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 Memory based ternary physical unclonable functions contain cells with fuzzy states that 
are exploited to create multiple sources of physical randomness, and design true 
random numbers generators. A XOR compiler enhances the randomness of the binary 
data streams generated with such components, while a modulo-3 addition enhances the 
randomness of the native ternary data streams, also generated with the same method. 
Deviations from perfect randomness of these random numbers, in terms of probability 
to be non-random, was reported as low as 10-10 in the experimental section of this paper, 
which is considered as extremely random based on NIST criteria. 

Keywords:  
Random numbers generators 
Physical unclonable functions 
Ternary states 

 

 

 Introduction 

This paper is an extension of the work presented at the 
annual computing SAI conference, London, July 2017 [1]. The 
strengthening of cryptographic protocols with random numbers 
[2-4] is widely accepted as mandatory to secure networks of 
cyber physical systems (CPS). Both pseudo random numbers 
generators (PRNG) that use mathematical methods [5-8] and 
true random numbers generators (TRNG) that exploit physical 
elements [9-11] are mainstream. The randomness based on 
mathematical algorithms for PRNGs could be weak when 
crypto-analysts armed with powerful computers know the 
algorithms. Such algorithms can also consume too much 
computing power, which may be a problem for small internet of 
things (IoT) peripherals. The need to quantify the randomness 
of PRNG, and TRNG is of prime importance [12-15]. Physical 
Unclonable functions (PUF) can be valuable sources of natural 
randomness [16-17], they have been adopted for the design of 
true random number generators (TRNG). However, the 
randomness of the physical elements is not always acceptable 
when subjected to temperature changes, aging, electromagnetic 
interferences, and other parametric drifts. The PUFs can be too 
predictable in some circumstances, which is not necessarily 
conducive to the design of quality TRNGs that rely on physical 
randomness to generate a fresh random number at every query. 

 We are presenting how ternary PUFs contain fuzzy elements 
that are excellent sources of randomness. The method is based 
on the identification of the cells of memory based PUFs that are 
naturally unstable under repetitive queries. When tested, the 
fuzzy cells can switch back and forth randomly between “1” and 

”0”, thereby generating random data streams. We are presenting 
three complementary elements:  
 
i) how a XOR data compiler, which process the data available 

from multiple ternary cells, can create an extremely 
high level of randomness [18-21];  

ii)  how a probabilistic model allows the quantification of the 
level of randomness of the TRNG;  

iii) how the method can be extended to the generation of native 
ternary random numbers with modulo-3 addition. 

 Designing a random number generator 

2.1. Ternary physical unclonable functions 

 There is a growing interest in securing CPS’s with Physically 
Unclonable Functions (PUFs) to strengthen security when 
deployed in the cryptographic processes using a powerful set of 
physically derived cryptographic primitives [22-26]. PUFs act 
as virtual fingerprints for the hardware during the authentication 
processes to effectively block cyber thefts, Trojans, and 
malwares [27-34]. With error correcting methods, the PUFs can 
also generate cryptographic keys for symmetrical encryption 
schemes [35-36]. The inherent randomness, unclonability, 
secrecy, and physical nature of most PUFs makes it extremely 
hard to inspect during side channel attacks, or when lost to the 
enemy. 

2.2. Quality considerations for PUFs 

 The PUFs, regardless of their design, must exhibit enough 
predictability overtime for reliable authentications, or 
encryption. The reference patterns of the PUFs that are 
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generated up front during the setup of protocol, called 
challenges, are compared over the life of the component with 
freshly generated patterns, called responses, during the 
authentication cycles. Quality PUFs need low challenge-
response-pair (CRP) error rates, the intra-PUF challenge-
response Hamming distance must be small enough to insure 
small level of false rejection rates (FRR). The PUF challenges 
should act as predictable “digital fingerprints” of the component, 
while the responses should be easily recognizable as a 
measurement of the same “digital fingerprints”. Error rates in 
the 3-7% range are usually acceptable when combined with error 
correcting techniques [35-36]. PUFs exploit the device-to-
device randomness that is created during the manufacturing 
process of micro-components; it is desirable that the average 
inter-PUF hamming distance between different PUFs, divided 
by the length of the PUFs, should be in the 50% range to insure 
low level of false acceptance rates (FAR). This is achievable 
when the level of intra-PUF randomness, also called entropy, is 
high enough. PUFs with longer streams of bits have therefore 
higher entropy, and lower FAR. 128-bit CRPs, or higher, are 
usually required for this purpose. 

