‖ ‖ ‖  (26) 

For solving above problem, we can use a soft thresholding 
operation from [22]. So the problem would become: 

 

1 1

1 1
1

( , )

( )

k k

k k
k

Y shrink A
mA E S

ρ

ρ

− −

− −
−

=

= − +
 (27) 

Where 1ρ −  is the step size which decreases the singular values 
of matrix A and the shrink is a soft-thresholding operator and can 
be defined as: 
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 1

1

( , ) : , ( ,0)

( )

r
T

i k k
k

r
T

k k k
k

shrink M u max v

M u v

τ σ τ

σ

=

=

= −

=

∑

∑
 (28) 

Where kσ  is the singular values and ku  is the left and kv is the 
right singular vectors of matrix M.  

Updating matrix S: 

After updating Y, we can update S through: 

 

1 1
1

1 2

( ) ( ( ))

( )
2

k k T k k
S

k k
F

S min R S m R E S Y

R E S Y

ω ω

ω

λ
ρ

− −

−

= + − −

+ − −

‖ ‖

‖ ‖
 (29) 

Which can be rewritten as: 

 1 1 2
1( ) ( )

2
k k k

S F
mmin R S R Y E Sω ω

ρλ
ρ

− −+ − + −‖ ‖ ‖ ‖  (30) 

To solve the above problem, we can use a shrinkage 
operator: 

 

( )     ( , )
   

0,                             ( , )

k
ij

ij

mS H E Y i j

S i j

λ
ρ

ω
ρ

ω

 = − + ∈

 = ∈/

 (31) 

Where H λ
ρ

 is the shrinkage operator discussed in [23] and 

can be calculated by: 

 
S ,         S   

(S ) S ,       S  
0            Otherwise

ij ij

ij ij ijHσ

σ σ

σ σ

− >


= + < −



 (32) 

We can assume that entries in matrix S that represent 
missing values are equal to zero. 

Updating m: 

After updating Y and S, we can update m by: 

 1 ( )k k k km m E Y Sρ−= + − −  (33) 

Algorithm 2 shows the pseudo code for solving RPCA 
problem using ADMM. 

 
Algorithm 2. Solving RPCA problem using ADMM 

 
Input: E, ρ, λ, ε 
While ║E – Yk - Sk║F > ε: 
 

    Updating matrix Y: 
    Yk = argY min Lρ(Yk-1, Sk-1, mk-1) 
    Yk = shrink ((E - Sk-1 + 

m
ρ
),ρ-1) 

        (U,S,V) = SVD (E - Sk-1 + 
m
ρ
) 

        For singular values σ in S: 

            If σ < 
1
ρ
 : 

                σ = 0 
        Yk = U S VT 
 

       Updating matrix S: 
    Sk+1 = argS min Lρ(Yk+1, Sk, mk) 
    for row p of S: 
        for column r of S: 
            if (p,r) in ω: 

                Spr = H λ
ρ
 (E - Yk + 

m
ρ
) 

            else: 
                Spr = 0 
 
    Updating m: 
    mk  = mk-1 + ρ(E - Sk – Yk) 
 
output: Yk and Sk 

 

3. Competitive methods 

3.1. K-nearest Neighbors method 

K-nearest neighbors (KNN) is one of the most essential 
classification algorithms in machine learning. It can be widely 
used in real-life scenarios since it does not make any assumption 
about the distribution of the data. The model representation for 
KNN is the entire dataset and it can make predictions using the 
training data set directly. When there is a missing value, prediction 
can be made by searching through the dataset for the K most 
similar neighbors and the result is the weighted average of those 
neighbors [24]. To determine which K neighbors are the most 
similar ones, a distance measure should be used and Euclidean 
distance is the most popular one for real-valued variables. 

