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 Advanced sensing technologies are providing for greater capabilities to discern and 

classify details of objects as they appear in actual environments as experienced by 

nonprofessional drivers.  Distinctive geometric configurations of new sensory devices 

including but not limited to infrared (abbreviated as IR) and LIDAR sensory units are 

appearing as cost effective data acquisition systems for environment sensing and 

presenting. Here, we describe a novel IR sensory-based autonomous vehicle guidance and 

its associated convoy unit. The underlying systems is first presented in a general system 

model and the experimental test results have been elaborated to demonstrate the usefulness 

of the presented prototype in futuristic auto industries and its supporting branches, 

respectively. 

Keywords:  

Autonomous vehicles 

Self-driving cars 

Embedded systems 

IR sensing 

Sensor fusion 

 

 

1. Introduction 

As edge cities continue to emerge, drivers are seeking to increase 

their productivity during commute time and self-driving vehicles 

are expected to be facilitating platforms.  The Boston Consulting 

Group and the World Economic Forum have been collaborating 

for the past several years and forecasting that 14% of residents 

will ultimately expect safe autonomous vehicles [1].  This paper 

examines the performance of an infrared (IR) sensing using a 

prototype mobile platform for autonomous vehicle convoy 

following. The IR spectrum sensing for autonomous vehicle 

applications is a compelling approach to detecting objects in the 

path of vehicle travel.  Since cost, reliability, and detection 

performance are the critical criteria for technology production, the 

study of performance is the primary interest in this work. Beyond 

the practical benefits, autonomous cars could contribute $1.3 

trillion in annual savings to the US economy alone, with global 

savings estimated at over $5.6 trillion[2]along with a technology 

adaptation time line as shown in Figure 1.  Design of self-driving 

or autonomous vehicles with smart sensing systems will 

positively impact planning decisions for optimal traffic flow, 

minimize traffic congestions, and alleviate human error leading to 

personal injuries or property damage. As commuters elevate 

expectations for their time efficiencies during travels it is 

expected that technology developers reduce the potential for 

crashes due to driver fatigue, poor maneuvering decisions, and 

negligence.[3],[4],[5]. 

 
Figure 1. Trends of serious injury vs. vehicle speed in mph. 

 
The curves in Figure 1 is derived comes from typical driving 
research conducted by AAA Foundation which clearly indicated 
the probability of getting seriously injured increases with increases 
in driving speeds.  The research also notes these trends depend on 
several other factors such as size of car, angle of impact, and 
perhaps age.  Autonomous driving systems can aid in reducing or 
eliminating in the severity of slope in the curves as computed from 
a small sample size.   Cost appears to be a primary driver factor at 
the onset systems design requirements. To this end, low-cost IR 
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sensing is the motivated attribute to tackle with a vehicle 
subsystem implementation by noting that IR sensory data 
acquisition apparatus is capable of sensing surroundings by means 
of measuring the temperature differences between two vehicles in 
motion.  The vehicle sensor set with field of view (FOV) typically 
varying from 120o to 150o, and the respective processing software 
are imperative for safe operation of autonomous vehicles (AVs).    
Characterizing the performance of sensing to determine the 
location of the host vehicle relative to other moving vehicles, all in 
path targets and road lane boundaries are equally important.   
Human driver sensing reports that approximately 90% of the 
primary factors behind crashes are due to human errors (see the 
statistics of the National Highway Traffic Safety Administration 
(NHTSA) in 2012). [6],[7]  AVs with a high performance sensor 
suite are predicted to reduce crashes and injury rates by upwards 
of 50% as compared to non-AVs.  Vehicle manufactures are 
motivated to contribute to transformative and highly beneficial 
technologies to support Intelligent Transportation Systems (ITS) 
and the future of the mobility industry. The state of the art reports 
the rationale for selection of IR sensors rather than ultrasonic 
sensors, RADARs, or cameras to perform the sensing function.  
This research proceeds with a conceptual design, implementation, 
testing, and verification of an IR sensor set interfaced to a single 
board computer.  A desired outcome is to follow a vehicle that is 
remotely controlled. This vehicle is denoted as RC (remote 
controlled) down scaled-model vehicle.  In the literature, Kou et al. 
employed two low cost sensors using a kinematic model of a car-
like mobile robot (CLMR). [8] Chao-Lin Kuok et al., devised to 
compare two non-linear model-based approaches for autonomous 
vehicles. [9] Carson et al., and Englund et al. studied safety criteria 
for driver assisted systems and enabling technologies. [10],[11] 
Paden et al. investigated a decision-making hierarchy (i.e., route 
planning, behavioral decision making, motion planning, and 
vehicle control) for driverless vehicles.  This paper is organized as 
follows.  Section II describes the overall system configuration and 
sensor interfaces to accomplish the autonomous tracking capability.  
Here, we also present the embedded system design. Section III is 
devoted to the testing and the IR sensor configuration.  We then 

describe analysis of the measured test results in Section IV. Section 
V provides a discussion and the conclusion. 