 Another important figure of merit for PUFs is the number of 
available CRP configurations for a unit. Strong PUFs, as 
opposed to weak PUFs, contains large quantities of possible 
CRPs that are addressable. For example, a ring oscillator PUF 
with 128 rings is a strong PUF. The number of possible pairing 
of two rings is N =�1282 � = 16,256. If the protocol use 128-bit 
long CRPs, the number of possible challenges of 2128, offers 
satisfactory entropy, and a low collision rate of the pairs. A 
memory PUF with random addressing capabilities is even 
stronger [36, 39-40]. For example, when the capacity of the 
memory is in the mega-byte range, millions of configurations 
are providing an entropy much higher than a 128-ring oscillator 
with “only” 16,256 possible configurations. Existing PUFs can 
have limitations, and lack of trustworthiness that could create a 
false sense of security. The signatures of PUFs are derived from 
intrinsic manufacturing variations, which could become 
predictable due fabrication excursions. Properties such as 
critical dimensions of printed structures, doping levels of 
semiconducting layers, and threshold voltages should make each 
device unique and identifiable from all other devices, abnormal 
operations during the manufacturing process could alter such 
randomness. When subject to changes related to temperature, 
voltage, EMI, aging, and other environmental factors these 
parameters can drift over time, the undesirable result, is weak 
PUFs with CRP error rates as high of 20%. 

 The main objective in designing ternary PUFs is to resolve 
some of these issues, and to reduce the CRP error rates by 
eliminating fuzzy CRPs during challenge generation. The figure 
of merit is to achieve trustworthy and robust intra-PUF CRP 
matching rates with low FRR during authentications, without 
increasing FAR during inter-PUF authentication of malicious 
challenges. The by-product of such design is the design of highly 
random TRNG with the fuzzy cells. 

2.3. Memory based PUFs 

 The methods to design PUFs and TRNGs with SRAM 
memories have been published SRAM [36-38]. SRAM based 
PUFs have been successfully commercialized. When powered 

up, each SRAM cells naturally flip to store either a 0, or a 1. In 
most of the cases, arrays of SRAM cells return to a similar 
pattern characteristic, i.e. a similar finger print. SRAM based 
PUFs designed with this feature can be reliable, however heavy 
error correcting methods are usually needed. The SRAM based 
PUFs are not particularly immune to side channel attacks. 
Significant research efforts have been published regarding the 
design of PUFs with Flash RAMs [39-40], DRAMs [41-44], 
magnetic RAMs [45-46], and resistive RAMs [47-49]]. The 
cryptographic protocols leveraging memory PUFs are in general 
distinct from the ones developed with other mainstream PUFs 
such as ring oscillators, or gate delay arbiters. As shown in Fig. 
1, the value of a parameter P is measured on each cell, and is 
compared with a threshold. The cells with parameter P below 
the threshold are “0”s, and are “1”s above the threshold. 
Examples of parameter P selected to design memory PUFs 
include: threshold voltages of Flash cells after fixed time 
programming; charges left on DRAM cells without refresh; high 
resistance value of MRAM cells after programming; and Vset of 
ReRAM cells.  

 
Figure 1: Diagram explaining the design of memory based PUF with a 

parameter P, and a threshold to sort out the states 0 and 1. 

The CRP matching is done after error correction. The cell-
to-cell physical parameter variations due to manufacturing 
variations are too erratic for CRP generation. Fig.2 is a diagram 
showing how a drift of P toward the higher value is forcing the 
responses of the cells located close to the threshold to switch 
from 0 to 1, which increase CRP error rates. The cells located 
far from the transition are not impacted. 

 
Figure 2: Diagram explaining the impact of a drift of parameter P toward 

higher values, creating CRP errors. 

2.4. Ternary PUFs 

 The concept of memory based PUFs with ternary states 
having random number generation capabilities is described [49-
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52]. The measurement of P of the cells of a memory PUF allows 
the segmentation of the cell population into three states. The 
cells with P <T1 (a low threshold) carry the state “-“, the cells 
with P >T2 (a high threshold) carry the state “+“, and the 
remaining cells carry the ternary state “0” cells, see Fig.3.   
 

