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Using Proofs of Retrievability (PORs), a file owner is able to check that a cloud server correctly
stores her files. Using Proofs of Retrievability and Reliability (PORRs), she can even verify at
the same time that the cloud server correctly stores both her original files and their replicas. In
2020, a new PORR combined with Verifiable Delay Functions (VDFs) was presented by Gritti.
VDFs are special functions whose evaluation is slow while verification is fast. Therefore, those
functions help guarantee that the original files and their replicas are stored at rest. Moreover,
an important feature of the 2020 PORR solution is that anyone can verify the cloud provider’s
behaviour, not only the file owner. This paper extends Gritti’s version. In particular, a realistic
cloud framework is defined in order to implement and evaluate accurately. Results show that
this PORR solution is well suitable for services provided for cloud storage.

1 Introduction

Cloud data storage has exploded over the last decade, for both busi-
ness and personal purposes. The latter have offered the opportunity
to delegate the storage of individuals’ files, through various services
that have been developed and diversified with competitive fees for
data owners (e.g. copies of files stored in different storage locations).
However, due to its complex structure, many unfortunate events
have happened over the last few years. In 2015, lightning strikes
engendered data loss on Google centers1. The startup Front Edge
CNC’ used to keep its online production data in Tencent Cloud
Storage but realised in 2018 that it was completely lost2. More
recently, according to McAfee, 99% of misconfiguration incidents
occurring in a public cloud environment are not detected, thus
exposing enterprises and organisations to a huge risk of undetected
data breaches3. Therefore, it has become urgent to carefully design
cloud storage solutions to overcome all possible unfortunate events
such as the aforementioned ones.

An ideal solution will enable a simple deal between a client,
who owns some files, and a cloud provider (also called cloud server),
who offers safe and attractive cloud storage services. For instance,
the cloud provider may propose to store copies of a file in addition

to the file itself, and spread them across multiple servers, avoiding
single point of loss. The cloud provider may also offer to decrease
fees per copy, to encourage the client to adopt the replication pro-
cess as much as possible. More precisely, both the client and cloud
provider are financially incentivized: the client wants to save fees
as much as possible while uploading files as many as possible,
while the cloud provider wants to earn as much as possible while
saving storage as much as possible. Those assumptions clearly
motivate their behaviours. The rational cloud provider may claim
to store the client’s files while actually not, and thus offering the
free storage space to other clients. The malicious client may claim
to upload copies of the files, with lower fees, but rather upload-
ing different files where fees would have higher if behaving honestly.

This work is an extension of [1], in which a new solution was
proposed for secure and efficient cloud storage for a client who
owns some files stored on a cloud provider. Security is enhanced
by allowing detection of a misbehaving cloud provider that does
not store the client’s files correctly and prevention against a mali-
cious client who tries to save fees. Informally, the cloud provider
is asked to create copies of the client’s files stored across various
locations and can be challenged to prove the client that all files and
their copies are entirely stored. The client uploads encrypted files
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to the provider but does not have the responsibility of creating the
copies, avoiding the client to upload fake copies (i.e. files that are
not at all linked to the original ones). Efficiency is conserved even
with improved security. In particular, experimental results presented
for the first time in this paper show that the mechanisms used to
preclude malicious behaviours incur low costs on the computational
and communication processes.

1.1 Problem Statement

Let a client subscribe to data storage services offered by a cloud
provider. Proof of Data Possession (PDP) and Proofs of Retrievabil-
ity (POR) are cryptographic protocols proposed to enable the client
to verify that the cloud provider actually proceeds as agreed, that is
correctly stores the client’s data.

The latter protocol, POR [2], guarantees the client that her data
is available in its entirety. The former protocol, PDP [3, 4], allows
the client to verify that the stored data has not undergone any modi-
fications. Recent PDP works [5, 6, 7] offer a replication feature: the
cloud provider creates copies of the data and the client can check
in a single instance that both the original and copied data are all
correctly stored.

However, the aforementioned solutions do not reflect the actual
framework. Limited bandwidth is offered for free and costs grow
quickly with the increasing bandwidth. In most of existing works,
the replication and uploading processes rely on the client, imposing
huge burden and fees to the latter. In addition, fees for storage
of extra replicas of a given file are less consequent than fees for
storage of different files. Hence, a malicious client may attempt to
upload different files while claiming that they are replicas of the
same file. The cloud provider cannot observe such a trick since data
is assumed to encrypted before being uploaded, and thus are not
readable.

Limitations also raise on the cloud provider’s side. The lat-
ter may appear to be financially motivated and consequently act
maliciously. For instance, it attempts to not store all file replicas
and offers the resulting unoccupied storage space to other potential
customers. Then, such a rational cloud provider creates the missing
replicas on the fly when the client who owns the original file asks
for storage verification. In addition, the client may put tacit trust
on its cloud provider and neglect to carefully read the service level
agreements [8]. Likely, the client does not take the time and effort
to verify how the cloud provider deals in storing her data.

The design of an appropriate solution for secure data storage in
the cloud is clearly encouraged by the aforementioned financial con-
cerns. Clients are motivated by reducing the costs due to bandwidth
and storage while the cloud provider is stimulated by partitioning
data to make profit. Those concerns have been carefully studied
and overcome in [9]. The authors presented an extension of POR,
called Proof of Retrievability and Reliability (PORR), to encompass
the correct storage verification of both file and its replicas at once.
However, the main obstacle of the PORR instantiating in [9] is the
private feature of verification: only the client is able to check that
the cloud provider correctly stores her file and its replicas.

In [1], we proposed a new PORR protocol overcoming all the
aforementioned challenges at once. Along with getting over mali-
cious clients and rational providers, we overcame the likely laziness:

the client can delegate the task of checking that the cloud provider
has been acting honestly on her data.

1.2 Idea

Our solution is designed to enable a client to upload her file and
the cloud provider to generate the replicas of this file. By doing so,
we prevent malicious clients to upload different files and claim that
there are all replicas of the same file.

Moreover, we offer the client the guarantee that the cloud
provider correctly stores both the original file and its replicas at
rest. By using slow functions, we prevent rational cloud providers
to compute replicas of an original file on the fly when challenged to
prove correct storage. Indeed, evaluating a slow function is notice-
ably slow while verifying its unique evaluation output is fast and
easy. Therefore, if the cloud provider tries to generate a replica on
demand, it will take a noticeable time to evaluate the slow function
attached to the replica and output the unique solution, rather than
just storing the replica along with the output from the evaluated
slow function.

The cloud provider is challenged by a verifier, that can be
anyone on behalf of the client. The verification allows a client to
ensure that the cloud provider stores the original file and all replicas
in their entirety.

Our PORR solution with public verification is a combination
of the publicly verifiable POR protocol with RSA signatures from
Shacham and Waters [10, 11] and of the slow exponentiation-based
Verifiable Delay Functions (VDFs) in finite groups from [12].

We suggest an extension of the POR scheme built by Shacham
and Waters [10, 11], where replicas of the challenged file are con-
tained in the verification mechanism. Public verification allows
anyone, on behalf of the client, to request the cloud provider a
proof of correct storage. Such a feature overcomes a possible lack
of data integrity awareness from the client. In order to stop the
cloud provider to generate the file replicas on demand when being
challenged by the verifier, we incorporate slow functions from
[12], namely VDFs. Of course, storing VDF outputs must result
into storage costs that are at least as high as storing replicas as
required. In fact, rational cloud providers are expected to commit
minimal computation resources when generating a correct response.
Therefore, the cost of replying to a challenge on the fly should be
more than the cost of storing the replicas correctly.

To our knowledge in [1], the author presented the first PORR
protocol that both delegates the construction of the replicas to the
cloud provider and that permits anyone to verify that the latter
correctly stores the files and their replicas.

We give an overview of the PORR protocol in Figure 1. A client
encodes and processes a file M as M∗, and outsources it to the cloud
provider. The latter commits to store M∗ entirely across a set of r
storage nodes. This means that M∗ is updated to contain the original
copy of M and r replicas. On inputs the public parameters, the
verifier (possibly the client as in the figure) can efficiently launch
challenge requests and verify the responses from the cloud provider.
The cloud provider must store both the original file and its replicas
at rest, at r storage nodes.
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Figure 1: PORR protocol: First the client prepares her file M by encrypting and
encoding it, resulting into M∗. Second, she uploads M∗ to the cloud server along
with some additional elements, such as a tag T . The cloud server generates the
replicas based on the additional information. Later, and multiple times, the client and
cloud server enter into a challenge-response protocol to allow the former to check
whether the latter correctly stores her file and its replicas.

1.3 Related Work

We first present existing works on Provable Data Possession and
Proof of Retrievability. We then move on Proof of Reliability, where
several variants have been proposed based on different mechanisms,
namely data replication, erasure codes, proof of location and proof
of space. Finally, we review slow functions that allow to generate
puzzles, and in particular Verifiable Delay Functions.