2. Formulation of Research Project 

This section describes the design and implementation of an 
embedded system onto the scale of 1/10 of remote controlled (RC) 
autonomous vehicles. The system design for this embedded system 
began by conducting tradeoff study between the Arduino and 
Raspberry Pi single board computers.  In view of ease of 
programming, a large suite software algorithm readily available in 
the open source domain. Hence, the decision we have chosen the 
Raspberry Pi Model B+.  It is a fully featured very compact 
computer operating at 700 MHz and uses the Raspbian Operating 
System (OS).  The computer interface circuitry has mainly 7 
components; namely, 

• 4 Universal Serial Bus (USB) 2.0 slots 

• Single storage data card slot 

• 24 Pin Header  

• Ethernet port 

• Customer Support Identifier (CSI) connector for a camera  

• High-Definition Multimedia Interface (HDMI) output  

• Power from micro-USB Connector 

 

Figure 2.  Mounting of IR sensors 

  

Figure 3. Autonomous convoy embedded system design. [16]
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Since cost is always a consideration, an inexpensive 
SharpGP2YOD21YK IR Sensor operating at the wavelength 
λ=780 nano-meter (nm) is selected. [12]. The next step is to 
determine the optimal Field of View (FOV) for forward coverage 
on the model robotic vehicle.  Figure 2.  Depicts the mounting of 
three IR sensors. Specifically, the sensors are mounted in the 
headlight areas and lower front center of the RC controlled model. 
Work proceeds to install, calibrate and independently test the 
sensor in a standalone modes to consume less energy and to 
operate with nonlinear characteristics [9]. 

The relationship between the distance di and the operating voltage 
is inversely proportional, and it is given as 

   

   𝑑𝑖 = 𝑘
1

𝑣𝑖
𝑎

,   i = 1,2,3.   (1) 

with k being the scaling constant and a is the exponent of 
proportionality.  Equation (1) is empirical formula and for the 
given Sharp GP2YOA21YK IR sensor, it is specified as 

   𝑑 = (
1

𝑐∗ 𝐴𝐷𝐶+𝑏
) − 𝐾                          (2) 

where distance d in cm, K is a corrective constant, ADC is the 
digitized output voltage, b and c are variable constants to be 
evaluated from trend line equation. Besides proposed equation (2), 
the governing sensor equation (3) has three variables (b, c, and K) 
which are evaluated from the measured data.  
The embedded Time-Division Multiplexing (TDM) system is 
implemented by discrete electronic components mounted on a 
Printed Circuit Board (PCB).  The hardware is physically 
mounted into the body of the robotic model vehicle. Also, it is 
evident that the data streaming from sensors are converted into a 
single signal by segmenting the signal with short durations. Figure 
3 shows   the electrical interface and message traffic block 
diagram of the Sharp IR sensor in which the digital output Vo is 
directed to the digital I/O channel of a single board computer (i.e., 
Raspberry Pi Model B+) [14][15].  This prototype design 

minimizes the sensor wiring and power connections.  

The Python 2.7 language is employed to write the IR sensing 
system software illustrated in Figure 3.  The algorithm is designed 
using classical Proportional Integral Derivative (PID) controller 
techniques.  Specifically,  the PI algorithm is selected as automatic, 
greater, and basic [17] to implement. SP is defined as a headway 
or fixed distance and independent of the measurement sensor PVs 
are the computed distances, shown in Figure 3. “PIDSYS” a 
MATLAB R2017A based function is utilized to return the parallel 
form of a continuous-time PI controller shown in Figure 4.   

 
Figure 4.  Block Diagram for PI controller. 