 
Figure 3: Diagram describing the sorting of the memory PUF into ternary states 

based on parameter P. 
 

During challenge generation, the cells are sorted into ternary 
states. During response generation, only the cells with “-“ or “+” 
states are queried, while the cells with “0” state are ignored, see 
Fig.4. The PUF CRP error rates are significantly lowered, the 
distance T2-T1 acts as a buffer between the states “-“, and “+”.  
When the distance T2-T1 between thresholds increases, the CRP 
error rate can reach extremely low values, and is less sensitive 
to various drifts. 

 
Figure 4: Diagram showing the response generation. The “0” states are ignored, 

only the cells with “-“ and “+” challenges are considered 
 

 Random number generators 

3.1. Pseudo Random number generators 

There are numerous excellent PRNG available to the system 
developers, which are highly reliable [4-8]. For example, a 
PRNG {a1, a2, …, an} can be designed with congruential 
generators, where a is the multiplier, c the increment, m the 
modulus, and Xi , b, c, m are natural numbers, typically, c and m 
are chosen to be relatively prime:  

   ai+1 = (b ai + c) mod m                 (1) 
 Other example of PRNG can constructed by using iterative 
encryption, as shown in Fig 5, ai+1 is the cipher of Xi which is 
encrypted by the code E, and the key Ki . Proving that a PRNG 

or a TRNG is “random” is a very complicated task that could 
take years to validate, and billions of data points. The National 
Institute of Standard and Technology (NIST) has developed an 
excellent suite of tools available on line that can test the 
randomness of any random numbers generators [12-15]. 

 
Figure 5: Generating the random number PRN from two numbers ai Ki, and the 

encryption scheme E. 
 

Examples of parameters that are tested include deviation 
from randomness, a frequency test (monobit test), Serial test 
(two-bit test), a Poker test (non-overlapping parts), run tests (gap 
and blocks), and autocorrelation tests [Menezes, van Oorschot, 
Vanstone - Handbook of Applied Cryptography].  

 In this paper, we are using statistical analysis to quantify 
randomness, and the parameter λ defined below in this section.  
Each bit “ai” of a data stream of n bits should have a 50% 
probability to be either a “1” or a “0”. The average deviation 
from perfect randomness λ is given by: 

P( ai =1)   = P(ai  =0) = 0.5                          (2) 

                λ   = | 0.5 - P( ai  =1) | = | 0.5 - P( ai =0) |             (3) 

 Assuming that the length of the data stream is n =128, with 
P( ai  =0) = 0.5, the number of possible combinations, also called 
entropy, is 2128= 3.4 1038, which is large enough to protect 
cryptographic functions from existing or foreseeable computers. 
When the RNG is not totally random, in this case λ≠0, the 
entropy is lower than 2128, and is further reduced with larger λ. 
A position paper from (NIST) [12], suggested in 1999 that λ 
greater than 10-3 would not be acceptable, sophisticated crypto-
analysis methods could be effective to break the PRNG. NIST 
in 2010 and others [33-34] revisited this. The value of λ that is 
acceptable to get a safe TRNG is a moving target as modern 
computers get increasingly powerful. To the best of our 
knowledge, λ<10-5 is currently considered an excellent target, 
while λ<10-10 is considered outstanding. 

3.2. Use of XOR to enhance PRNGs 

Exclusive OR, XOR, is a Boolean logic gate widely adopted 
in cryptography [18-21]. Two input bits ai and ai+1 are 
transformed into ci = ai ⊕ ai+1, with the following equations: 

ci =0 if ai = ai+1 (0⊕0 or 1⊕1)                   (4) 

ci =1 if ai ≠ ai+1 (0⊕1 or 0⊕1)                   (5) 