1.3.1 Provable Data Possession and Proof of Retrievability.

Provable Data Possession: The authors in [3] introduce the con-
cept of Provable Data Possession (PDP), which enables a client to
privately verify the integrity of her files stored at an untrusted cloud
provider without the need to retrieve the entire files. Thereafter, the
authors in [13] improve the efficiency of the previous PDP scheme
[3] by using symmetric encryption. Subsequently, PDP construc-
tions for static data have been proposed in the literature [14]–[17].
PDP schemes with additional properties, such as data dynamicity,
have been suggested in [18]–[23]. Several works have been pub-
lished recently [24]-[30], proposing PDP schemes preserving data
privacy and publicly verifying data integrity.

Proof of Retrievability: In [2], the author defined Proof of Re-
trievability (POR), that is a similar concept to PDP. In POR, the
client can correct existing erros and recover the whole files, in addi-
tion to check that the cloud provider stores her files in their entirety.
In [10], the author proposed two POR schemes: a first one with
public verification built on BLS signatures, and a second one with
private verification based on pseudo-random functions. In [31], the
author improved Shacham-Waters POR schemes by achieving only
a constant number of communication bits per verification rather than
linear in the number of sectors. Subsequent works on distributed
systems follow in [32]–[34], as well as POR protocols with data
dynamicity in [35, 36].

1.3.2 Proof of Reliability.

Based on Data Replication: The authors in [5] extend the
scheme from [3] by enabling the file owner to verify that at least k
replicas are stored by the cloud provider. In [37, 38], the author pro-
pose a mechanism with a tunable masking feature in order to let the
cloud provider be responsible of the repair operations and the client
manage the process of repair. In [39], cross-client deduplication is
enabled at the file level by extending [38]. In [6, 7], clients are able
to modify and add some pieces of a given file, while to check the
correctness of replications of this file. In [40], the replication pro-
cess is made transparent in a distributed system for cloud storage by
extending [18]. The aforementioned solutions, a similar framework
is encountered: replicas are prepared by the client, and further sent
to the cloud provider with the original files.

More recently, the Proof of Retrievability and Reliability
(PORR) protocol is defined for the first time in [9] to illustrate
the case where the cloud provider prepares the replicas rather than
the client. Tunable puzzles are used for replicating the file, guaran-
teeing the the replicas are stored at rest. Nevertheless, only a private
verifying process is available.

Based on Erasure Codes: In [33], the author provides a high
availability and integrity layer for cloud storage. By using era-
sure codes, data retrievability and reliability are guaranteed among
distributed storage servers, and clients can detect and repair file
corruption. The authors in [41] achieve a more efficient mechanism
for repairs by extending HAIL [33] and moving bulk computations
to the cloud provider. The authors in [42] present a scheme for
remote data checking in network coding-based distributed storage
systems. The scheme minimizes the communication overhead of the
repair component compared to the erasure code-based approaches.
The repair mechanism in [42] is improved in [22], such that the
computation cost for the client is reduced. Following the idea of
adding a third party auditor [22], in [43] the author offer a network
coding-based scheme such that the repair mechanism is executed
between the auditor and the cloud provider, and the client is let
apart.

A proof of fault tolerance, as a protocol based on erasure codes,
is proposed in [44]. The scheme uses technical characteristics of
rotational hard drives to build a time-based challenge, such that the
client can check that her encoded files are stored at multiple storage
nodes within the same cloud provider. Thereafter, the authors in
[45] construct POROS for erasure code-based cloud storage systems
by combining POR with time-constrained operations. In order to
set a time threshold for the response generation and thus to force the
cloud provider to store replicas at rest, rotational hard drive-based
ideas are leveraged similar to the ones in [44].

More recently, in [46] the author uses erasure codes to guarantee
data reliability, and ensures that the burden of replica generation
as well as the repair operations are shifted to the cloud provider.
Nevertheless, contrary to [44, 45], the solution in [46] does not rely
on the technicity of rotational hard drive technology. Indeed, such
method is inevitably dependent on the parameters of the underlying
erasure code system. However, in [46], only the client can check
the behaviour of the cloud provider in storing her files and replicas.
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Proof of Location: Proofs of Location (PoL) [47, 48] have been
introduced to prove the geographic position of data, such that
whether certain servers in a given country store such data. A PoL
scheme is presented in [48] as a combination of geo-location mecha-
nisms and the Shacham-Waters POR schemes [10]. The PoL model
looks similar to the PORR one, such that files are uploaded only
once by the client to the cloud provider. Then, the cloud provider
generates the file tags, prepares the replicas and scatters the latter
across servers that are geo-located at different places. Individual
POR instances are invoked by the client with all servers to verify
whether the latter correctly store the files. On the contrary, PORR
schemes must enable clients to launch a single instance to check
that all file replicas are correctly stored instead of one instance per
replica.

Proof of Space: Proofs of Space (PoS) [49] allow the prover to
reply correctly as long as a given amount of space or time per ex-
ecution is invested. In our case, we require that the prover invests
a minimum amount of space. In addition, we need to get a single
instance to check that all file replicas are correctly stored, that is not
made possible with PoS. Hence, the notion of PoS does not suit our
requirements.

1.3.3 Slow Functions.

Time-lock puzzles [50], benchmarking [51], timed commitments
[52] and client puzzles [53, 54] rely on the sequential nature of large
exponentiation in a finite group.

In [53], the author design a slow function by extracting mod-
ular square roots. No algorithm is known for computing modular
exponentiation which is sub-linear in the bit-length of the exponent.
Nevertheless, the puzzle difficulty is limited to O(log p), meaning
that a very large prime p (being the order of the group) must be
chosen to produce a difficult puzzle. In [54], the author consider
the sequential nature of Dwork-Naor solution to suggest chaining
a series of such puzzles together (e.g. for lotteries). However, this
construction does not provide asymptotically efficient verification,
hence it can rather be seen as a pseudo-Verifiable Delay Function
(VDF).

Time-lock puzzles [50] involve computing an inherently sequen-
tial function, by repeating squaring in a RSA group. Used in the
context of POR with data reliability guarantees, the cloud provider
requires an apparent amount of time to solve those puzzles while the
latter are efficiently solved by the client using a trapdoor. Moreover,
storing the solution of a time-lock puzzle incurs extra storage costs
that are at least as large as the required storage for replicas. The
difficulty of a RSA-based puzzle can be easily adjusted by the client
(who creates the puzzle) to cater for variable length and different
cost metrics. However, such puzzles are not guaranteed to be pub-
licly verifiable: the client (or a dedicated verifier) uses a secret
element to prepare each puzzle and to verify the solution.

A given number of sequential steps are required for VDFs, re-
sulting into a unique output verified in an efficient and public way.
The construction of a VDF with a trusted setup was proposed [55].
The authors in [12] observe that the trusted setup can be discarded
by choosing a sufficiently large random number N, such that N = pq
with high probability, for p, q two large prime factors. Nevertheless,

the adversary would benefit for parallelizing the arithmetic due to
the large size of N, and the running time of the verifier would then
increase. The authors in [12] rather suggest to build a VDF from
exponentiation, based on the assumption that the adversary cannot
run a long pre-computation from the publication of the public pa-
rameters to the evaluation of VDF. Hence, this solution achieves
proofs that are shorter than the proofs in [55] at a similar level of
security.

1.3.4 Work Comparison.

In Table 1, we compare our work with main other ones, based on the
specific features that enable secure cloud storage against malicious
servers and clients. We omit the Proof-of-Space (PoS) mechanism
for Proof of Reliability since it is too far-off our work.

Table 1: Comparing existing protocols similar to PORR

Type Work Proof Replicas? Public?
Where? Private?

Original PDP [3] PDP no replicas private
[13] PDP no replicas private

Original POR [2] POR no replicas private
[10] POR no replicas private

(pseudo)
[10] POR no replicas public

(BLS)
Proof of [5] POR replicas at private
Reliability client’s side
(data [39] POR replicas at private
replication) client’s side

[9] POR replicas at private
server’s side

ours POR replicas at public
server’s side

Proof of [33] other replicas at private
Reliability client’s side
(erasure [46] POR replicas at private
codes) server’s side
Proof of [48] POR replicas at private
Reliability server’s side
(proof of but individual
location) POR instances

Most of the compared works are based on PDP and POR proofs.
When replica services are offered, we consider proof of correct data
storage in a single instance for both original files and their copies
(otherwise specified). Replica options are an important service to be
offered by cloud providers, in order to avoid unfortunate data loss
due to technical issues (e.g. single point of failure).

In almost all works, only private verification is offered. Private
verification means that only the client can challenge the server for
correct storage. We think that such an assumption is too strong as
clients may be too lazy to do so. We suggest that delegating such
a checking process to a third party will guarantee a better storage
experience for both clients and cloud providers.
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The closest work to ours is definitely the work from [9]. In-
deed, the authors aim to develop a cloud storage solution to prevent
both rational cloud providers and malicious clients. To do so, they
combine POR instances with RSA-based puzzles [50].

