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 Advances in technology have enabled the installation of an increasing number of sensors 
in various mechanical systems allowing for more detailed equipment health monitoring 
capabilities. It is hoped the sensor data will enable development of predictive tools to 
prevent system failures. This work describes continued analysis of sensor data surrounding 
a seizure of a turbocharger within a propulsion system. The objective of the analysis was 
to characterize and distinguish healthy and failed states of the turbocharger. The analysis 
approach included mapping of multi-dimensional sensor data to a low-dimensional space 
using various linear and nonlinear techniques in order to highlight and visualize the 
underlying structure of the information. To provide some physical insight into the structure 
of the low-dimensional representation, the transformation plots were analyzed from the 
perspective of several engine signals. By overlaying operating ranges of individual sensor 
signals, certain regions of the mappings could be associated with distinct operational states 
of the engine, and several anomalies could be related to various points in the turbocharger 
seizure. Although the failed points did not map to an obvious outlier location in the 
transformations, incorporating expert domain knowledge with the data mining tools 
significantly enhanced the insight derived from the sensor data. 
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1. Introduction  

Rapid developments in sensor technology, data processing 
tools and data storage capability have helped fuel an increased 
appetite for equipment health monitoring in mechanical systems. 
As a result, the number of sensors and amount of data collected for 
health monitoring has grown tremendously. It is hoped that by 
collecting large quantities of operational data, predictive tools can 
be developed that will provide operational, maintenance and safety 
benefits. Data mining and machine learning techniques are 
important tools in addressing the ensuing challenge of extracting 
useful results from the data collected. However, incorporating as 
much physical domain knowledge to the analysis as possible is 
also necessary to ensure the results are relevant and practical for 
the operator and end-user. 

This work describes continued analysis of sensor data for the 
turbocharger subsystem of a diesel engine system. The engine has 

hundreds of sensors monitoring both the inputs of the engine 
operator and the resulting equipment outputs. A turbocharger 
seizure was recorded by the diesel engine sensor system. 
Therefore, data analysis of this incident including the lead up to 
the event allows for monitoring and identification of changes in 
equipment condition indicators with a known outcome. 

This paper is an extension of work originally presented at the 
2017 IEEE International Symposium on Robotics and Intelligent 
Sensors (IRIS) [1]. The initial data analysis of this event included 
intrinsic dimension analysis and relied on clustering techniques for 
data reduction to transform the high-dimensional sensor data to a 
low-dimensional space. In this extended version of the paper, the 
data has not been reduced using clustering techniques in order to 
minimize information loss and t-Distributed Stochastic Neighbour 
Embedding (t-SNE) is included as an additional mapping method. 
An important addition in this paper is further analysis to relate 
individual sensor signals to the internal data structure of the low-
dimensional mappings. 

ASTESJ 

ISSN: 2415-6698 

*Catherine Cheung, 1200 Montreal Rd, Bldg M-14, Ottawa, ON, Canada K1A 
0R6, +1-613-998-1541, Email: catherine.cheung@nrc-cnrc.gc.ca 
 

 

Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 6, 23-32 (2018) 

www.astesj.com  

Special Issue on Multidisciplinary Sciences and Engineering 

https://dx.doi.org/10.25046/aj030602  

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj030602


C. Cheung et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 6, 23-32 (2018) 

www.astesj.com    24 

Failure detection in mechanical systems using data-driven 
models is an area that has been the focus of much published 
research in the last decade or so. Machinery failures are hard to 
predict due to the complex nature of the structure and functions of 
the system. Using data driven models helps reduce maintenance 
costs, improve productivity and increase machine availability [2]. 
For example, fuzzy support vector machines have been applied to 
identify faults in induction motors [3]. In another case, various 
data-driven models such as support vector machines, decision trees 
and kernel methods were used and compared to diagnose faults in 
shaft and bearings of rotating machinery [4]. Additionally, a model 
was developed to continuously monitor the health of wind turbine 
gearboxes [5]. In brief, data-driven models demonstrate great 
potential for failure detection and preventive maintenance in 
mechanical applications.  