Here, the instances of error are corrected by proportional term (Kp) 
corrects and the accumulation of error is corrected by integral term 
(Ki) corrects the. Based on the rise and fall of error signal {e(t)}, 
the amount added to the Controller Output (CtrlOut) increases or 

decreases immediately and proportionately.  The CtrlOut is 
governed by Equation 3 and is given by 

       CtrlOut =  𝑲p e  +  𝑲i∫ 𝑒(𝜏) 𝑑𝜏    (3) 

where the range of integration is [0, t], and e is error e = SP-PV 
required to achieve the controller output.  The host vehicle track  

was based on the sensor voltages and the distances computed, 
independent of sensor specifications, that occurs per Equation 4. 

       𝑑1> (𝑑2 + 𝑑3)  ⇒host tracks target to left             (4a) 

        𝑑1≃𝑑2≃ 𝑑3 ⇒host tracks target straight                        (4b) 

        𝑑3> (𝑑1 + 𝑑2) ⇒host tracks target to right               (4c) 

The last stage of this research project formulation is to test the PI 
algorithm and ensure it is properly tuned or adjusted by starting 
with low proportional and no integral. The values of Kp and Ki are 
returned as 1.14 and 0.454, respectively.  Figure 5 presents the 
deviation error of measured PV from SP in response to the 
computation of step response for this PI controller.  

 
Figure 5. Step response for AV PI controller 

3. Analysis of Test Results 

After some troubleshooting and software debugging, smooth 

hallway surfaces are used to perform the initial simulation trials 

with the embedded system on the host vehicle following a lead 

vehicle where a smooth following is demonstrated for several test 

conditions. Figure 6 depicts static photos of the host vehicle 

chasing the target vehicle in the actual demonstration of this 

embedded system.  The IR sensors are use in individual 

configurations (i.e., degraded FOV) or by combining that which 

addresses the redundancy of a given number of sensors  

 

Figure 6. Host tracks target as per equation (4) 
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4. Data Fusion and Simulation 

Sensor fusion is the most important and critical process for 

autonomous vehicles on the road for increased safety.  The short 

comings of individual sensor can be overcome by fusing the data 

in such a way that each sensor can complement or augment in the 

presence of the other sensor failure. The failure or the 

malfunctioning of the sensors installed could cause by a natural 

phenomenon or manmade phenomenon [18]. In this parlance, the 

adaption of the sensor fusion methodology can maintain the 

essential functions for a required level of safety. With these 

insights, this section presents the advantage of using Kalman 

filter-based data fusion over single IR sensor and amid individual 

sensor failure. Equation 2 is utilized for range tracking and a 

complete mathematical modeling and simulation based on 

optimal state estimation theory is presented. With assumed and 

known values of measurement errors caused by system noises, an 

optimal estimator computes and processes the measurements for 

reducing the state error estimate using measurement system 

dynamics [19]. 

A. System Dynamic Model 

The system dynamic model is a generic representation given by  

�̂�𝑘(−) = 𝐹�̂�𝑘−1(+) + 𝐺𝑤𝑘−1  

 (5) 𝑤𝑘~ 𝑁(0, 𝑄𝑘) 

                    𝑍𝑘 = 𝐻�̂�𝑘−1(+) + 𝑣𝑘               (6) 

𝑉𝑘~ 𝑁(0, 𝑅𝑘) 

where �̂�𝑘−1(+) is a priority or the initial estimate of �̂�𝑘 taken as 

[6,1,1] for the purpose of this simulation. F or ϕ is denoted as the 

state transition matrix for predicting the future states and is given 

as 

  𝜙  =      [
1 𝑇 𝑇2/2
0 1 𝑇
0 0 1

]              (7) 

Here, the process noise wk and the measurement noise vk are 

modeled as white Gaussian noise with mean of zero and standard 

deviation of one.  The noises in IR sensor and systems are 

described as statistical fluctuations or distortions in electrical 

current modeled by various mathematical models as [20] 

Photovoltaic noises or σnoise = √jn(r) + sn(r) + pn(r)      (8) 

Photoconductive noises or σnoise =

√jn(r) + grn(r) + pn(r)                                                                 (9)                            

where  jn(r)is Johnson noise =
4kTdB(R)

Rd
            (10) 

sn(r)is Dark current shot noise = 2qiDB(R)                         (11) 

grn(r)is Generation Recombine noise = 4qGiDB(R)          (12) 

pn(r) is Photon noise =
2ηq2(Ps+Pb)Bλ

hc
                          (13) 

For a particular sensor and with its specifications the 

measurement noise variances can be modeled by using the 

equations from 12 to 17. 