One limitation in [9] is from the private aspect of POR instance
verification. Indeed, either the client or someone in possession of
the secret key can perform the verification of integrity of stored
data. We aim to develop a publicly-verifiable PORR scheme, that
allows everyone, using only public elements, to check that the cloud
provider correctly stores original files and their replicas.

2 Contributions and Road Map

In [1], the first Proof of Retrievability and Reliability (PORR) with
public verification was proposed. The original file of the client is
first uploaded to a cloud provider. The replica plan has been agreed
by both the client and cloud provider. Following that plan, replicas
of the original file are prepared by the cloud provider. Anyone (and
possibly the client) can challenge the cloud provider to check the
integrity of the stored files and replicas.

In [1], the publicly verifiable RSA-based POR scheme
from Shacham and Waters [10, 11] was combined with the
exponentiation-based VDF construction from [12]. This allows
us to define a common parameter setting, roughly a RSA-based
one, while benefiting all the properties offered by the two schemes.
Namely, the verifier can efficiently launch a large number of chal-
lenge requests and checks the cloud provider’s responses using only
public elements, while the cloud provider is forced to store the
client’s original file along with all the replicas at rest (otherwise
being timely noticed).

In this paper, we provide the experimental analysis of our pub-
licly verifiable PORR protocol. Implementation and evaluation
results reveal realistic applications. Communication overhead be-
tween the client, the cloud provider and the verifier remains fair.
Computation costs are affordable for the client and verifier, while
they are made such that the cloud provider does not gain in com-
puting the replicas on the fly from challenge requests. We also
compare our solution with MIRROR [9], a PORR prototype with
private verification, built upon Waters and Shacham’s POR [10] and
RSA-based puzzles [50].

Therefore, our solution fits cloud-related bandwidth and storage
requirements, while preventing malicious clients and rational cloud
providers from being successful.

In the following Sections 3 and 4, we recall the definition and
construction of Shacham-Waters POR [10, 11] and of VDF from
[12]. The reader can directly jump to Section 5 if being familiar
with concepts of POR and VDF. In Section 5, our publicly verifi-
able PORR protocol presented in [1] is described. In Section 6, we
depict the implementation framework of our PORR and analyse the
experimental results. We conclude this paper in the last section.

3 RSA-based POR with Public Verifica-
tion

In this section, we recall the publicly verifiable RSA-based POR
construction from [10, 11]. Since our choice of slow functions [12]
is based on RSA and also publicly verifiable, such POR construc-
tion is welcomed. The RSA-based POR construction in [11] is an
extension of the RSA-based PDP construction in [4].

3.1 Definition

A Proof Of Retrievability (POR) comprises five algorithms. The
client runs the two first algorithms. A public and secret key pair
(pk, sk) are generated by running the key generation algorithm. For
each file M, the client computes a corresponding tag T . Using the
secret key sk, the file and tag generation algorithm processes the file
M, resulting into M∗, and computes the tag T .

The client challenges the cloud provider when she wants to ver-
ify her files are stored in their entirety. A challenge set Q, selected
when running the challenge generation algorithm, defines the file
blocks that the cloud provider must prove to store correctly. From
this challenge, the latter replies by running the response generation
algorithm and shares the response resp with the client. The latter
can then verifies resp by running the verification algorithm. The
output of this algorithm tells the client whether or the cloud provider
stores her files in their entirety.

In the above description, we suggest that the client verifies the
cloud provider’s response. However, in a publicly verifiable case,
anyone can verify resp since only public elements are required to
run the verification algorithm. In a privately verifiable case, only
someone with a secret element can check resp, the client in general
would have such competency, but a private verifier can also be given
a secret key. We only consider the first case in our paper.

POR protocols must be proved correct and sound. Correctness
requires that for all key pairs (pk, sk) output by the key generation
algorithm, for all file M ∈ {0, 1}∗, and for all pair (M∗,T ) output
by the file and tag generation algorithm, the verification algorithm
accepts with challenge and response respectively output by the chal-
lenge generation algorithm and the response generation algorithm.
Soundness states that if a cheating cloud provider convinces the
verifier that it is storing the file M, then it is actually storing the
file M. Shacham and Waters formalize the notion of an extractor
algorithm that interacts with the cheating cloud provider using the
POR protocol.

3.2 Notations

The processed file M′ (obtained from applying an erasure code on
the file M) is split into n blocks, and each block is then split into s
sectors. Each sector mi, j, for i ∈ [1, n] and j ∈ [1, s], is an element
of ZN . For instance, for a processed file M′ that is b-bit long, there
are n = db/s log(N)e blocks.

A challenge is an l-element set Q = {(i, vi)}. The size l of the set
Q is a system parameter. Each tuple (i, vi) ∈ Q can be described as
follows:

• The value i is a block index in [1, n].
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• The value vi is an element in E ⊆ ZN . Let E ⊆ ZN be the
set of coefficients vi chosen for verification requests. For in-
stance, E = ZN , such that coefficients vi are randomly chosen
from ZN .

3.3 Construction

Let κ be the security parameter. Let κ1 be a bit length such that
the difficulty of factoring a (2κ1 − 1)-bit modulus fits the security
parameter κ. Let max(E) be the largest element in E. Let κ2 be the
bit length equal to dlog(l · max(E))e + 1 [10, 11].

The construction of publicly verifiable POR with RSA signa-
tures given in [11] is as follows:

Key Generation: On input a security parameter κ, the randomized
key generation algorithm outputs the public key and secret key
pair (pk, sk) as follows. Let (spk, ssk)← S.KeyGen(κ) be a
random signing key pair. Choose two primes p and q at ran-
dom such that p, q ∈ [2κ1−1, 2κ1 − 1]. Let N = pq be the RSA
modulus such that 2κ1−2 < N < 2κ1 . Let G : {0, 1}∗ → Z∗N be
a full-domain hash function, seen as a random oracle. Pick
at random a prime e of length 2κ1 + κ2 bits, and set d = e−1

mod φ(N).

Set the public key pk = (N, e,G, spk) and the secret key
sk = (N, d,G, ssk).

File and Tag Generation: On inputs the secret key sk and the file
M, the file and tag generation algorithm outputs a processed
file M∗ and the tag T as follows:

1. Apply the erasure code on M to obtain M′.

2. Split M′ into n blocks for some integer n, each of
them being s sectors long, resulting into a n × s ma-
trix {mi, j}i∈[1,n], j∈[1,s]. Each sector mi, j is an element of
ZN .

3. Choose a random file identifier id ∈ ZN .

4. Pick at random s random numbers u1, u2, · · · , us ∈ Z
∗
N .

5. Let T0 = id||n||u1||u2|| · · · ||us. Compute the file tag
T = T0||S.Sigssk(t0).

6. For each i ∈ [1, n], compute σi = (G(id||i) ·
∏s

j=1 umi, j

j )d

mod N.

7. The processed file is M∗ = ({mi, j}i∈[1,n], j∈[1,s], {σi}i∈[1,n]).

Challenge Generation: On inputs the secret key sk and the tag T ,
the randomized challenge generation algorithm outputs the
challenge set Q as follows:

1. Use the key spk to verify the signature on T . If the
signature is invalid, then output 0 and halt.

2. Otherwise, recover id, n, u1, u2, · · · , us.

3. Pick at random an l-element subset I from the set [1, n].
For each i ∈ I, choose a random element vi ∈ E. Let
Q = {(i, vi)}i∈I .

Response Generation: On inputs the processed file M∗ and the
challenge set Q = {(i, vi)}i∈I , the deterministic response gen-
eration algorithm outputs a response resp as follows:

1. Compute µ j =
∑

(i,vi)∈Q vimi, j ∈ Z for j ∈ [1, s] (note
that there is no modular reduction).

2. Compute σ =
∏

(i,vi)∈Q σ
vi
i mod N.

3. Set the response resp = ({µ j} j∈[1,s], σ).

Verification: On inputs the response resp, the deterministic verifi-
cation algorithm checks first whether each µ j is in the range
[0, l · N · max(E)]. If some values are not in the range, then
halt and output 0. Otherwise, check whether the equation
σe =

∏
(i,vi)∈Q G(id||i)vi ×

∏s
j=1 uµ j

j mod N. If so, then it
outputs 1; otherwise, it outputs 0.

3.4 Security

The security for POR is linked to unforgeability, extractability and
retrievability. Informally, the security proof is split in three parts
such that:

• The first part shows that the verifier can not receive an ille-
gitimate (i.e. forged) response from the adversary (i.e. the
cheating cloud provider).

• The second part shows that there exists an extractor extract-
ing a constant fraction δ of file blocks (previously encoded
with an erasure code) as soon as there exists an adversary
that succeeds the verification process a noticeable number of
times. Indeed, all responses that have been checked should
be legitimate.