 XOR logic is part of most encryption algorithms such as the 
Data Encryption System (DES), the Advanced Encryption 
System (AES), and hash functions such as SHA. XOR functions 
are adding confusion and randomization in the encryption 
process while been reversible in the decryption process. As part 
of the encryption, the data streams generated by plain texts are 
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often XORed with cryptographic keys, or sub-keys, then XORed 
again during decryption. XOR scramblers can enhance 
randomization in multicarrier communications [19]. XOR are 
also used to generate scrambling sequences to achieve data 
randomization in a memory circuit, as well as enhancing random 
number generators [20]. Some of the important reasons for the 
use of XOR functions in cryptography are: 
 ci is not disclosing the value of ai and ai+1: 
ci =0 can be the result of the pair 00, or the pair 11; 
ci =1 can be the result of the pair 01, or the pair 10; 
 XOR is a symmetrical function when applied twice: 
                                ai ⊕ ai+1⊕ ai+1 = ai                          (6) 
 If two bits ai and ai+1 are random, the bit ci, defined by 

ci =ai ⊕ ai+1, is even more random than ai or ai+1 .  
These properties are exploited in the design of the XOR data 
compiler as presented in section 4. 

3.3. Ternary PUFs as sources of randomness 

The cells of a ternary PUF with “0” state, as described in section 
2.3, are exploited as sources of randomness to design TRNG [1, 
17], as explained in Figure 6. The cells located in the center of 
the distribution, the “0” states, can flip back and forward when 
the value of their parameter P is compared to a threshold 
centered in the median point of the distribution.  

 
Figure 6: Diagram showing how the cells with “0” states 

 can be sources of randomness 
 

When the distance T2-T1 between the two thresholds used to 
select the cells with “0” states is reduced, the probability to test 
these cells either as below the median, or above the median at 
each query is closer to 50%. For example, the selection of 1,000 
cells located close to the median will represents a strong pool to 
design TRNG. These 1,000 cells can be queried many times to 
generate long random numbers. Each cell acts as a single source 
of independant randomness subject to noise, and measurement 
uncertainties. Within the cells of a particular memory array, the 
distribution of the physical parameter 𝒫𝒫, which determine if a 
cell is a “0” or a “1”, is following a distribution with a standard 
variation σArray due to cell-to-cell variations created during 
manufacturing, and other instabilities. Repetitive measurements 
of parameter 𝒫𝒫 on the same cell follow a distribution with the 
standard variation σCell responding to various measurement 
instabilities, noise, and environmental variations. Low error rate 
PUFs, with predictable CRPs, should have these variations 
verifying:  

σCell ⪡ σArray                               (7) 

 When the variations within cells are much lower than the 
cell-to-cell variations, the “finger print” of the memory PUF is 
stable and predictable. On the opposite side, to design a TRNG, 
it is desirable to select only the cells extremely close to the 
transition of parameter 𝒫𝒫 between “0’ and “1”, i.e. the one with 
ternary state “0”. If TM is the median of the distribution, the 
average value Tx of 𝒫𝒫 of each -cells should be such that: 

 |Tx – TM | ⪡ σCell                              (8) 

 This maximizes the chance of a random number to flip 
between “0s” and “1s”. In order to enhance the level of 
randomness only a very small percentage of the memory arrays 
are selected as sources of randomness. Current secure micro-
controllers have very large embedded memory density, typically 
in the 1 to 100 Mbits, the percentage of the array consumed for 
TRNG can be relatively small. In the following sections, we are 
developing a statistical model to study how to enhance the 
randomness of a data stream generated from the fuzzy cells. One 
of the tradeoffs to model is the compromise between tightly 
selecting the “0” cells around the median TM, versus improving 
randomness; in the case of the generation of native ternary 
streams, we study the use of modulo3 adders. 

 Modeling a ternary PUF for TRNG 

 As shown in Fig 7, the cells that are sorted as unstable with 
a “0” state can be segmented into two subgroups: 
 The cells that have a higher probability to be tested 

above the median are called A-cells, see Fig 8. They 
have an higher average probability PA to generate a 
“1”in the stream of random numbers, their average 
deviation to randomness is λA. The A cells have an 
average probability P’A to generate a “0” in the stream 
of random number: 

 PA= 0.5+ λA                               (9) 

P’A= 0.5- λA;       1= P’A + PA                (10) 

 The cells that have a higher probability to be tested 
below the median are called B-cells, see Fig 9. They 
have an average probability P’B to generate a “0”, and 
an average deviation to randomness λB. The average 
probability PB to be generate a “1”is: 

 P’B= 0.5+ λB                               (11) 

PB= 0.5- λB;         1= P’B +  PB                (12) 

The selection of the transition TM of parameter 𝒫𝒫 can be such 
that the number of A-cells equal the number of B-cells and: 

 PA= P’B ,     P’A= PB ,    λA= λB.                    (13) 

 
Figure 7: The “0” states are segmented into the A cells that more often 

measured above the median, and the B cells below the median. 
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Figure. 8: A-cells with higher probability PA to generate a 1. 
 