Other related work revolves around understanding the trends 
data-driven models produce. In several fields, data is being 
acquired at an astounding rate [6]. There is a significant need for 
the development of methods and techniques to obtain useful 
knowledge from these growing sets of available data. Currently, 
there exist few processes that combine expert knowledge of a 
system with algorithm-generated prediction models of the 
system’s datasets. However, in cases where expert knowledge is 
combined with machine learning techniques, there is a notable 
improvement in the results. For example, a methodology was 
proposed to detect web attacks [7]. In this procedure, features that 
represented the tendencies of the system were chosen by experts 
and were combined with output provided by n-grams, a feature 
extraction algorithm. In another instance, similar to mechanical 
applications, a framework to combine the clinical intuitions and 
experience of medical experts with machine learning models was 
used to overcome the lack of ideal training sets [8]. Medically 
trained experts provided a task to accomplish, the desired outcome, 
the data, and helped construct relationships between variables with 
the algorithm designers. The relationships that were provided 
aligned with the intuition of the medical expert and their 
understanding of how factors played out in predicting a certain 
outcome [8]. However, when expert-knowledge is not always 
readily available, or if all the variables cannot be identified for a 
particular outcome, or when proper variable relationships cannot 
be constructed for a particular outcome, the need to be able to 
obtain useful knowledge from the results of data-driven models 
still exists.  

In this work, a multi-disciplinary approach to gain knowledge 
from high-dimensional and voluminous datasets generated by 
complex real-world systems is explored. Data mining and machine 
learning techniques are implemented to gather useful insights from 
the large amounts of sensor data collected for this diesel engine 
system. By incorporating expert domain knowledge with the low-
dimensional representations of the data, a more practical 
understanding of the data structure presented in the mappings is 
provided which helps ensure that the results are relevant and 
accessible to the operator and end-user. 

This paper is organized as follows: description of the 
turbocharger sensor data and the turbocharger seizure are provided 
in Section 2; details of the implemented data analysis tools and 
techniques are given in Section 3; the data pre-processing steps and 
the experimental settings are outlined in Section 4; the intrinsic 

dimension analysis and low-dimensional mappings are included in 
Section 5; Section 6 provides the results of several sensor signals 
overlaid on the visualizations; and finally, Section 7 summarizes 
the findings of the paper. 

2. Turbocharger data 

The analyzed turbocharger system contains twin air-cooled 
turbochargers providing the air-charge to the medium-speed diesel 
engine system. The diesel engine system consists of two banks of 
10-cylinders, denoted Bank A and Bank B. A single turbocharger 
is assigned to each 10-cylinder bank; the two turbochargers are 
differentiated as Turbo A and Turbo B, where the letter  ‘A’ or ‘B’ 
identifies their respective cylinder bank.  

The incident recorded by the engines sensor system and 
analyzed within this work relates to the seizure of Turbo A [1]. The 
sensor data recorded for this particular incident was available for 
the month leading up to and including the time of the incident. 
From the resulting investigation of the Turbo A seizure, a series of 
key events leading to the incident were noted. The chronology of 
the incident’s events is detailed below, with the time of occurrence 
indicated as (hh:mm). 

• Noted loss of sensor reading on Turbo A speed sensor  
• Engine shut down for inspection 
• Turbo A and B speed sensors switched 
• Engine restarted at idle, still no Turbo A speed reading 

indicated (01:12) 
• Engaged diesel engine (01:41) 
• Higher speed setting requested (01:42), engine exhaust 

temperatures increased beyond alarm threshold, with no speed 
increase achieved (01:43 - 01:44) 

• Diesel engine disengaged and shut down (01:44 - 01:45) 

Following the incident, an inspection of Turbo A was 
conducted. From the inspection it was determined that the seizure 
of Turbo A occurred due to a sensor installation error, which 
occurred when the speed sensors for Turbo A and B were switched. 
Insufficient spacing between the speed sensor and the turbine’s 
thrust collar led to rubbing and eventually the turbocharger seizure 
[1].  

Although this failure was caused by installation error rather 
than gradual deterioration of a system element, the ability to 
characterize and distinguish the healthy state from the seized state 
of the turbocharger system using data analysis tools is of 
significant value. This type of analysis could aid in establishing 
failure models for further predictive work. 

2.1. Turbocharger sensor signals 

The sensor system of the diesel engine is comprised of 238 
sensors that capture information related to operator inputs, 
equipment outputs, and sensor data. The sensor system provides a 
means for staff to control system components, monitor the systems 
status, or be notified via alarm when various pieces of equipment 
operate outside of pre-set threshold values. In addition, the sensor 
system allows for the recording and archiving of the operational 
data measured from various instruments at rates up to 2 Hz. From 
the 238 sensors relevant to the diesel engine, a subset of 31 signals 
relating to the operation of the turbochargers was selected. The 31 
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sensors considered within this analysis, listed in Table 1 [1], 
encompass parameters such as speeds, temperatures (inlet, outlet, 
and exhaust), pressures, and shaft torque. 