• The last part shows that one can use an erasure code to rebuild
the whole file M if the constant fraction δ of file blocks has
been recovered.

The RSA-based POR construction has been proved correct and
sound. We let the readers refer to [10, 11] for the formal security
proof.

4 Verifiable Delay Functions From Expo-
nentiation in a Finite Group

In order to prevent rational behaviour from cloud providers, we
aim to use slow functions (also called puzzles). Slow functions are
constructed such that:

• Puzzles and file blocks are combined, resulting into r correct
replicas of the file M. Homomorphic properties required for
compact proofs are preserved.

• The client can adjust the difficulty of the puzzles supply mul-
tiple cost metrics.

• The costs from the storage of the solution of the puzzle are at
least as high as the storage needed for the replicas of the file
M.

• The cloud provider needs more time to solve the puzzles than
the client, since the latter has access to a trapdoor.
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In this section, we recall the construction of VDFs [12] that we
use in our PORR. In order to successfully combine Shacham-Waters
POR with VDFs, we opt for the exponentiation-based version with
bounded pre-computations in a RSA group. This version is secure
against attackers with bounded pre-computations, from a gener-
alization of exponentiation-based time-lock puzzles in groups of
unknown order.

4.1 Definition

An algorithm is said to run with p processors in parallel time t if
one can implement it on a PRAM machine with p parallel proces-
sors that run in time t. The total sequential time refers to the time
required for computation on a single processor.

A Verifiable Delay Function (VDF) is composed of three algo-
rithms, to set up the system, evaluate the slow function and verify
a solution. On inputs a security parameter κ and a delay parameter
t, the randomized setup algorithm outputs the public parameters
pp containing an evaluation key ek and a verification key vk. This
algorithm must be polynomial-time in κ. The delay parameter t
must be sub-exponentially sized in κ.

On inputs the evaluation key ek and a puzzle x from some known
sampleable set, the evaluation algorithm outputs the solution y and
a (possibly empty) proof π. For all public parameters pp and for
all puzzles x, the evaluation algorithm must run with poly(log(t), κ)
processors in parallel time t. For a given puzzle x, there must be a
unique output y whose verification will be correct.

On inputs the verification key vk, the puzzle x, the solution
y and its proof π, the deterministic verification algorithm outputs
either 1 if y is a valid solution for the puzzle x, or 0 otherwise. The
verification algorithm must run in total time polynomial in log(t)
and κ. This algorithm is much faster than the evaluation one.

The VDF is expected to be sequential where honest parties can
compute (y, π) by running the evaluation algorithm in t sequential
steps, while no parallel-machine adversary with a polynomial num-
ber of processors can make the distinction between the output y
from a random value in many less steps. Moreover, the VDF is
expected to be efficiently computable, where honest parties run the
verification algorithm as fast as possible such that the total time
should be O(polylog(t)). The VDF is finally expected to be unique
where for all puzzles x, the value y is difficult to calculate such that
the verification algorithm outputs 1 while y is not an output of the
evaluation algorithm on inputs pp and x.

4.2 Notations

Given an integer n, let [1, n] denote the set of integers {1, 2, · · · , n}.
Let L = {l1 = 3, l2 = 5, · · · , lt} be the first t odd primes. The param-
eter t is the provided delay parameter. Let P be the product of the
primes in L, i.e. P = l1 · l2 · · · lt. The parameter P is a large integer
with about t log t bits.

4.3 Construction

Here, we describe in details the exponentiation-based solution for
VDF in [12].

Setup: The trusted setup process is the following:

1. Set a RSA modulus N = pq (for instance, 4096 bits
long) such that the prime factors p, q are strong primes.
The factorization of N is only known by the trusted
setup algorithm. Let H : Z → Z∗N be a random hash
function.

2. For a given pre-processing security parameter B (for
instance, B = 230), do the following:

• Compute H(i) = hi ∈ Z
∗
N and gi = h1/P

i ∈ Z∗N for
i ∈ [1, B].

• Set ek = (Z∗N ,H, g1, g2, · · · , gB) and vk = (Z∗N ,H).

While the parameters of the verifier are short, the ones of the
evaluator are not.

Evaluation: Solving a puzzle x works as follows:

1. Map the puzzle x to a random subset Lx ⊆ L of size κ
and a random subset S x of κ values in [1, B], using a
random hash function.

2. Let Px be the product of all the primes in Lx and let
g =

∏
i∈S x

gi.

3. The puzzle solution is y = gP/Px .

The computation of the solution takes O(t log t) multiplica-
tions in Z∗N .

Verification: Verifying a solution y works as follows:

1. Compute Px and S x as in the evaluation algorithm on
inputs ek and x.

2. Compute h =
∏

i∈S x
H(i).

3. Output 1 if and only if yPx = h.

We observe that exactly one element y ∈ Z∗N will be accepted
as a solution for a puzzle x. The verification process takes
only Õ(κ) group operations.

4.4 Security

Security is defined in face of an attacker able to perform polynomi-
ally bounded pre-computations. A VDF scheme must satisfy:

Correctness and Soundness. Every output of the evaluation algo-
rithm must be accepted by the verification algorithm. The
solution y for a puzzle x is guaranteed to be unique because
the evaluation algorithm evaluates a deterministic function
on the sampleable set of puzzles. The proof π does not re-
quire to be unique but should be sound and a verifier cannot
be convinced that some different output is the correct VDF
outcome.

τ-Sequentiality. No adversary should be able to compute an output
for the evaluation algorithm on a random puzzle in parallel
time τ(t) < t, even with up to many parallel processors, and
after a potentially large amount of pre-computations.
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We let the readers refer to [12] for more details on the security
models for VDFs.

The above construction does not satisfy the definition of a se-
cure VDF presented in [12]. More precisely, an adversary who
is able to run a large pre-computation once the parameters pp are
known can break the above construction. There are various possible
pre-computation attacks requiring tB group operations in Z∗N [12].

New parameters must be generated after B challenges; other-
wise, the scheme is not secure. This is sufficient for our application
of a VDF, for instance by choosing B = 230. Regarding experiments
of other solutions [9, 45, 46], storage challenges never excess such
B.

5 RSA-based PORR with Public Verifica-
tion

In this section, we describe our RSA-based solution for Proof Of
Retrievability and Reliability (PORR) with public verification, us-
ing exponentiation-based VDFs to prevent the cloud provider to
generate replicas on the fly when being challenged.

A client encodes and then processes a file M into M∗, and out-
sources the latter to the cloud provider. The cloud provider then
commits to store M∗ entirely across a set of r storage nodes with
reliability guarantee R. This means that M∗ contain the original
copy of M along with replicas.

A PORR protocol is executed between a client and a cloud
provider provided by its k storage nodes. The goal of such protocol
is to enable either the client or anyone else to check the integrity
and reliability of the processed file M∗.

5.1 Definition

Informally, our PORR protocol combines the RSA-based POR
scheme of Shacham and Waters [10] and the exponentiation-based
VDF scheme from [12].

The Setup phase initiates the protocol. It corresponds to the
key generation and file and tag generation algorithms of Shacham-
Waters POR scheme and to the setup algorithm of the VDF scheme.
The client generates the parameters of the protocol, corresponding
to the ones found in the two underlying schemes. She prepares her
to-be-stored M by encrypting and processing it, and by generating
the tag T and the authenticators σi for i ∈ [1, n] (where n is the
number of blocks) as in the POR scheme [10]. According to the
agreed number r of replicas that the cloud provider must store, the
client also prepares the VDF puzzles x(k)

i, j , for i ∈ [1, n], j ∈ [1, s]
and k ∈ [1, r]. In other words, there is one challenge per sector per
replica (we recall that there are s sectors per block).

Once the cloud provider receives the file-related elements to be
stored, the Setup phase is over. It can then start the second phase,
namely the Replica Generation phase, in order to create the r repli-
cas of the original file M. To do so, the cloud provider evaluates the
VDF puzzles x(k)

i, j by running the evaluation algorithm. It appends

each solution y(k)
i, j with the corresponding sector replica m(k)

i, j , for
i ∈ [1, n], j ∈ [1, s] and k ∈ [1, r].

The next three phases can be requested multiple times. There is
an interaction between a verifier (the client herself or someone on
her behalf) and the cloud provider. During the Challenge Genera-
tion phase, the verifier generates the challenge chal and sends it to
the cloud provider, by running the challenge generation algorithm
of Shacham-Waters POR scheme. During the Response Generation
phase, the latter replies back to the client with a response resp by
running the response generation algorithm of POR scheme. Finally,
during the Verification phase, the verifier then checks resp using
only public elements, using the verification algorithms of Shacham-
Waters POR scheme and of the VDF scheme. Indeed, verification
exactly contains two steps: one check for POR and one check for
VDF. If the output is 1, then the verifier is guaranteed that the cloud
provider stores the file in its entirety along with its r replicas.