 

Figure. 9: B-cells with higher probability P’B to generate a 0. 
 

 A XOR data compiler for TRNG 

 As presented below in the experimental section, with 2% of 
the cell population selected as fuzzy 0-cell, λA= λB ≈ 2 10-2 , 
which is far from the level of randomness needed to generate 
quality TRNG, this based on NIST criteria. In this section, a 
XOR compiler is developed, with the objective to enhance the 
level of randomness of the resulting streams, see Fig.10.  

 

Figure. 10: Description of the effect of the XOR operations  
 

 The XOR compiler transforms the incoming streams ai , i ∈ 
{1 to n}, generated by the memory PUF by out coming streams 
cj,  j ∈ {1 to m}, m<n, of higher level of randomness. The stream 
of n random numbers generated from the ternary memory PUF 
is shown below.  

Incoming stream:               {a1, a2, …, ai, …an}          (14) 

This stream is grouped in chunks of f bits, i ∈ {1 to f } ; f < n. 

Chunk of bits:                 {a1j, a2j, …, aij, …, afj}          (15) 

For example, 1,280 random bits are grouped in 128 chunks of 
10 bits. With a XOR, the stream cj , with j ∈ {1 to m} and n=m.f 
,  is generated from the stream ai , as shown in Fig 10. 

Out coming stream:         {c1, c2, …, cj, …, cm}            (16) 
       cj=a1j⊕a2j⊕…⊕aij⊕…⊕afj     (17) 

Such a XOR compiler can be implemented in hardware with 
only a few logic gates which can be inserted as part of the crypto-
processor of the secure processor.  The PRNGs presented 
section 3.1, are generated sequentially, the random number ai+1 
of a stream of n bits is generated from the previous random 
numbers ai . Conversely, the TRNGs with XOR gates can be 
generated in parallel eq (17) in one cycle. XOR gate is also an 
addition modulo 2 without carry over. A quicker way to compute 
eq (17) is to count how many “1s” are presents in the stream {a1j, 
a2j , .., afj}. If the number of “1s” in the stream is odd then cj =1, 
when even cj=0.  

cj = a1j⊕ a2j⊕ …⊕ afj = (a1j+ a2j+ … + afj ) mod 2     (18) 

 Modeling a 2-bit XOR compiler 

We analyze a 2-bit XOR compiler, the incoming data stream 
of 2n bits is “XORed” two bits by two bits to generate a stream 
of n bits, f=2. There are three possible configurations for each 
“XORing”: both cells are A-cells, one cell is an A-cell and the 
second is a B-cell, and both cells are B-cells. Let us choose: 
PA=P’B=0.52; P’A=PB=0.48; λB=λA=2 10-2. 

 Number of A-cells is even: two A-cells, or two B-cells 

 The probability P’C to have cj=a1j⊕a2j at “0” is 
occurring when the two cells (a1j, a2j) are at (00) or (11): 

     P’C = 𝐏𝐏′𝐀𝐀𝟐𝟐 + 𝐏𝐏𝐀𝐀𝟐𝟐  = 0.5008  λC =8 10-4                  (19) 

The probability PC to have cj=a1j⊕a2j at “1” is occurring 
when the two cells (a1j, a2j) are at (01) or (10): 

                      PC =2 (PA P’A) = 0.4992                          (20) 

 Number of A-cells is odd: one A-cells, and one B-cell. 