3.2. Nuclear Norm Minimization 

There are various numerical methods available to solve(4). The 
important problem is that because of the high dimensionality 
aspect of biological data, many numerical methods fail to solve the 
problem efficiently. Kapur et al. [25] used a method called soft 
thresholding operator which can scale well on large datasets. So 
the problem would become: 

 *
min  Y Y

such that ( )  ( )

1
2 F

R Y R Xω ω

τ

=

+
 (34) 

Where 
2

,1 1

m n
i jF i i

Z z
= =

= ∑ ∑  is the Frobenius norm and τ  

is the thresholding parameter and it should be greater than 0. We 
can reconstruct the expression matrix iteratively so the kth iteration 
would be: 

 
1

1

 shrink(M , )
M M R (X Y )

k k

k k k
k

Y

ω

τ

δ

−

−

=

= + −
 (35) 
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Where shrink is the soft thresholding operator [22]. The 
parameter kδ  is the step size and the parameter τ minimizes the 
rank by decreasing the singular values. The shrink operator is 
defined by: 

 1

1

shrink ( , ) : max( ,0) r T
i i ii

r T
i i ii

M u v

M u v

τ σ τ

σ
=

=

= −

=

∑
∑

 (36) 

Where iu  is the left and iv is the right singular vectors of data 
matrix .M  In each iteration the SVD of matrix M is calculated 
and those singular values that are smaller than τ parameter, will 
be set to zero. The new matrix M will be reconstructed. Algorithm 
3 shows the pseudo code for this method.  

 
Algorithm 3. Nuclear Norm Minimization Problem 

 
Input: Y, ω, ε 
δ = 1.2 *(mn)/│ω│ 
τ = 5 *(mn)0.5 

Shrink(Y, τ) 
    (U,S,V) = SVD (Y) 
    For singular values σ in S: 
        If σ < τ: 
            σ = 0 
    M = U S VT 

 
Minimize(Y, ω) 
    For row a of Y: 
        For column b of Y: 
            If (a,b) in ω: 
                Rω (Y) = Y 
            Else: 
                Rω (Y) = 0 
    M0 = 0 
    k = 1 
    while ║Rω (Yk - X)║F / ║Rω (X)║F < ε: 
        Yk = shrink (Yk-1, τ) 
        Mk = Mk-1 + Rω (X - Yk) 
        k++ 
output: Xk 

 

3.3. Singular Value Thresholding Algorithm (SVT) 

This approach considers using a Robust PCA approach in 
order to reconstruct a low rank matrix from noisy measurements. 

 
1 2

, 1 * 2
such that:  D = 

A E Fmin E A
A

A
E

Eλ τ −+ ++

+

‖ ‖ ‖ ‖ ‖ ‖
 (37) 

Where: 

• D  is the noisy dataset. 
• A  is the low rank matrix. 
•  E  is the noise and it assumed that it only affect a 

fraction of the data (E is sparse). 
•  τ  is a scalar and 0.τ >  

    We can apply the Lagrangian multiplier Y in order to replace 
the equality constraint:  

21
1 *

(E,A,Y) 2

1 ,

F
L E A E A

Y D A E

λ τ

τ

−= + + + +

− −            (38) 

Then in each iteration A, E and Y will be updated by 
minimizing (38) with respect to A, E and Y. Algorithm 4. Shows 
the pseudo code for SVT approach where σ is the step size. 

 
Algorithm 4. The SVT Algorithm  

 
Input: τ,D,λ 
While not converged: 
    (U,S,V) = SVD(Yk) 

    Ak= arg minx τ║D║* + 
1
2
 ║D-Ek-1║F 

    Ek= arg minx τ║D║1 + 
1
2
 ║D-Ak║F 

      Yk= Yk-1 + σk (D - Ak - Ek) 
End while 
output: A = Ak, E = Ek 

 

3.4. Exact Augmented Lagrangian Multiplier (ELAM) 

ELAM method was proposed in [26] and can be used for 
solving Robust PCA problem. To solve the problem can apply the 
Lagrangian multiplier as denoted below: 

 * 1( )  
( )  

 (A,E)

f X A E
h D A

X

X E
λ= +

= − −

=

‖ ‖ ‖ ‖  (39) 

And the Lagrangian function is: 

 
* 1

2

( , , )

( )
2

T
F

L A E Y A E

D A E Y D A E

λ
µ

= + +

− +− − −

‖ ‖ ‖ ‖

‖ ‖
  (40) 

Algorithm 5. Shows the pseudo code for ELAM method. 