5.2 Construction

Here, we describe in details our publicly verifiable RSA-based
PORR solution.

Setup: This phase includes the POR-based key, file and tag genera-
tions along with the VDF-based setup process.

Let κ be the security parameter. Let (S.KeyGen,S.Sign,S.Ve-
rify) be a digital signature scheme. Choose two primes
p and q at random such that p, q ∈ [2κ1−1, 2κ1 − 1]. Let
N = pq be the RSA modulus such that 2κ1−2 < N < 2κ1 .
Let G : {0, 1}∗ → Z∗N be a full-domain hash function, seen
as a random oracle. Pick at random a prime e of length
2κ1 + κ2 bits, and set d = e−1 mod φ(N). Let t be the delay
parameter and B be the security parameter for VDFs. Let
L = {l1 = 3, l2 = 5, · · · , lt} be the first t odd primes and
P = l1 × l2 × · · · × lt. Let H : Z → ZN be a hash function,
seen as a random oracle.

The client wishes to store a file M ∈ {0, 1}∗ at the cloud.
Without loss of generality, the file M is assumed to be en-
crypted and encoded (using the specific erasure code). En-
cryption guarantees confidentiality and encoding guarantees
extractability and retrievability.

As in [10], the file M is first split into n blocks, and then
split into s sectors. Let us denote a sector as mi, j ∈ ZN , for
i ∈ [1, n] and j ∈ [1, s]. Bit representation of each sector mi, j

includes a characteristic pattern (e.g. a sequence of zero bits),
in order to guarantee extractability [9]. Pattern length and file
size are dependent such that the former should be larger than
log2(n · s).

The client runs the algorithm S.KeyGen(κ) and gets the sign-
ing and verification key pair (ssk, spk). She also chooses
an identifier id ∈ ZN for the processed file M∗. She then
picks at random s non-zero elements u1, u2, · · · , us ∈ ZN .
The client computes T0 = id||n||u1||u2|| · · · ||us and then
T = T0||S.Signssk(T0). Moreover, the client calculates
σi = (G(id||i) ·

∏s
j=1 umi, j

j )d mod N for i ∈ [1, n]. We no-
tice that all operations are done in the multiplcative group Z∗N
of invertible integers modulo N.

Both the cloud provider and client have agreed to create r
replicas of the file M and store all of them at rest. She com-
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putes hi = H(i) and gi = h1/P
i for i ∈ [1, B]. She also chooses

the values x(k)
i, j for i ∈ [1, n], j ∈ [1, s] and k ∈ [1, r].

Finally, the client uploads the processed file M∗ =

({mi, j}i∈[1,n], j∈[1,s], {σi}i∈[1,n]) to the cloud provider. She
also forwards the public parameters params =

(N, e,G,H, spk, L, P,T, {gw}w∈[1,B], {x
(k)
i, j }i∈[1,n], j∈[1,s],k∈[1,r]) to

the cloud provider and anyone interested in playing the role
of the verifier.

The client keeps secret the tuple (N, d,G, ssk).

Replica Generation: This phase includes the evaluation process
of the underlying VDF.

The cloud provider calculates the solution y(k)
i, j for each x(k)

i, j ,

and then build the replica m(k)
i, j of the original sector mi, j, for

k ∈ [1, r].

First, the cloud provider maps x(k)
i, j to L(k)

i, j ⊆ L of size κ and the

random subset S (k)
i, j of κ values in [1, B], using a random hash

function. Second, it sets P(k)
i, j as the product of all primes in

L(k)
i, j and computes g(k)

i, j =
∏

w∈S (k)
i, j

gw. Third, the cloud provider

computes the solution y(k)
i, j = (g(k)

i, j )P/P(k)
i, j ∈ ZN .

Finally, it computes m(k)
i, j = mi, j + y(k)

i, j as the k-th replica of the
sector mi, j.

Challenge Generation: This phase corresponds to the challenge
generation of POR.

First, the verifier (possibly the client) generates the challenge
chal. Given T = T0||S.Sigssk(T0), check that S.Signssk(T0) is
a valid signature by running the algorithm S.Verifyspk. If the
signature is invalid then halt.

Thereafter, elements id, n, u1, u2, · · · , us are recovered the ver-
ifier. The latter then sets I ⊂ [1, n] of l elements and randomly
selects l elements vi ∈ ZN , for i ∈ I. Then, let Q = {(i, vi)}i∈I

where i is defined as the index of the block mi. A set R ⊂ [1, r]
is also set by the verifier. Finally, let chal = (Q,R) be for-
warded to the cloud provider.

Response Generation: This phase corresponds to the response
generation of POR.

Upon reception of the challenge chal, the cloud provider cre-
ates its response resp. First, it computes µ j =

∑
(i,vi)∈Q vimi, j ∈

Z and σ =
∏

(i,vi)∈Q(σi ·
∏s

j=1
∏

k∈R u
m(k)

i, j

j )vi mod N. It sets
resp = ({µ j} j∈[1,s], σ) and forwards it to the verifier.

Verification: This phase includes both POR- and VDF-based veri-
fication steps.

Upon reception of the response resp, the verifier verifies that
whether each µ j is in the range [0, l ·N ·max(ZN)]. The verifier
halts and outputs ) as soon as some values are not in the range.
Otherwise, the verifier checks whether the following equation

holds:

σe =
∏

(i,vi)∈Q

G(id||i)vi ×

s∏
j=1

uµ j(1+|R|e)
j

×
( ∏

(i,vi)∈Q

s∏
j=1

∏
k∈R

u
vi(h

(k)
i, j )

1/P(k)
i, j

j

)e
mod N

(1)

The verifier outputs 1 if the equation holds. She outputs 0
otherwise.

5.3 Security

In this section, we first describe the possible misbehaving entities
in PORR, w.r.t. the cloud provider and client. We then present
the security goals of a PORR scheme and define the correctness
requirements, according to the ones in [9]. Our PORR solution must
guarantee three security goals, namely:

• Extractability: The client can recover the original file M in
its entirety.

• Soundness of replica generation: The replicas of the origi-
nal file M must be correctly generated.

• Storage allocation commitment: The cloud provider uti-
lizes at least as much storage as required to store the original
file M and its replicas.

Traditional security notions are either embedded in those security
notions (e.g. integrity), or assumed to be guaranteed by default (e.g.
confidentiality).

We also sketch the security proofs of our scheme accord-
ing to their respective security goals. We let the reader reach
[9, 10, 11, 45, 46] for more details about the PORR security models
and proofs. Indeed, the extractability proof is based on the secu-
rity of the original POR scheme [10, 11]. Proofs for soundness of
replica generation and storage allocation commitment follow the
same arguments than in MIRROR [9]. Those security goals are
however made guaranteed based on the security of the VDF puzzles
[45, 46] in our case rather than of the RSA-based puzzles [50] as in
MIRROR.

5.3.1 Misbehaving Entities.

Two entities, namely a cloud provider and a client, participate in our
PORR protocol. Both are assumed to attempt malicious behaviours.

Rational Cloud Provider: If the cloud provider cannot save any
costs by misbehaving, then it is likely to simply behave hon-
estly. The advantage of an adversarial cloud provider depends
on the ratio between costs for storage and accessibility to var-
ious resources (e.g. computing) and their availability. Hence,
a cloud provider is restricted to a bounded number of concur-
rent threads of execution.

Therefore, we say that a cloud provider is rational when it
can achieve cost savings by cheating. For instance, the cloud
provider may attempt to get some storage space saved while
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the overall cost for operations has not increased. Such cost
is limited to the number of storage servers along with lim-
ited computational and storage capacities of each server. If
supplying computational resources incurs additional costs,
then the cloud provider invests in extra computing resources
if such a strategy would result in lower total costs (including
the underlying costs of storage).

Let us assume that a rational cloud provider achieves to gen-
erate a valid response while not reliably storing the client’s
data. If in order to reach such a behaviour, the cloud provider
either provides more resources for storage or provides more
resources for computing than resources when it follows the
protocol honestly, then the cloud provider likely decides to
not behave maliciously.

The client is protected from a misbehaving cloud provider
that is not storing the file in its entirety by considering the
extractability notion. The client is also protected from a
misbehaving cloud provider that is not committing enough
storage to keep all the file replicas by considering the storage
allocation notion. Both properties guarantee both the integrity
of the original file and its replicas. This means that the cloud
provider invests enough redundancy to keep the client’s data
safe.

Malicious client: We say that a client is malicious when she can
encode additional data in the replicas by cheating. This addi-
tional data cannot be found in the original file.

A client may attempt to abuse on storing more data in the
file replicas than what has been approved between the client
and cloud provider. In particular, replicas may have a lower
cost than their original files (e.g. Amazon S3). Therefore,
additional data may be inserted into replicas by a malicious
client.

The cloud provider is protected from such a misbehaving
client by considering the correct replication notion.