The probability PC to have cj=a1j⊕a2j at “1” is occurring 
when the two cells (a1j, a2j) are at (01) or (10): 

      P’C = 𝐏𝐏𝐀𝐀𝟐𝟐 + 𝐏𝐏′𝐀𝐀𝟐𝟐  = 0.5008  λC =8 10-4                 (21) 

The probability P’C to have cj=a1j⊕a2j at “0” is occurring 
when the two cells (a1j, a2j) are at (00) or (11): 

                    PC =2 (PA P’A) = 0.4992                            (22) 

 Let us assume that the incoming stream with 2n bits is 
generated from a memory PUF with 50% A-cells and 50% B-
cells, and with λA=2 10-2. The 2-bit XOR compiler can 
statistically generate an out coming stream of n bits having 50% 
C-cells, and 50% D-cells with λC=8 10-4, see Fig. 11. The C-cells 
are made of pairs of either AA cells or BB cells, while the D-
cells are made of pairs of either AB cells or BA cells. In both 
cases, f =2 is even. The general equations developed below in 
section 8, eq. (29) to (39) are applicable. When the number of 
B-cell is even PC < P’C, and are reversed when the number of B-
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cell is odd PC > P’C. The deviation from randomness λC=8 10-4 
is 25 times smaller than the deviation before the 3bit-XOR 
compilation, λA=2 10-2.  

 
Figure. 11: Diagram showing a 2-bit XOR compiler. 

 

 Modeling a 3-bit XOR compiler 

 In this section we analyze a 3-bit XOR compiler, in 
which the incoming data stream of 3n bits is “XORed” three bits 
by three bits to generate a stream of n bits, f=3. We are again 
choosing the same example: 

 PA=P’B=0.52; P’A=PB=0.48; λB=λA=2 10-2. 

There are four possible configurations for each “XORing”: 
three cells are A-cells, two cells are A-cells & one cell is B-cell, 
one cell is A-cell & two cells are B-cells, and finaly three cells 
are B-cells.  
 Number of B-cells is even: three A-cells, A-cell & two 

B-cells. The probability PC to have cj=a1j⊕a2j⊕a3j at 
“1” is occurring when the three cells (a1j, a2j, a3j) are at 
(111), (100), (010) or (001): 

   PC = 𝐏𝐏𝐀𝐀𝟑𝟑 + 3 𝐏𝐏𝐀𝐀𝐏𝐏′𝐀𝐀𝟐𝟐  = 0.500032  λC=3.2 10-5         (23) 

 The probability P’C to have cj=a1j⊕a2j⊕a3j at “0” is 
occurring when the three cells (a1j, a2j, a3j) are at (000), 
(110), (011) or (101): 

              P’C = 𝐏𝐏′𝐀𝐀𝟑𝟑 + 3 𝐏𝐏′𝐀𝐀𝐏𝐏𝐀𝐀𝟐𝟐  = 0.499968                  (24) 

 Number of B-cells is odd: Three B-cells, B-cell & two 
A-cells. The probability P’C to have cj=a1j⊕a2j⊕a3j at 
“0” is occurring when the three cells (a1j, a2j, a3j) are at 
(000), (110), (011) or (101): 

 P’C = 𝐏𝐏𝐀𝐀𝟑𝟑 + 3 𝐏𝐏𝐀𝐀𝐏𝐏′𝐀𝐀𝟐𝟐  = 0.500032  λC=3.2 10-5       (25) 

 The probability P’C to have cj=a1j⊕a2j⊕a3j at “0” is 
occurring when the three cells (a1j, a2j, a3j) are at (000), 
(110), (011) or (101): 

             PC = 𝐏𝐏′𝐀𝐀𝟑𝟑 + 3 𝐏𝐏′𝐀𝐀𝐏𝐏𝐀𝐀𝟐𝟐  = 0.499968                   (26) 

 Let us assume that the incoming stream with 3n bits is 
generated by a memory PUF having 50% A-cells, and 50% B-
cells, and with λA=2 10-2. The 3-bit XOR compiler can 
statistically generate an out coming stream of 128 bits having 
50% C-cells, and 50% D-cells with λC=3.2 10-5, see Fig. 12. The 
C-cells are made of triplets of either AAA cells, ABB cells BAB 
cells, or BBA cells. The D-cells are made of triplets of either 
AAB cells, ABA cells, BAA cells, or BBB cells. 

 In both cases, f=3 is odd. The general equations developed 
in the next section, eq. (29) to (38) are applicable. When the 
number of B-cells is even, PC < P’C, and are reversed when the 
number of B-cells is odd, PC > P’C. The resulting deviation from 
randomness, λc=3.2 10-5, is 25x25=625 times smaller than the 
deviation before the 3-XOR compilation, λA=2 10-2.  It is 
interesting to notice that a 3-bits XOR data compiler needs only 
50% more starting cells than a 2-bits compiler, and has a level 
of non-randomness 25 times lower. 