Table 1: 31 turbocharger input parameters 

Signal # Signal 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

Average cylinder exhaust temperature Bank A 
Average cylinder exhaust temperature Bank B 
Turbo A speed  
Turbo B speed  
Turbo B inlet temperature 
Turbo B outlet temperature 
Turbo A inlet temperature 
Turbo A outlet temperature 
Charge air manifold pressure 
A1 cylinder exhaust gas temperature 
B1 cylinder exhaust gas temperature 
A2 cylinder exhaust gas temperature 
B2 cylinder exhaust gas temperature 
A3 cylinder exhaust gas temperature 
B3 cylinder exhaust gas temperature 
A4 cylinder exhaust gas temperature 
B4 cylinder exhaust gas temperature 
A5 cylinder exhaust gas temperature 
B5 cylinder exhaust gas temperature 
A6 cylinder exhaust gas temperature 
B6 cylinder exhaust gas temperature 
A7 cylinder exhaust gas temperature 
B7 cylinder exhaust gas temperature 
A8 cylinder exhaust gas temperature 
B8 cylinder exhaust gas temperature 
A9 cylinder exhaust gas temperature 
B9 cylinder exhaust gas temperature 
A10 cylinder exhaust gas temperature 
B10 cylinder exhaust gas temperature 
Shaft torque position 1 
Shaft torque position 2 

The data from the month leading up to and including the 
turbocharger seizure was analyzed. With the data down-sampled 
to 1-minute intervals, there were 9968 data points during the time 
period. The data points prior to the turbocharger seizure were 
designated as ‘healthy’, while the points from midnight of the date 
of the incident were considered ‘failed’ points. These failed points 
include all of the data points after the seizure as they correspond to 
data related to the seized subsystem. As a result, there were 9875 
healthy points and 93 failed points identified. 

3. Analytical techniques 

An important aspect of this workwas the characterization of the 
relationship between the healthy and failed states of the 
turbocharger system, particularly the transition between the two 
states. The original sensor data is described by a multidimensional 
time-series composed of the 31 signals. Typical from these kind of 
data is the presence of noise, irrelevancies and redundancies 
between the descriptor variables, as in reality the core of the data 
represents a subspace of lower dimension embedded within the 
higher dimensional descriptor space. In such situations, 
transformations to lower dimensional spaces are useful for 

highlighting and visualizing the underlying structure of the 
information. 

To that end, a suitable transformation, preferably with an 
intuitive metric [9] would produce a mapping of the original high 
dimensional objects into a lower dimension one, such that a certain 
property of the data is preserved by the representation. Desired 
properties characterizing data structure could be conditional 
probability distributions around neighbourhoods, similarity 
relations and others. Under normal circumstances, such 
transformations imply some information loss or error that should 
be minimized. If successful, the transformation would generate a 
new set of features out of the original ones which would preserve 
the desired property, but in a lower dimension representation space 
that mitigates the curse of dimensionality. 

3.1. Intrinsic dimensionality analysis 

When choosing the dimension of the target space, it is 
important to consider the intrinsic dimensionality of the original 
information which is typically understood as the minimum number 
of variables required to account for the observed properties of the 
data [10-13]. Given a functional measure of information loss, it is 
the minimum number of dimensions (descriptor variables) 
required to describe the data that minimizes that measure. This 
concept could be understood in several ways, which results in 
different algorithms aiming at producing such an estimation. Some 
approaches focus on local properties of the data, whereas other 
techniques emphasize the analysis of global properties of the data. 
Most complex systems in the real world exhibit nonlinear relations 
among their state variables, which make linear estimators of 
intrinsic dimensionality at a global scale less powerful than their 
nonlinear estimation counterparts. However, some of them are 
computationally expensive. 

From the practical point of view, the smaller the choice of the 
target dimension with respect to the intrinsic one, the higher the 
representation error would be. On the other hand, choosing values 
higher than the chosen dimension introduce unnecessary attributes, 
redundancies and possibly noise. For visualization purposes, three 
or two dimensions are forcibly required. In these cases, the value 
of the intrinsic dimension provides a useful guide to the level of 
caution required when making inferences based on the 
visualization space.  

In this work, the intrinsic dimension of the turbocharger data is 
estimated using four nonlinear methods and one linear technique: 
maximum likelihood estimation (MLE), correlation dimension 
(CD), geodesic minimum spanning tree (GMST), nearest 
neighbour estimator, and principal component analysis (PCA).  

The maximum likelihood estimator [14] is based on the 
assumption of a Poisson distribution for the k neighbour points and 
a constant behavior of the probability density function around a 
given point. The actual estimate of the dimension is derived from 
the log-likelihood function.  