The security model used to build our security proofs comes from
[9, 45, 46]. We do not consider the confidentiality of the outsourced
file: we simply assume that the client encrypts it before the start of
the PORR protocol.

We first show the correctness of our PORR scheme. We then
move forward to the security properties with relation to cheating
cloud provider and client, namely extractability, storage allocation
and correct replication.

Informally, our PORR must achieve the following properties:

• Extractability: The file can be recovered in its entirety if and
only if at least a fraction δ is stored at the cloud provider.

• Storage allocation: Misbehavior will be detected with over-
whelming probability if less than a fraction δ is stored at the
cloud provider.

• Correct replication: The client does not participate in the
replica generation. Moreover, the size of the file is inde-
pendent of the size of the parameters needed to create the
replicas.

5.3.2 Correctness

If both the cloud provider and the verifier are honest, then on input
the challenge chal sent by the verifier (output by the challenge gen-
eration algorithm), the response generation algorithm (run by the
cloud provider) generates a response resp such that the verification
algorithm outputs “1” with probability 1. This means that an honest
cloud provider should always be able to pass the verification of
proof of data reliability. From it, the PORR scheme is said to be
correct.

During the verification phase, if both the verifier and cloud
provider are honest, then on input Q = {(i, vi)}i∈I generated by the
verifier, the cloud provider should output a response resp such that
the Equation (1) holds with probability 1.

Proof. Let N be the modulus, e be the public exponent and d the
private exponent. The elements P(k)

i, j and S (k)
i, j are calculated as in the

Replication Generation phase. We recall that h(k)
i, j =

∏
w∈S (k)

i, j
H(w)

and so:

(y(k)
i, j )P(k)

i, j = ((g(k)
i, j )P/P(k)

i, j )P(k)
i, j = ((h(k)

i, j )1/P)P = h(k)
i, j mod N

From a challenge set Q = {(i, vi)}i∈I , with µ j =
∑

(i,vi)∈Q vimi, j

and σ =
∏

(i,vi)∈Q σ
vi
i , we get the following mod N:

σ =
∏

(i,vi)∈Q

(σi ·

s∏
j=1

∏
k∈R

u
m(k)

i, j

j )vi

=
∏

(i,vi)∈Q

σvi
i ×

∏
(i,vi)∈Q

s∏
j=1

∏
k∈R

(u
m(k)

i, j

j )vi

=
∏

(i,vi)∈Q

(G(id||i) ·
s∏

j=1

umi, j

j )vid ×
∏

(i,vi)∈Q

s∏
j=1

∏
k∈R

(u
mi, j+y(k)

i, j

j )vi

=
∏

(i,vi)∈Q

(G(id||i)vi ·

s∏
j=1

uvimi, j

j )d ×
∏

(i,vi)∈Q

s∏
j=1

∏
k∈R

umi, jvi

j

×
∏

(i,vi)∈Q

s∏
j=1

∏
k∈R

u
y(k)

i, j vi

j

=
( ∏

(i,vi)∈Q

G(id||i)vi ×

s∏
j=1

u
(
∑

(i,vi )∈Q vimi, j)
j

)d

×

s∏
j=1

∏
k∈R

u
(
∑

(i,vi )∈Q vimi, j)
j ×

∏
(i,vi)∈Q

s∏
j=1

∏
k∈R

u
vi(h

(k)
i, j )

1/P(k)
i, j

j

=
( ∏

(i,vi)∈Q

G(id||i)vi ×

s∏
j=1

uµ j

j

)d
×

s∏
j=1

u|R|µ j

j

×
∏

(i,vi)∈Q

s∏
j=1

∏
k∈R

u
vi(h

(k)
i, j )

1/P(k)
i, j

j

and so
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σe =
∏

(i,vi)∈Q

G(id||i)vi ×

s∏
j=1

uµ j

j ×
( s∏

j=1

u|R|µ j

j

×
∏

(i,vi)∈Q

s∏
j=1

∏
k∈R

u
vi(h

(k)
i, j )

1/P(k)
i, j

j

)e

=
∏

(i,vi)∈Q

G(id||i)vi ×

s∏
j=1

uµ j(1+|R|e)
j

×
( ∏

(i,vi)∈Q

s∏
j=1

∏
k∈R

u
vi(h

(k)
i, j )

1/P(k)
i, j

j

)e
mod N

5.3.3 Extractability

The client is protected against a malicious cloud provider that is not
storing the file in its entirety, through the notion of extractability.

An honest client should recover her file M with high probability.
Following the notion of extractability in [10, 11], if a cloud provider
can convince a honest client with high probability that it stores the
file M∗ (i.e. the processed version of the original file M), then there
exists an extractor algorithm that, given enough interaction with the
cloud provider, can extract the file M.

Sketch of Proof. Let us define a game between an adversary and
an environment. The environment is a simulation of honest clients
and honest verifiers. The adversary is allowed to submit requests to
the environment to create new clients, along with their public and
secret parameters, to let them prepare files and their replicas, and to
verify correct storage. More precisely, the environment simulates
honest client and verifier, and it further provides the adversary with
oracles for the algorithms to set up the system, upload the file and
replicas, generate the challenge and verify the response.

At the end, the adversary chooses a client with its file M and
outputs a cloud provider who can execute the verification process
with this client and the file M. A cloud provider is said to be ε-
admissible if the probability that the verifier does not abort is at least
ε. The adversary thus picks the client along with the client’s secret
tuple (N, d,G, ssk), the file M and the public parameters params,
and simulates a cheating cloud provider. Let the latter succeed in
making the verification algorithm yield “1” in an non-negligible
ε fraction of PORR executions. We say that the PORR scheme
meets the extractability guarantee, if there exists an extractor algo-
rithm such that given sufficient interactions with the cheating cloud
provider, it recovers M.

The computations executed to upload the file M and to verify
correct storage are similar operations to the ones in the publicly
verifiable POR scheme in [10, 11]. Therefore, the extractability ar-
guments given in [10, 11] apply to our PORR solution directly. An
additional assumption is made on the existence of an erasure coding
mechanism applied to the file, to guarantee the entire recovery of
the file M from any file fraction δ. We let the reader refer to [10, 11]
to obtain additional information on the choice of the erasure codes.

5.3.4 Soundness of Replica Generation.

Contrary to extractability notion, soundness of replica generation
aims to protect the cloud provider against a malicious client who
tries to encode additional data in the replicas.

Sketch of Proof. The replica generation is said to be sound such
that if the client is involved in the replica generation, then the cloud
provider can get the assurance that the additional uploaded data rep-
resents indeed correctly built replicas that do not encode extra data.
In our PORR, this situation is solved by not letting the client be fully
involved in the replica generation. Indeed, while the client generates
the puzzles whom solutions are created by the cloud provider, the
latter is responsible of defining each replica with its puzzle solution.

The replica generation does not allow to encode a significant
amount of extra data in the replicas. Indeed, the replication process
takes as inputs elements whose size is independent of the file size.
The replica generation is also said to be correct if replicas represent
indeed copies of the uploaded file M. Indeed, the file M can be
efficiently recovered from any replica Mk. There exists an efficient
algorithm which given the file tags, the public parameters and any
replica Mk outputs M.

5.3.5 Storage Allocation Commitment.

Similarly to the extractability notion, the storage allocation commit-
ment property aims to protect a client against a cloud provider who
does not commit enough storage to store all replicas.

The storage allocation commitment notion forces the cloud
provider to store the outsourced file and its replicas at rest. There-
fore, a cheating cloud provider that participates in the above ex-
tractability game [10, 11] and devotes only a fraction of its storage
space to store the file and the replicas entirely, cannot convince the
verifier to accept its response with overwhelming probability.

Sketch of Proof. The storage allocation ratio of the cloud provider
is defined as follows:

ρ =
|st|

|M| + |M1| + · · · + |Mr |

where st corresponds to the storage of the cloud provider that
has been allocated for storing the original file M and its replicas
M1, · · · ,Mr. The file has been first encrypted and the replicas are
copies of the processed file, thus they cannot be further compressed.
We can assume that the cloud provider aims to save storage, thus it
holds that 0 ≤ ρ ≤ 1. The storage allocation commitment ensures
that δ ≤ ρ for a threshold 0 ≤ δ ≤ 1 agreed with the client (see the
above extractability notion).

First, we want the cloud provider to use at least as much stor-
age as needed to keep the file and its replicas. Second, we see our
scheme as a POR protocol applied to both the original file and all
the replicas. Let a challenge contain sectors that are not correctly
stored. Then, our scheme guarantees that the cloud provider will
fail with overwhelming probability unless the correct reconstruction
of those sectors is possible.

Lastly, a malicious cloud provider should give a noticeable effort
in reconstructing missing sectors. We can easily investigate such
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an effort as follows. Let the cloud provider store the whole file but
only parts of the replicas. The cheating cloud provider will require
a significantly higher effort in recomputing missing replicas, com-
pared to an honest service provider that has all the replicas stored
in their entirety. By using slow functions (here the VDFs), the time
in getting back the missing parts of replicas is noticeable from the
verifier’s point of view.