 
Algorithm 5. Exact Augmented Lagrangian Multiplier 
(ELAM) 

 
Input: matrix D, λ 
While not converged: 
    (Ak+1, Ek+1) = arg minA,E L(A,E,Y) 

While not converged: 

    (U,S,V) = SVD(D – Ek + 𝑌𝑌
µ
) 

    Ak+1= arg minx 
1
µ
║D║* + 

1
2
 ║D-Ek║F 

    Ek+1= arg minx 
𝜆𝜆
µ
║D║1 + 

1
2
 ║D-Ak+1+

𝜆𝜆
µ
║F 

End while 
      Yk+1= Yk + µk(D - Ak+1 - Ek+1) 
    k++ 
End while      
output: A = Ak+1, E = Ek+1 

 

http://www.astesj.com/


N. Fraidouni et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 6, 233-242 (2018) 

www.astesj.com          239 

3.5. Inexact Augmented Lagrangian Multiplier (ILAM) 

ILAM method was proposed in a study by Lin et al [27]. The 
RPCA problem is closely connected to MC problem so the MC 
can be formulated as:  

 *
minimize   

such that   + ,   ( ) 0
A A

E A D R Eω= =
  (41) 

( ) 0R Eω =  means that E is zero at indices where the value is 
known and the augmented Lagrangian is: 

 

2
*( , , )

2
( )

F

T

L E A Y A D E A

Y D E A

µ
= + − −

+ − −

‖ ‖ ‖ ‖

  (42) 

 So the ILAM approach can be used for MC problem. The 
pseudo code for ILAM method is described below.  

 
Algorithm 6. Exact Augmented Lagrangian Multiplier 
(ELAM) 

 
Input: matrix D, ω, λ 
While not converged: 
    (Ak, Ek) = arg minA,E L(E,A,Y) 

    (U,S,V) = SVD(D – Ek + 𝑌𝑌
µ
) 

    Ak= arg minx 
1
µ
║D║* + 

1
2
 ║D-Ek-1║F 

    Ek= arg minx 
𝜆𝜆
µ
║D║1 + 

1
2
 ║D-Ak+

𝜆𝜆
µ
║F 

    Rω (E) = 0 
      Yk= µk(D - Ek- Ak)+ Yk-1  
    k++ 
End while      
output: E = Ek, A = Ak 

 

4. Evaluation 

Here we measure the accuracy of different approaches as they 
apply to biomedical data MC. All of the following experiments 
were performed using Python 3.6 and Matlab 2016 on an Intel 
Core i7 PC running Windows 10 with 16GB main memory. 

4.1. Datasets 

We downloaded and used 4 gene expression datasets from 
NCBI (National Center for Biotechnology Information) for our 
experiments. We used the following gene expression datasets:  

Lung Cancer Study 

Title of this study is: "Gene expression signature of cigarette 
smoking and its role in lung adenocarcinoma development and 
survival". Scientists found that smoking tobacco is the reason for 
the most of lung cancer cases, but the exact details of this process 
is still unknown. In this study Landi et al. used 135 tissue samples 
of adenocarcinoma and non-involved lung tissue from 3 groups 
(current, former and never smokers). They found out that 

expression of some genes is significantly different in smokers and 
non-smokers. The lung cancer dataset has 22283 rows- and 107 
columns [28]. 

Dementia Study 

Title of this study is: "Variations in the progranulin gene 
affect global gene expression in frontotemporal lobar 
degeneration". The symptoms of frontotemporal lobar 
degeneration is progressive decline in language and function. 
Despite the excessive research on the reason for this disease, its 
mechanisms remain unknown. Plotkin et al. isolated postmortem 
brain samples from normal controls, patients with mutations in 
progranulin gene and patients without mutations in progranulin 
gene. The dementia dataset has 22277 rows and 56 columns [29]. 

Autism Study 

Title of this study is: "Autism and increased paternal age 
related changes in global levels of gene expression regulation". 
Autism is a neurodevelopmental disorder and it is the results of 
transcription factor mutations that can change the gene expression 
regulation. In this study Alter et al. analyzed gene expression 
values of 82 subjects with autism and 64 controls. The results 
showed that autism and increased paternal age can change the 
gene expression regulation. The Autism dataset has 54613 rows 
and 146 columns [30]. 