Correlation dimension [15] is one type of fractal dimension and 
it is one of the most commonly used techniques for estimating the 
intrinsic dimension. The idea is to compare objects from the point 
of view of their pairwise distances, producing a normalized count 
of those pairs whose distance does not exceed a given threshold 
(the correlation integral). The estimate is given by the slope of a 
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log-log linear regression of the correlation integral values vs. the 
different distance thresholds r. 

The geodesic minimum spanning tree (GMST) estimator [16] 
assumes that i) the set of multivariate objects are in a smooth 
manifold embedded within the higher dimensional space 
determined by the original descriptor variables and ii) these objects 
are realizations of a random process from an unknown multivariate 
probability density distribution. This technique produces an 
asymptotically consistent estimate of the manifold dimension 
without requiring the reconstruction of the manifold or the 
estimation of the multivariate distribution of the objects. The first 
step is to construct a graph based on k-neighbourhood density (or 
neighbourhood distances) where every object is connected with the 
others nearby. The second step is to build a minimal spanning tree 
(MST). The distances along its edges and the overall length are 
used to estimate parameters of the manifold, like entropy and 
dimension.  

The nearest neighbour estimator [17] presents some 
similarities with the correlation dimension. It is motivated by the 
possibility of approximating the unknown probability density of 
the set of multidimensional objects, by normalizing the relative 
number of nearest neighbours by the volume of the hypersphere 
containing the objects. The procedure computes the smallest radius 
r required to cover k nearest neighbours via a linear log-log 
regression of the average minimum radius vs. k.  

Principal component analysis (PCA) is an unsupervised, 
classical method that is among others, it is used to estimate 
intrinsic dimensionality. The estimation is simply constructed by 
obtaining the number of eigenvalues whose relative contributions 
to the overall variance exceeds a predetermined threshold (e.g. 
0.975). Singular value decomposition techniques or 
diagonalization of covariance/correlation matrices are the typical 
approaches used for finding the components, which are linear 
combination of the original set of features. The former approach 
was used in this paper following the algorithm described in [18]. 

3.2. Transformation from high- to low-dimensional space 

The specificities of the data determine its intrinsic dimension 
and, in particular, when the estimates are not too different from 
three, mappings targeting that number of dimensions could portray 
appropriate representations of the data. In these cases, the 
visualizations obtained with different mapping techniques 
typically exhibit low errors or information loss measures. They 
would reveal patterns corresponding to valid relationships within 
the data like regularities, showing up as clustering structure, as 
well as abnormalities, less frequent elements and outliers. 

Clearly, for machine learning purposes, mitigating the curse of 
dimensionality is important and often the dimension of the target 
spaces must go beyond the ones required by visual inspection. In 
this paper, Principal Components, Sammon mapping, t-SNE and 
Isomap were used as representatives of linear and nonlinear 
transformation techniques. 

Principal Components 

A low-dimensional representation of the data can be produced 
using the first few principal components found through principal 
component analysis, which are mutually orthogonal (described in 

Section 3.1). Their main features were presented in the previous 
section. From the point of view of visually inspecting the data, the 
first few principal components (up to three) are used as a baseline 
low-dimensional representation. They are linearly uncorrelated 
and the amount of variance contained in each new component 
decreases monotonically. However, the cumulated variance 
contained in the first three components is not sufficiently high and 
it is a crucial element to consider when working with principal 
components visualizations.  

Sammon Mapping 

The idea of constructing low dimensional spaces where the 
distance distribution maximally matches the one in the original 
space is very intuitive and has been at the core of multi-
dimensional scaling methods (MDS) [19-22]. Different variants of 
this approach have been used for creating visual representations of 
metric and non-metric data. On representations that aim at 
preserving distances in the original and the target spaces, 
nearby/distant objects in the original data space are placed at 
nearby/distant locations from each other in the low-dimensional 
target space. Some variants preserve the actual distance values, 
while others aim at preserving their ranks or their ordering relation. 

In the first case, measures based on squared differences 
between dissimilarities on both spaces are commonplace and are 
variations of objective functions like 

� 𝑤𝑤𝑖𝑖𝑖𝑖�𝐹𝐹�𝛿𝛿𝑖𝑖𝑖𝑖
𝑝𝑝� − 𝑑𝑑𝑖𝑖𝑖𝑖

𝑝𝑝 �2

1≤𝑖𝑖,𝑖𝑖≤𝑁𝑁

 

where N is the number of objects, wij is a weight associated to every 
pair of objects i, j, F is a monotonically increasing function, δij is a 
dissimilarity measure between objects i, j in the original data space 
and dij is their dissimilarity/distance in the target space, with p as 
an exponent of the difference term. 