More precisely, the misbehaving cloud provider must compute
the puzzle solutions y(k)

i, j in order to recompute the missing sectors.

Since those elements y(k)
i, j are different for each replica, knowing

(or reconstructing) one element y(k)
i, j from one replica sector does

not help the cloud provider in deriving elements from other replica
sectors. A rational cloud provider should thus require a significantly
higher effort compared to an honest cloud provider in recomputing
missing replicas.

Given that the VDF evaluation function requires a noticeable
amount of time and effort compared to the associated VDF verifi-
cation function, this incurs additional (significant) computational
overhead on the cloud provider to compute the puzzle solutions on
the fly rather than storing them at rest.

Let δ be the threshold selected by the client (see Extractability).
Let us assume that less than a fraction δ of all sectors of a replica
is stored at the cloud provider. Thus, for each element y(k)

i, j in the
challenge, the probability to recompute it is at least 1 − δ. In addi-
tion, l · s sectors are contained in a challenge. Hence, the number
of values to recompute is l · s · (1 − δ). Moreover, the costs from
the time effort for recomputing these elements y(k)

i, j exceed the costs
from the storage of those elements. This is made possible by having
a number of challenges linear in the security parameter κ. If so, then
the overall probability to avoid these computations is negligible in
κ.

6 Implementation and Evaluation

We are interested in implementing and evaluating our PORR solu-
tion in a realistic cloud framework. We also wish to compare our
results with the ones from [9], since their solution is the closest one
to ours.

In this section, we first describe MIRROR, the PORR scheme
presented in [9]. We then describe our implementation setting, and
we discuss our results and compare them with the ones from [9]. We
choose to compare our results with MIRROR’s ones since, to our
best of knowledge, MIRROR is the closest prototype to ours. Unlike
existing schemes, the cloud provider replicates the data by itself
in both MIRROR and our PORR. Therefore, expensive bandwidth
resources are traded with cheaper computing resources.

As a summary, we evaluate an implementation of our PORR
prototype within a realistic cloud setting and we compare the per-
formance of it with MIRROR [9].

6.1 MIRROR

MIRROR [9] is the first scheme to enable the cloud provider to gen-
erate the replicas of the client’s files by itself. Such move permits
to trade expensive bandwidth resources with cheaper computing

resources. Cloud providers and clients are likely to adopt it eas-
ily since storage services are improved while financial costs are
lowered.

The authors in [9] present new PORR definition and security
model. Their definition extends Shacham-Waters POR from [10].
Their security model encompasses security risks that have not been
covered in previous multi-replica POR schemes, namely security
against malicious clients and rational cloud providers. We have
sketched the security proofs of our PORR based on their model.

The authors give a solution for PORR, called MIRROR, and
prove it secure according to their new security model. Their mo-
tivations mostly rely on business matters for cloud providers and
financial incentives for clients. They propose a tunable replica-
tion scheme by combining Linear Feedback Shift Registers and
RSA-based puzzles [50]. By doing so, the burden incurred by the
construction of the replicas is shifted to the cloud provider. The
latter swaps higher resources for bandwidth with lower resources
for computation. In addition, a realistic cloud framework has been
defined for the implementation and evaluation of MIRROR. The
results show that MIRROR is applicable to real cloud environments.

The main difference between MIRROR and our PORR solution
is the nature of the verification process, private and public respec-
tively. The authors in [9] propose to use privately verifiable puzzles
to prevent rational behaviour from cloud providers. Therefore, such
feature forces the puzzle creator, namely the client, to check herself
the solution generated by the cloud provider. We claim that such
requirement is too strict on the client’s side. If we aim to design
a solution for the general public, then we think about individuals
that have limited knowledge on cloud storage security, thus that
would not follow the process to prevent and/or detect malicious
cloud provider behaviours. Instead, we suggest to use VDFs that
offer public verification. This implies that anyone else on behalf of
the client can verify that the cloud provider has been acting honestly.

6.2 Implementation

We implement our PORR scheme in order to analyze the computa-
tional efforts from honest and rational cloud providers, along with
the ones from client and verifier.

We show that our protocol produces fair computational and
communication overheads on the client, cloud provider and verifier,
meaning that our solution is realistically applicable in cloud stor-
age environments. Indeed, computation costs are affordable for the
client and verifier, while they are made such that the cloud provider
does not gain any advantage in computing the replicas on the fly
from the verifier’s challenge requests. Therefore, our solution fits
cloud-related bandwidth and storage expectations, while preventing
malicious clients and rational cloud providers from being successful.

Our implementation setting follows the one in [9] for a more
accurate and legitimate comparison. Our code is written in Python
3.8. The selected hash function is SHA-256. The whole test envi-
ronment is deployed on a PC running an Intel Core i7-9700 with
32GB of memory. We create four Virtual Machines (VMs) to design
our test environment, namely:

• One VM represents the client that owns files to be stored on a
cloud storage server.
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• One VM represents the cloud provider (server) that offers
cloud storage services.

• Two VMs represent storage nodes, linked to the cloud
provider, that guarantee data replication.

We depict the test environment topology in Figure 2.

Figure 2: Test environment topology

To emulate a realistic Wide Area Network (WAN), the com-
munication between the various VMs is bridged using a 100 Mbps
switch. All traffic exchanged in the environment is shaped with
NetEm [56]. The setting parameters are the following:

• We set the packet loss rate at 0.1%, and the correlation rate
of lost packets at 0.001% [57, 58, 59].

• We set the delay rate to fit normal distribution with a mean of
20ms and a variance of 4ms [60].

• We set the packet corruption rate at 0.1% [61].

• We set the rate of the package being out of order at 0.2% [62].

Each data point is averaged in our plots by five independent mea-
surements. Where appropriate, we include the corresponding 95%
confidence intervals.

Parameter selection. We select our parameters similarly to [9] in
order to achieve a better comparison. Let the modulus N be 2048-
bit long (hence, 1024-bit primes p and q). We choose a block size
equal to 8KB as such value offers the most balanced performance
in average. This means that files of 64MB are split into n blocks
where n = 8, 000. Each block is then split into s sectors where
s = 32. Then, r replicas are created for each file where r = 2. The
cloud provider is thus expected to keep 8000 × 32 × 2 < 52 · 104

file elements, namely the original file sectors and the replica sectors.
The number of blocks per challenge will be set to |I| = 40.

We consider three network storage protocols, namely File Trans-
fer Protocol (FTP), Server Message Block (SMB) and Network File
System (NFS), to enable the client to access her files stored in the
cloud, through a computer network. NFS is used on Unix operating
systems and SMB on Windows operating systems. The deployment
of FTP is wider, as long as the communication port is open. In order
to select one of those three network storage protocols, we test their

uploading speed. Figure 3 shows the uploading speed values (in
MB per second) for network storage protocols FTP, SMB and NFS.
Due to the instability of network transmission, the uploading speed
results show some ups and downs. The average FTP speed is the
fastest, at 17.4 MB per second, which is around 1 second faster than
NFS and 3 seconds faster than SMB. Hence, FTP was chosen as the
default setting.

Figure 3: Network Storage Protocols

We summarize our parameter selection in Table ??. When not
specifically mentioned in Section 6.3, the default parameter values
are kept as in Table ?? for our protocol evaluation.

Table 2: Parameter selection

Parameter Default value
RSA modulus size |N| 2048 bits
RSA prime size |p| 1024 bits
RSA prime size |q| 1024 bits
Pre-processing parameter B 230

Delay parameter t 216

File size 64MB
Block size 8192 Bytes
Sector size 256 Bytes
Number of replicas r 2
Number of challenges |I| 40
Network Storage Protocol FTP

VDF implementation. We recall that our PORR scheme is based
on the exponentiation-based VDF scheme [12]. The latter has the
following characteristics.

The VDF evaluation algorithm runs with poly(log(t), κ) proces-
sors in parallel time t, where κ is the security parameter and t is the
delay parameter. We say that an algorithm runs with p processors
in parallel time t if one can implement it on a PRAM machine with
p parallel processors running in time t.

The VDF verification algorithm runs in total time polynomial
in log(t) and κ. This algorithm should be much faster than the
evaluation one.

Our PORR scheme uses VDFs in order to allow the verifier to
detect a cheating cloud provider computing the puzzle solutions on
the fly rather than keeping them at rest. Therefore, we aim to notice
a difference between the response time of a honest cloud provider
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and of a rational one. More precisely, a verifier should be able to
observe a delay in responding from a cheating cloud provider. We
choose a delay parameter t equal to 216.

The security of the VDF scheme based on exponentiation [12]
relies on the assumption that the adversary cannot run a long pre-
computation from the publication of the public parameters until the
evaluation of the puzzles. Given the pre-processing parameter B,
the VDF scheme is secure up to B puzzles. New public parameters
must be generated once B puzzles have been used.