Bladder Cancer Study 

Title of this study is: "Combination of a novel gene 
expression signature with a clinical nomogram improves the 
prediction of survival in high-risk bladder cancer". In this study 
Riester et al. analyzed data of patients with bladder cancer (n = 
93) and measured the gene expression. The bladder cancer dataset 
has 54675 rows and 93 columns [31]. 

4.2. Calculating Error 

We used two metrics to determine how accurate the MC 
algorithm is. So we start with a known matrix ,Y   remove a 
random portion of it (i.e., simulating missing entries), and then try 
to reconstruct the matrix '.Y   

Relative Error 

Relative error can be used to describe accuracy; specifically, 
how accurate a measurement is compared to the true value. We 
use the relative error (RE) which can be calculated as below: 

 
'

Relative Error F

F

Y Y
Y
−

=  (43) 

Where Y is the original matrix and 'Y is the reconstructed matrix. 

Mean Square Error 

We will also use mean squared error (MSE) to measure the 
accuracy of the different approaches. We can find MSE by 
calculating the mean of the squares of the deviations, which is the 
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Y and 'Y  is: 

 
1 2

'
Mean Squared Error

*
F

Y Y
n n

−
=   (44) 

5. Results 

We used the complete datasets as starting points for all 
experiments and removed a random set of values from the data 
matrices. The resulting incomplete matrices were then used as 
inputs to the algorithms to predict the unknowns (missing values). 
In order to measure the accuracy of the different methods, we used 
two metrics to compare the predicted and the original matrices. 
We will evaluate the performance of the methods when the degree 
of missing values changes. To do this, for each dataset we made 
nine incomplete matrices with 10% to 90% missing values. For 
each matrix with varied proportion of missing values, we 
employed the algorithm 10 times so in figures 1, 2 and 3, each 
data-point shows an average of ten different experiments with 
randomly removed values from the original matrix. 

 

Figure 1. Comparison of relative errors for different values of k for KNN 
method. 

For the aim of finding the best k for KNN method, we varied 
the value of k from the list 50, 100, 150, 250, 400, 550, 700 and 
calculated the relative error in cases where 30%, 60% and 90% of 
the values are unknown. As Figure 1 shows, when the value is 
around 150-250, the relative error is the least so we selected 200 
as the number of neighbors. The results of the comparison 
between KNN algorithm and PCC- CMC method are summarized 

in table 1. KNN method is extremely slow when the size of the 
dataset is large. 

Table 1. Comparison of relative error averages for 4 datasets of KNN method 
and PCC-CMC 

 KNN (k = 200) PCC-CMC 
30% Unknowns 0.103 0.047 
60% Unknowns 0.169 0.069 
90% Unknowns 0.225 0.102 

We compared the performance of nuclear norm minimization 
to PCC, ED and CS based correlation approach on 4 NCBI-GEO 
datasets (Dementia, Autism, Lung cancer and Bladder cancer) and 
results are displayed in figure 2. The horizontal axis of all graphs 
(A - H) represents the ratio of the missing entries. The vertical 
axis of graphs A, C, E and G represents the relative error (Eq. 43) 
and the vertical axis in graphs B, D, F and H shows mean squared 
error (Eq. 44). The performance of PCC-CMC approach is shown 
by the dotted red line while the black, the dotted blue and the 
green lines depict the performances of the ED-CMC, CS-CMC 
and nuclear norm minimization approaches respectively. As the 
figure 2. Shows, for all four datasets, the PCC-CMC approach 
consistently beats the nuclear norm minimization approach. The 
nuclear norm minimization (green line) represents an increasingly 
growing error but the error of the PCC-CMC approach (red line) 
shows a decreasing acceleration. The CS-CMC (blue line) also 
represents improvements when compared to nuclear norm 
minimization but the ED-CMC approach does not show any 
improvements. The relative error and mean squared error of PCC-
CMC grew very much slower than that of the nuclear norm 
minimization approach in cases of an increase in the ratio of 
missing entries. We can explain the different results of PCC-CMC 
and CS-CMC by this hypothesis that PCC might be better in 
catching the genes correlation compared to CS. 