From this general formulation, several mapping techniques are 
derived, in particular, Sammon's nonlinear mapping [23], 
conceived as a transformation of vectors of two spaces of different 
dimension (D >m) by means of a function 𝜑𝜑:𝑅𝑅𝐷𝐷 → 𝑅𝑅𝑚𝑚 , which 
maps vectors �⃗�𝑥 ∈ 𝑅𝑅𝐷𝐷  to vectors �⃗�𝑦 ∈ 𝑅𝑅𝑚𝑚 , �⃗�𝑦 = 𝜑𝜑(�⃗�𝑥) . The actual 
objective function to minimize is given by Equation 1: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑒𝑒𝑒𝑒𝑒𝑒𝑆𝑆𝑒𝑒 = 1
∑ 𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖<𝑖𝑖

∑
�𝛿𝛿𝑖𝑖𝑖𝑖−𝑑𝑑�𝑦𝑦�⃗ 𝑖𝑖,𝑦𝑦�⃗ 𝑖𝑖��

2

𝛿𝛿𝑖𝑖𝑖𝑖
𝑖𝑖<𝑖𝑖 , (1) 

where typically d is an Euclidean distance in 𝑅𝑅𝑚𝑚. The weight term 
𝛿𝛿𝑖𝑖𝑖𝑖−1 highlights the importance of smaller distances and therefore, 
the behavior around close neighbourhoods exerts a larger influence 
on the error function. 

t-SNE 

A probabilistic principle is used by the Stochastic Neighbour 
Embedding (SNE) [24], where the goal is to preserve neighbour 
identities. A dissimilarity or distance between the objects in the 
original space is used for creating an asymmetric probability for 
each object with respect to its potential neighbours, with a pre-set 
neighbourhood notion (the perplexity). The same is performed for 
the objects in the target space.  
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The goal is to match the two distributions as much as possible, 
which is achieved by minimizing the sum of Kullback-Leibler 
divergences. The rationale is to center a Gaussian on each object 
in the original space and to use the distances (or given similarities) 
for constructing a local probability density function on the 
neighbourhood. The same operation is performed in the 
transformed, low dimensional space and the purpose is to match 
the two as much as possible, so that neighbourhoods are preserved.  

The t-Distributed Stochastic Neighbour Embedding (t-SNE) 
[24-26] is an improvement of the original SNE. There are two main 
distinguishing features of t-SNE: i) a simpler symmetric objective 
function is introduced; and ii) instead of a Gaussian distribution, a 
t-Student distribution is used for the points in the low-dimensional 
space. These modifications allow for better capturing the local 
structure of the high-dimensional data and also revealing the 
presence of clusters at several scales, as indicators of global 
structure. 

Isomap 

Isomap [27-30] is a flexible technique oriented to learn non-
linear manifolds and overcomes some difficulties inherent to 
classical methods like principal components or MDS-related. In 
contrast to the latter, the Isomap technique aims to preserve pair-
wise geodesic (or curvilinear) distances rather than plain 
(Euclidean) ones. Geodesic distances are those measured along the 
low-dimensional manifold containing the data and therefore, not 
necessarily objects that are close in the Euclidean sense will be so 
when geodesic distances are considered. 

There are three steps in the procedure: i) build a graph (the 
neighbourhood graph) that connects all points according to their 
pair-wise Euclidean distances; ii) estimate the geodesic distances 
between all pairs of points by calculating their shortest path 
distances in the neighbourhood graph; and iii) compute a geodesic 
distance preserving mapping using MDS with Euclidean distance 
as metric for the low-dimensional space. 

4. Experimental settings 

For the investigated time period leading up to and including the 
turbocharger seizure, there were 9968 data points. These points 
were sampled at intervals of one-minute. Of the 9968 total points, 
9875 were designated as ‘healthy’ and the remaining 93 designated 
‘failed’.  

To determine the low-dimensional transformation using the 
Isomap method, 12 nearest neighbours were specified. For the t-
SNE transformation, the perplexity was set at 30. 

4.1. Data pre-processing 

 The engine sensor system was originally set up for real-time 
equipment health monitoring, and not specifically for maintenance 
or safety purposes. As such, a number of data pre-processing and 
data consolidation steps were necessary before implementing the 
data analysis tools. The data pre-processing steps followed are 
illustrated in Figure 1.  

From the full signal database, each of the 31 signals was 
extracted separately, then unknown and erroneous readings were 
removed. Afterwards, each  signal  was  linearly  interpolated  and  

 

sampled at one-minute intervals for the desired time range, 
ensuring that the time range fell within the interpolated values. 
Finally, a filter was applied to only consider data recorded during 
active operation of the diesel engine.  