B. Fusion Algorithm 

For the purpose of simulation, the sensor and the system are 

considered as time invariant systems in which all three IR sensors 

produce measurement at the same time. The method of the fusion 

process [21] depend on the covariance matrix and its trace 

operation, given by   

             �̂�𝑘 = ∑ 𝑎𝑖𝑧𝑖(𝑘)𝑁
𝑖=1                                                       (14) 

where N is the total number of IR sensors mounted on the convoy, 

z(k) denotes the sensor value from the ith IR sensor for every time 

interval k, and the quotient ai is given by 

                  𝑎𝑖 =
1/𝑡𝑟((𝑅𝑖(𝑘))

∑
1

𝑡𝑟((𝑅𝑗(𝐾))
𝑁
𝐽=1

                           (15) 

where tr() performs the trace operation with mapped 

measurement covariance Ri(k) of the ith IR sensor at kth time 

interval. The quotient ai is summed to unity by assumption.   

C. Kalman Filter steps 

Measurements from each sensor are fused using the below 

algorithm [21]:  

• Perform the state estimate extrapolation expressed as  

  �̂�𝑘(−) =  𝜙𝑘−1�̂�𝑘−1(+)              (16) 

 

• Perform the error covariance extrapolation given as 

𝑃𝑘(−) = 𝜙𝑘−1𝑃𝑘−1(+)𝜙𝑇
𝑘−1

+  𝑄𝑘−1             (17) 

 

• Update the state estimate observation  

�̂�𝑘(+) =  �̂�𝑘(−) + 𝐾𝑘[𝑍𝑘 − 𝐻𝑘�̂�𝑘(−)]            (18) 

• Calculate the error covariance update 

𝑃𝑘(+) = [1 − 𝐾𝑘𝐻𝑘]𝑃𝑘(−)             (19) 

• Calculate the Kalman Gain Matrix 

𝐾𝑘 = 𝑃𝑘(−)𝐻𝑘
𝑇[𝐻𝑘𝑃𝑘(−)𝐻𝑘

𝑇 + 𝑅𝑘]−1              (20) 

The bock diagram describing the system, measurement model, 

and discrete-time Kalman Filter is shown in Figure 7. 

 
Figure 7. System model and Discrete Kalman filter [22] 

The initial values for predicted covariance and state transition 

matrix are taken as  
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              𝑃𝑘−1=[
1 1 1
1 1 1
1 1 1

]                           (21) 

Figure 7 presents the iterative recursion process of the Kalman 

filter and sums up the equations described in 17 to 21. The 

simulation results shown in the Figures 9 and 10 describe the 

effectiveness of Kalman filter-based data fusion. These iterative 

recursive filters are used for continuous time problems and 

considered as a breakthrough for estimation in linear dynamic 

systems. The propagation of covariance matrix and the dynamic 

calculation of the Kalman filter gains make this filter superior. 

The state vector dimension is 3-by-1 known as one dimensional 

third order filter tracking with one position or relative distance 

component, one velocity component and one acceleration 

component obtained by each individual IR sensor. The 

measurements from each sensor are fused using the algorithm and 

the fused measurement is optimally estimated by the filter steps 

mentioned in equations 17 to 21. Next, using the state estimate 

and the covariance matrix the propagation of prediction and 

correction will continue to obtain the smoothed estimate.  

 

Figure 8. Iteration steps for Kalman filter [23] 

Figures 8 presents the MATLAB simulation flowchart.  Figure 11 

indicates the digitally computed true distance between the target 

vehicle and the sensor mounted vehicle simulated based on the 

equation 2. It also shows the measured distances d1, d2 and d3 

from each IR sensor and fused distance estimate based on Kalman 

filter. 

 
Figure 9. Tracks simulation 

The simulation parameters are chosen such as sampling interval 

of 0.1 sec over the supply voltage values between 4.5 volts to 5.5 

volts. The initial values of relative distances d1, d2 and d3 are 6.2, 

5.8 and 7.1 cm. These values of relative distances are chosen 

based on the distance measuring range of the sensor considered in 

section 2. For each sample the values of d1, d2 and d3 vary 

between minimum of 4 cm to a maximum of 7 cm. Also, the 

minimum and the maximum values of true values of track is 4.9 

cm to 6cm, and from Figure 10 it is evident that Kalman filter 

track has the best estimate that follows the true track closely. 