The authors in [12] suggest to set B = 230 for a reasonable
trade-off between usability and security. Let us consider B = 230

and 64MB files. Up to 2000 files can be stored at the cloud with
only one VDF instance. 2000 files roughly correspond to 128GB
of data. Another VDF instance will be necessary if more files need
to be stored. We recall that the setup algorithm runs in polynomial
time in the security parameter κ, meaning that this algorithm is run
easily and relatively fast.

We examine whether such condition on the pre-processing pa-
rameter B restricts the applicability of our PORR solution. In ad-
dition, we verify the costs incurred from computing and storing.
Indeed, our results should convince us that our PORR solution fits
real world requirements. We summarize our VDF implementation
characteristics in Table ??.

6.3 Evaluation and Discussion

Response generation. We measure the time that the cloud
provider takes in order to generate its response, according to differ-
ent numbers of challenges. Results are shown in Figure 4.

We consider two types of cloud providers: a rational cloud
provider and a honest cloud provider. The former needs more time
to generate its response since it requires to compute puzzle solutions
on the fly. On the other side, since the honest cloud provider has
already computed the puzzle solutions and stores them at rest, its
response generation is noticeably faster. Therefore, we are guaran-
teed that the verifier (and thus the client) will notice a rational cloud
server from a honest cloud provider since the time difference for
response generation is consequent.

The average response time of an honest cloud provider is less
than 2 seconds when r = 2 in [9], and a delay of almost 1 second is
observed from a rational cloud provider. In our case, if the cloud
provider tries to compute the 2 replicas on the fly, then it needs
to compute the solutions y of 2 puzzles x, meaning that it runs in
parallel time t with poly(log(t), κ) processors twice.

From Figure 4, we notice that a rational server needs almost
twice the time than a honest server to generate its response, for
a given number of challenges. For instance, for 40 challenges, a
rational server generates its response in 0.63 seconds while a honest
server in 0.31 seconds. Moreover, the response generation time
increases with the number of challenges.

MIRROR’s response generation depends on the bit size of the
factors (that are elements needed to prepare the replicas) [9]. As
long as the blind factors are greater or equal to 70 bits, the rational
server should not gain any reasonable advantage in misbehaving.
For instance, when the coefficients’ size is equal to 70 bits, a rational
server in MIRROR needs around 1 second to generate its response

based on 40 challenges. Since we do not use blind factors, a rational
server in our PORR only requires 0.63 seconds.

For a higher security level, that is a bigger blind factors’ bit size
(say 200 bits), a MIRROR rational server generates its response in
roughly 2.8 seconds. In our case, in order to reach a higher security
level, we can increase the number of challenges. For instance, for
a number of challenges equal to 200, a rational server needs 4.86
seconds to generate its response. Such time cost happens since the
rational server must calculate puzzle solutions on the fly.

Figure 4: Response Generation Time

File preparation. We measure the time required to prepare a file
before storing it on the cloud. Specifically, we measure the time for
setup (i.e. key generation and tag generation) and replica generation
(i.e. puzzle evaluation). Results are shown in Figure 5.

The time spent for preparing the file and its replicas increases
exponentially with the size of the file. For instance, for a 16MB file
and its 2 replicas, we need around 50 seconds while for a 256MB
file, we require more than 700 seconds.

Moreover, file preparation takes around 180 seconds for a 64MB
file and its 2 replicas in our case. We notice that setup and replica
generation take around 500 and 700 seconds respectively in MIR-
ROR [9], given the same file setting. Therefore, file preparation is
almost 7 times faster in our PORR than in MIRROR for a 64MB
file.

Figure 5: File Preparation Time

Verification. We measure the time required to verify correct stor-
age at rest. Specifically, we measure the time for response gen-
eration and response verification. We consider multiple file sizes,
and thus multiple numbers of challenges, since the latter depend
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on the former. In particular, a large file means a bigger number of
challenges. The number of challenges is calculated as the half of
the file size (in MB). For example, 32 challenges are requested for a
64MB file. According to the default parameter settings, the verifier
thus checks 128KB of data for each MB file data. Results are shown
in Figure 6.

The verification time experienced by the client is 0.57 seconds
in our case, while being 0.8 seconds in MIRROR [9]. The number
of challenges increases with the file size, thus impacting the verifi-
cation time. Given a file size of 128MB, the number of challenges
is 64 and the verification time reaches 1.14 seconds. Note that the
number of challenges in MIRROR is fixed at a value of 40, whatever
the file size. Therefore, the verification time is constant, equal to
0.8 seconds.

Figure 6: Verification Time

Puzzle evaluation. We measure the time spent for puzzle evalu-
ation only. We are interested in such measurement since this part
takes the longest time in file preparation. Results are shown in
Figure 7.

Puzzle evaluations contribute to almost 3/4 of the file prepara-
tion. In the default configuration, that is given a 64MB file, file
preparation time reaches 180 seconds, where around 130 seconds
are spent on puzzle evaluations. Since the number of sectors in-
creases with the file size, this leads to the linear growth of puzzle
evaluation time.

Figure 7: Puzzle Evaluation Time

Latency w.r.t. block sizes. We measure the time required for
response generation and verification, according to the block sizes.
We choose a sector size of 256 Bytes. Results are shown in Figure
8. We notice that a smaller block size gives a shorter time. Indeed,

block size and challenge number are related, meaning that response
generation and verification are faster as the block size decreases.

MIRROR [9] gets a similar trend to ours, but less obvious. In
MIRROR, the verification time is around 1 second for a 1MB block
size, and 1.1 seconds for a 2MB block size. In our case, the verifica-
tion time is around 0.1 seconds for a 1MB block size, and 0.2 for a
2MB block size, thus an increase by 50%.

Figure 8: Latency (blocks)

Latency w.r.t. sector sizes. We measure the time required for
response generation and verification, according to the sector sizes.
We choose a block size of 8192 Bytes. For a given block size, a
small sector size means a bigger number of sectors in that block.
Therefore, the verification time is impacted since more data must be
checked while the number of blocks and thus of challenges is fixed.
Results are shown in Figure 9.

The authors in [9] do not explicitly analyze the effect of sec-
tor size of their protocol MIRROR. We expect that, for a given
file, when the sector size decreases, its number increases, and thus
impacts, with a rise, the server’s response time and verifier’s verifi-
cation time.

Our default sector size is 256 Bytes, as a trade-off between effi-
ciency and security. Verification is done in 0.36 seconds with such
value. On the other size, a sector size equal to 32 Bytes results in
getting a verification time 15 times slower.

Figure 9: Latency (sectors)

Financial costs. We compare the financial costs between our
PORR and MIRROR [9], w.r.t. file preparation. The replication
process (as named in MIRROR) roughly corresponds to our file
preparation. Results are shown in Figure 10.
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The graph records those cost differences between the two pro-
tocols. The Amazon EC2 processor rental price is US$ 0.404 per
hour. Such price is thus US$ 0.000112 per second, and has been
multiplied with our file preparation time.

Given a file of size 384MB, our PORR and MIRROR will both
incur a cost equal to 0.18 USD. Our PORR protocol seems more
interesting from a financial point of view with file sizes smaller than
384 MB, saving from 2 to 15 times compared to MIRROR. On the
other side, MIRROR seems more attractive with larger file sizes.

Figure 10: Financial Costs

Additional remarks. In MIRROR [9], replicas are computed as
the product of the original file sector and two blind factors. However,
the cloud provider may just keep the factors in reserve, and multiply
by the sector when requested for verification. The gain may not be
substantial and a cloud provider may just store the replicas.

Our replicas are computed as the addition of the original file
sector and one blind factor. Similarly to [9], the cloud provider may
or may not just keep the factor and add the sector when challenged.
Future task will investigate whether a better design can prevent such
behaviour from the cloud provider.

Summary. Our results show that our PORR prototype manages
to trade expensive bandwidth resources with cheaper computing
resources. Those results are likely to be well accepted by cloud
providers and clients with the promise of better storage services and
lower financial costs. Moreover, some of those results, especially
on both technical and financial aspects, show that our PORR is
more competitive with small file sizes, compared to MIRROR [9].
Therefore, our PORR solution may become one of the economically-
viable, applicable systems that offer verifiable replicated cloud stor-
age. In particular, our PORR fits the demands from indivudals and
small businesses with lower file sizes to store on a cloud.

7 Conclusion
In this paper, we presented a recent PORR protocol, first proposed in
[1], where one can check in a single instance that the cloud provider
correctly stores an original file and its replicas. We combine our
PORR with the slow function VDF to enable anyone to verify the
cloud provider’s behaviour, not only the file owner.

Implementation and evaluation of our solution have been carried
out. Results show that such design is well applicable in realistic

cloud environments. Multiple results, on technical and financial
aspects, show that our PORR is more competitive with small file
sizes, compared to MIRROR [9] and with the noticeable advantage
of offering public verification.
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