The input parameters were standardized in order to fairly 
compare variables measured in different units and different ranges. 
The standardized variables had a mean value of zero and standard 
deviation equal to one. 

5. Low-dimensional mappings 

5.1. Intrinsic dimension results 

Estimates of the intrinsic dimension of the turbocharger data 
were calculated using the five techniques detailed in Section 3.1. 
These estimates are listed in Table 2. The first three principal 
components represent 0.981 of the total variance in the data. 

Table 2: Intrinsic dimension estimates 

Estimation Method Estimate 

Maximum Likelihood Estimator 5.239 
Correlation Dimension 1.285 
Geodesic Minimum Spanning Tree 4.202 
Nearest Neighbour Dimension 0.307 
Principal Component Analysis Eigenvalues 3.000 

Almost all of the estimates fall in the range of 1 to 5. Since the 
original sensor space corresponds to a dimension of 31, these 
estimates show that the information contained in that 31-D high 
dimensional space could be sufficiently explained more simply by 
the combination of a few factors. A target dimension of 3 was 
selected, taking into account the range of estimates. 

5.2. Transformation to 3-dimensions 

From the intrinsic dimension results, low-dimensional 
representations  of  the  turbocharger  data  with  three  dimensions  
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Figure 2: PCA mappings to 3-D 

were sought. The transformation of the original 31-D space, 
corresponding to the 31 turbocharger sensors, to 3-dimensions was 
performed using the four methods described in Section 3.2 
(principal component analysis, Sammon, t-SNE, and Isomap). The 
full data set from the time period around the turbocharger event 
was mapped, consisting of 9968 total points of which 93 were 
designated ‘failed’ and the rest ‘healthy’. 

Images of the 3-D spaces obtained from the different 
mappings are presented in Figures 2-5. In these images, the healthy 
points are coloured green, while the failed points are red. Since the 
ratio of healthy to failed points is tremendously imbalanced 
(9875:93), it may be difficult to see the failed points. Representing 
3-D scenes by 2-D images is clearly not ideal because of the 
limitations in exploring different perspectives and distances 
between objects in the scene. Several snapshots of the 3-D space 
are included to help overcome that limitation.  

 
Figure 3: Sammon mappings to 3-D 

Figure 2 shows three views of the low-dimensional mapping 
using the first three principal components determined through 
PCA. These three components are orthogonal and are linear 
combinations of the 31 turbocharger variables. Figure 3 depicts 
three views of the Sammon mapping to 3-dimensional space. 
Figure 4 shows the t-SNE mapping to 3-D. Figure 5 illustrates the 
Isomap transformation to 3-dimensions.  

In the PCA mapping (Figure 2), the data is distributed mostly 
in a 2-dimensional plane in a boomerang-like shape. The failed 
points are concentrated at one end of that boomerang shape (−5 ≤
𝑥𝑥 ≤ 10 ). The Sammon mapping (Figure 3) also shows the 
distribution of the data in a boomerang-like shape. Again, the 
failed points are clustered at one end of that shape (3 ≤ 𝑥𝑥 ≤ 7).  

The t-SNE transformation (Figure 4) has a markedly different data 
structure with the data organized in more distinct clusters as 
opposed to the continuous distribution of data in a particular shape  
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Figure 4: t-SNE mappings to 3-D 

(e.g. boomerang). The failed points are located in several areas of 
the structure in the t-SNE mapping. This is a consequence of the 
property expressed by the mapping (Section 3.2, t-SNE), which 
focuses on preserving conditional probability distributions within 
neighbourhoods, rather than distances. Exposing cluster structure 
more clearly is one of the strengths of t-SNE. 

The Isomap plots (Figure 5) show a similar data structure to 
PCA and Sammon with much of the data falling along a 
boomerang-like shape. Also similar to PCA and Sammon, the 
failed points are all concentrated at one end of that main 
boomerang shape (5≤ 𝑥𝑥 ≤ 10). However, more prevalent in the 
Isomap plot, than with the other plots, is one dense island of 
healthy data points just offset from that main shape, which will be 
discussed further in Section 6.2. The similar data structure  seen 
with the PCA, Sammon and Isomap plots can be attributed to the 
fact that nonlinear effects are mild. 

 
Figure 5: Isomap mappings to 3-D 

The transformation of the 31-dimension space representing the 
31 turbocharger parameters to a low-dimensional 3-D space shows 
a distinct data structure in the various mapping techniques. The 
failed points are not mapped to an obvious outlier location in the 
transformations that can be easily distinguished from the healthy 
points. 