Table 1 shows the RMS errors and the performance of each sensor 

and the Kalman filter is analyzed by computing the distance error 

in relative position between the two vehicles using 

𝑅𝑀𝑆 𝐸𝑟𝑟𝑜𝑟𝑑𝑖𝑠𝑡 = √
1

𝑁
∑

(𝑥𝑡𝑟𝑢𝑒−𝑥𝑒𝑠𝑡𝑖)2

3

𝑁
𝑖=1                    (22) 

In equation 22, xrue are the true track values and xesti are the 
individual estimates of each sensor and Kalman filter estimates as 
well.  Therefore, using the equation 22, the RMS error values for 
each sensor tracks alongside the Kalman filter based fusion tracks 
are obtained and presented in Table 1. 

 
Figure 10. RMS errors in relative distances 

Updation

*update error covariance 𝑃𝑘(+)

Smoothed estimate

* Perform the state estimated updates �̂�𝑘(+) by 
calculating residual error

Residual error calculation and gain computation

* Compare the Kalman Gain Matrix 𝐾𝑘

Extrapolation

* Perform  error coverience extrapolaration 𝑃𝑘(−)

Prediction

* Use the transition matrix to predict the next state �̂�𝑘(-)

Configure
* setup the transition 

matrix ϕ𝑘−1

* setup the noise 
covariance matrix 𝑄𝑘−1

Initialization of Smoothed Estimate

* Read the Initial 
state vector 

�̂�𝑘−1(-)

*state noise 
variance 

* Initial value for 
prediction 

covariance 𝑃𝑘−1
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From Figure 10 and Table 1, it is evident that Kalman filter based 

fusion method shows the better performance compared to 

individual IR sensors and the superiority and the advantage of 

implementing optimal estimation based fusion process. 

Table 1. Average RMS Errors  

Estimator RMS Error (cm) 

IR sensor 1 0.0230 

IR sensor 2 0.1893 

IR sensor 3 0.016 

Kalman filter based fusion 0.015 

Conclusion 

This research project resulted in the successful development and 

implementation of an embedded system design for an autonomous 

vehicle.  The implementation based on theoretical multisensory 

data fusion is based upon IR sensors and a single board computer.  

A dynamic demonstration of active following by the host is 

successful and was accomplished while considering the design 

constraints of the embedded system. The performance achieved 

on the 1:10 scaled model indicates positive proof of concept for 

real-world scaling of OEM (Original Equipment Manufacturer) 

vehicles. The system architecture provided for sensors from 

varied range of specifications to be incorporated and demonstrate 

performance of maintaining a set headway and smoothly 

following a target vehicle. From the test results, an overall error 

is found to be less than 5% in following distance and a 

measurement order of eight seconds resulted in response to steady 

state.  A comparison to other research results reported in the 

literature confirms similar result where the trade of is use of two 

sensors (i.e., narrower FOV) whereas this work utilized a 

configuration of three sensors ((i.e., broader FOV). Also, the 

incorporation of the fusion applications for the robustness of 

distance and tracking, could potentially improve the safety 

considerations. Research results included determination of the 

system RMS error based on Kalman filter which provides greater 

accuracy than other computational approaches for error 

calculations. As error is reduced, AV operational safety will be 

enhanced. The average RMS error for the lower IR sensor (i.e., 

centered position and single sensor configuration) is within +/- 

.001cm.  Furthermore, the contextual practical application of the 

sensor fusion for automotive applications reliability detects in-

path targets that aid in collision avoidance. This research maybe 

be extended by configuring dissimilar sensors such as RADAR, 

LiDAR in conjunction with IR sensors leading to an Advanced 

Driver Assistance System (ADAS). These systems are totally 

dependent on weighting sensor information to make intelligent 

and safe decisions. Based on the theoretical simulation of sensor 

fusion presented in the paper, it is believed the paradigm of data 

fusion can enhance the reliability and robustness of an ADAS for 

improved safety considerations. The future scope of this research 

will be demonstrated in the real-world environment amid poor 

visible conditions to check the accuracy of the proposed methods 

outlined above. An approach may include resolving distances 

based on the speed of light by measuring the Time-of-Flight (ToF) 

between the sensor and the targeted image using a ToF Camera or 

LIDAR. Motion planning conducted by a low-level feedback 

controller is also a consideration for additional research since 

trajectory and path planning are computationally complex and 

require computing resources well beyond the selected Raspberry 

Pi Model B+ single board computer.  
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