Based on our results, The PCC-CMC approach has higher 
accuracy compared to other approaches. In the case of 90% 
missing values for relative error, in the best case, PCC-CMC 
outperforms CS-CMC, ED-CMC, and Nuclear norm 
minimization by a factor of 1.4, 2 and 2.2 respectively. In the 
worst case PCC-CMC outperforms CS-CMC, ED-CMC, and 
Nuclear norm minimization by a factor of 1.2, 1.6 and 1.7 
respectively. When looking at MSE, PCC-CMC outperforms the 
other three approaches by as much as a factor of 1.7, 2.3 and 2.4 
respectively (for the same order as previously) and in the worst 
case we get an improvement factor of 1.1, 1.3 and 1.4 
respectively. 

We then compared the performance of the featured ADMM 
approach to SVT, ELAM, ILAM and PCC-CMC approach for our 
4 datasets and the results are presented in figure 3. The horizontal 
axis in all graphs (A - H) represents the ratio of the missing 
entries. The vertical axis in graphs A, C, E and G shows the 
relative error and the vertical axis in graphs B, D, F and H shows 
mean squared error. The performance of the featured ADMM 
approach is shown by the dotted red line while the black, the 
dotted blue, the green and the gray lines represent the 
performances of the SVT, ELAM, ILAM and PCC-CMC 
approaches respectively. As Figure 3. Shows, for all four datasets, 
the ADMM approach beats the other four approaches. The black,
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Figure 2. Comparison of the performance of 4 different methods on NCBI-GEO dataset 

 

Figure 3. Comparison of 5 different approaches on 4 NCBI-GEO datasets.

blue and green lines show increasingly growing errors but the 
errors of the red line show a decreasing acceleration. The mean 
squared error of the ADMM approach grows much slower than 
that of the other four in cases of an increase in the ratio of missing 
entries. 

Based on our results, The ADMM approach has higher 
accuracy especially in the cases where the matrix has more 
missing values. In the case of 90% missing values for relative 
error, in the best case, ADMM outperforms PCC-CMC, ILAM, 
ELAM, and SVT by a factor of 1.85, 3, 3.3, and 4 respectively. In 
the worst case ADMM outperforms PCC-CMC, ILAM, ELAM, 

and SVT by a factor of 1.4, 1.3, 1.7 and 2 respectively. When 
looking at MSE, ADMM outperforms the other four approaches 
by as much as a factor of 2.2, 2.3, 3 and 4.8 respectively (for the 
same order as previously) and in the worst case we get an 
improvement factor of 1.6, 1.6, 2.3 and 3.4 respectively. 

6. Conclusion 

In this paper we employed three similarity metrics (Pearson 
Correlation Coefficient, Euclidean distance and Cosine 
Similarity) and Robust Principal Component Analysis (RPCA) on 
gene expression datasets. In section 2, we described the 
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correlation based MC approach, the RPCA approach and also we 
briefly explained the Alternating Direction Method of Multipliers 
(ADMM) algorithm. We used 4 different gene expression datasets 
from NCBI and in the first step, we randomly removed a fraction 
of the entries (from 10% - 90%). So for each dataset we had 9 
incomplete matrices that we aim to recover and predict the 
missing values using one the aforementioned approaches. When 
we measured the accuracy of the three correlation based 
approaches, K-nearest neighbors and a recent nuclear-norm 
minimization based approach, we found out the PCC-CMC 
approach outperforms the other methods.  

In another experiment we evaluate the performance of 
ADMM approach. To do this, we described three well known 
algorithms that can be used when recovering low rank matrices 
and we compared the performances of them. We found that 
ADMM approach outperforms the other approaches. 

 This paper can provide an inspiration for developing new 
approaches especially in gene expression studies and also has 
implications to recommender systems. There is a high demand for 
new efficient and fast methods to reduce the huge amount of time 
and resources that is often needed for gene expression studies.  
Using such computational methods can help biologists find 
missing values in partially known gene expression datasets and 
also can help identify promising directions for studies based on 
partial measurements in gene expression experiments. 
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