6. Relating sensor signals to internal data structure 

In order to better understand these data structure visualizations 
in a more physical sense, e.g. from the perspective of the operator 
or maintainer of the engine, the next step was to select a handful 
of the engine signals and examine how each of these signals 
impacted and was represented in the data structure. One of the aims 
was to determine if certain regions of the mappings could be 
associated with distinct operational states of the engine. Another 
aim was to demonstrate that individual signals were appropriately 
represented in the low-dimensional mapping. 
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6.1. Selected signals 

As detailed in Table 1, a variety of sensors recording speeds, 
temperatures, pressures and torque were included in the analysis. 
A small subset of signals was selected to investigate the internal 
data structure of the mappings. The selected signals were: Turbo 
A speed, Turbo B speed, A1 cylinder exhaust gas temperature, B2 
cylinder exhaust gas temperature, and engine speed.  

As there was a known failure of the Turbo A speed signal, the 
Turbo B speed signal was selected to compare the recorded values 
of the two turbos. In a similar manner, at the time of failure, the 
exhaust cylinder temperature sensors went into alarm. To enable 
comparison of the exhaust temperatures, one cylinder exhaust 
temperature signal was selected from each bank. Finally, engine 
speed was selected, although it was not part of the 31 turbocharger 
parameters used for the transformations. This sensor was included 
as it is the main driving factor for change in the values of the other 
sensor signals. 

6.2. Representation of signals in low-dimensional mappings 

Each of the low-dimensional mappings was then overlaid with 
a heat map of one of these sensor signals. Where instead of the data 
points coloured green and red for healthy and failed points 
respectively, they were coloured according to the relative value of 
the particular signal in its operating range, with blue corresponding 
to the low end of the range and red for the high end of the operating 
range. 

In the following section of the paper, two regions of interest are 
highlighted: i) the points surrounding the time frame where the 
Turbo A speed sensor experienced a fault and failed to record; and 
ii) the points surrounding the five minutes to the turbocharger 
seizure.   

These two regions were chosen for further investigation 
because they appear to stand out the most in the visualizations. The 
Isomap low-dimensional mappings are shown in this paper with an 
overlay of the  heat  map  for  the  five  selected  signals.  Figure 6 

 
Figure 6: Turbo A speed sensor value [kRPM] overlay onto Isomap 

transformation 

 
Figure 7: Turbo B speed sensor value [kRPM] overlay onto Isomap 

transformation 

shows the overlay of the Turbo A speed signal on the Isomap 
transformation. Figure 7 shows the overlay of the Turbo B speed 
signal on the Isomap transformation. Since both these signals are 
speed sensors on turbochargers, the expectation is that these two 
plots should be very similar. For the most part the two plots are 
indeed very similar, however, it should be noted that the speed 
ranges are slightly different in the legend. 

The distribution of the data points in the mapping indicates that 
almost all the near-zero/low-speed data points are found in one 
region of the data structure (𝑥𝑥 ≥ −2) while the data points with 
high speed values are concentrated in a different region (−7 ≤ 𝑥𝑥 ≤
−5 ). There is a strong gradient between these two regions 
containing a transition region of the intermediate speeds.  

However, an abnormality to the general structure of the data is 
evident in the high power region of the plots. In Figure 6, the heat 
map indicates zero values for the Turbo A speed sensor for the data 
points in the area indicated by the arrow. In the same area, 
indicated by the arrow in Figure 7, the Turbo B speed sensor 
portrays high speed values. The overlays of the other examined 
signals displayed expected values for those data points in that high 
power region. Thus this group of points is likely related to the loss 
of the Turbo A speed sensor. Indeed the data points in this area 
were later found to coincide with the known initial loss of the 
Turbo A speed sensor readings. 

Figure 8 shows the overlay of the Turbo A Cylinder 1 exhaust 
gas temperature signal on the Isomap transformation. Figure 9 
shows the overlay of the Turbo B Cylinder 2 exhaust gas 
temperature signal on the Isomap transformation. Figure 10 shows 
the overlay of engine speed signal on the Isomap transformation. 
The plots of the two cylinder exhaust temperatures from each bank 
(Figures 8 and 9) are quite similar to each other, as one would 
expect. They are also structured similar to the Turbo speed 
overlays where the data points with low temperature values also 
have low speed values, while the high temperature points have 
high speed values. 
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Figure 8: Turbo A Cylinder 1 exhaust gas temperature [˚C] overlay onto Isomap 

transformation 

 
Figure 9: Turbo B Cylinder 2 exhaust gas temperature [˚C] overlay onto Isomap 

transformation 

A small cluster of high cylinder temperature indications is 
found within the low operating range group indicated by the purple 
circle in Figures 8 and 9. These points were later found to be the 
points occurring five minutes before the turbocharger seizure. The 
location of these points in the low speed range is consistent with 
the findings of the turbocharger incident report (described in 
Section 2), where an increase in speed was requested but no 
increase in speed was realized although the exhaust gas 
temperatures rose to high levels invoking the alarms. 

Although engine speed was not a signal used to generate the 
Isomap transformation, here it is used as a means to support the 
previously observed trends of low and high operating ranges in the 
plots. From Figure 10, the engine speed overlay demonstrates a 
similar distribution of the low and high engine  speeds in  the data  

 
Figure 10: Engine speed [RPM] overlay onto Isomap transformation 

structure. Looking again at the data points indicated by the arrow 
in Figure 10, the trend seen previously with the Turbo speeds and 
cylinder exhaust temperatures is confirmed. 

According to Figure 5, the data points indicated by the arrow 
in the prior figures are clearly distant from the main set of data and 
are still designated as ‘healthy’. It was also pointed out that the 
small cluster of cylinder exhaust gas temperature indications 
(some of the points inside the region of the purple circle in Figures 
8 and 9) represent values that were recorded between five hours 
and five minutes to the turbocharger seizure. These points embed 
themselves inside low operating ranges of these signals and are 
also designated as ‘healthy’ data (Figure 5). In both cases, the 
aforementioned groups of points display interesting traits through 
the unique combination of their healthy/failed designation, the 
value of the overlaid signal that they show, and their distance from 
other groups of data points. This demonstrates that the failure of 
the turbocharger system may not always be associated with 
extreme signal values, as one may assume. These traits help 
uncover new trends in the data structure, like the abnormality 
indicated by the arrow or the cluster of points within the purple 
circle in the preceding figures, which should be investigated. Thus, 
being able to combine expert domain knowledge of sensors and 
failures with data mining tools is an invaluable method of 
extracting and understanding information from sensor 
measurements. 

7. Concluding Remarks 

This work describes continued analysis of sensor data for the 
turbocharger subsystem of a diesel engine system. The engine has 
hundreds of sensors monitoring both the inputs of the engine 
operator and the resulting equipment outputs. The objective of the 
data analysis was to characterize and distinguish the healthy and 
failed states of the turbocharger seizure as recorded by the diesel 
engine sensor system. The analysis approach included the mapping 
of high-dimensional sensor data to a low-dimensional space using 
a variety of linear and nonlinear techniques in order to highlight 
and visualize the underlying structure of the information. 

Estimates of the intrinsic dimension were obtained to 
determine the appropriate number of dimensions required by the 
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low-dimensional transformations and to guide the interpretation of 
the visualization spaces produced. For this case, three dimensions 
was an appropriate estimate. Through the unsupervised process of 
these transformations, the structure of the turbocharger data could 
be visualized and inspected. The transformation methods included 
principal components, Sammon mapping, t-Distributed Stochastic 
Neighbour Embedding, and Isomap. The transformation of the 31-
dimension space representing the 31 turbocharger parameters to a 
low-dimensional 3-D space shows a distinct data structure in the 
various mapping techniques. The failed points are not mapped to 
an obvious outlier location in the transformations that can be easily 
distinguished from the healthy points. 

In order to gain more physical insight into the internal data 
structure of the resulting mappings, the transformation plots were 
analyzed from the perspective of several engine sensor signals. By 
overlaying operating ranges of individual sensor signals, certain 
regions of the mappings could be associated with distinct 
operational states of the engine. Low and high operating engine 
regions could be clearly seen in the internal data structure, and 
several anomalies could be identified which were then associated 
to various points in the turbocharger seizure. These results are 
extremely promising and demonstrate how operational knowledge 
can be easily incorporated with the data analytics tools to enhance 
the insights that can be gained from the sensor measurements. 

In this work, data mining and machine learning techniques are 
implemented to gather useful insights from the large amounts of 
sensor data collected for this diesel engine system. By 
incorporating expert domain knowledge with the low-dimensional 
representations of the data, a more practical understanding of the 
data structure presented in the mappings is provided which helps 
ensure that the results are relevant and accessible to the operator 
and end-user. 

Future efforts are aimed at expanding this analysis to data from 
other diesel engines and other failures in the engine system. 
Further work to generalize the analysis to a diesel engine system 
model instead of a turbocharger-specific model is in progress. 
Efforts are also underway to better characterize the healthy and 
failed states, through classification and anomaly detection 
techniques. The development and implementation of these tools 
should help enable advance indication of a change in behavior that 
could be investigated before a major incident. 
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