 
Figure. 12: Diagram showing a 3-bits XOR compiler. 

 

 Modeling the XOR compiler in general terms 

The goal is to develop a model that quantifies the effect of a 
XOR compiler, which enhance the level of randomization of a 
data stream, as a function of the size f of the chunk of incoming 
bits that are XORed together. The incoming stream {a1, …, ai, 
…an} has a deviation from randomness λA  , and the out coming 
stream {c1, c2, …, cj, …, cm} has a deviation λC. This variation 
is obtained by computing PC, the probability for cj, to be a “1: 

 ∣ λC ∣ = 1- PC                                 (27) 

The incoming random bits aij are generated from A-cells or 
B-cells of the ternary PUFs. As stated in section 4.1, the 
transition TM is selected in such a way that the probability to 
have an A-cell, and a B-cell is equal to 0.5. If each of the f long 
chunks have s A-cells and t B-cells with s+t=f.  The numbers of 
possible combinations (f, s) is: 

Cf,s =   �𝐟𝐟𝐬𝐬�  = f ! / s ! (f-s) !                      (28):  

1.1 All cells of chunk j are A-cells.  
 

 The probability of any of the A-cells of the stream to be a 
“1” is PA, and the probability to be a “0”is P’A. Both PA and P’A 
are following Bernoulli formula: 

1= ∑  �𝐟𝐟𝐢𝐢� 𝐏𝐏𝐀𝐀𝐢𝐢 𝐏𝐏′𝐀𝐀𝐟𝐟−𝐢𝐢𝐢𝐢=𝐟𝐟
𝐢𝐢=𝟎𝟎                                 (29) 

1=∑ [𝒊𝒊 mod2]�𝐟𝐟𝐢𝐢�𝐏𝐏𝐀𝐀
𝐢𝐢 𝐏𝐏′𝐀𝐀𝐟𝐟−𝐢𝐢

𝒊𝒊=𝒇𝒇
𝒊𝒊=𝟎𝟎 +∑ [𝒊𝒊 + 1mod2]�𝐟𝐟𝐢𝐢�𝐏𝐏𝐀𝐀

𝐢𝐢 𝐏𝐏′𝐀𝐀𝐟𝐟−𝐢𝐢
𝒊𝒊=𝒇𝒇
𝒊𝒊=𝟎𝟎   

1=                       Pc              +                        P’c               (30) 

The terms  𝐏𝐏𝐀𝐀𝐢𝐢 𝐏𝐏′𝐀𝐀𝐟𝐟−𝐢𝐢   of eq. (29) and (30) correspond to a 
configuration where i bits are “1s”, and f-i bits are “0”.  

The probability PC, is the sum of all terms having i odd: 
i mod2 = 1              i+1 mod2 = 0                      (31) 

 
 Pc = ∑ [𝒊𝒊 mod2]�fi� 𝐏𝐏𝐀𝐀𝐢𝐢 𝐏𝐏′𝐀𝐀𝐟𝐟−𝐢𝐢𝐢𝐢=𝐟𝐟

𝐢𝐢=𝟎𝟎                         (32) 
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If f=2k is even:    PC= ∑  � 2k
2i+1� 𝐏𝐏𝐀𝐀𝟐𝟐𝐢𝐢+𝟏𝟏𝐏𝐏′𝐀𝐀𝟐𝟐𝟐𝟐−𝟐𝟐𝐢𝐢−𝟏𝟏𝐢𝐢=𝟐𝟐−𝟏𝟏

𝐢𝐢=𝟎𝟎        (33) 
 

If f=2k+1 is odd:   PC= ∑  �2k+12i+1� 𝐏𝐏𝐀𝐀𝟐𝟐𝐢𝐢+𝟏𝟏𝐏𝐏′𝐀𝐀𝟐𝟐𝟐𝟐−𝟐𝟐𝐢𝐢𝐢𝐢=𝟐𝟐
𝐢𝐢=𝟎𝟎             (34) 

The probability P’C is the sum of all terms having i even: 
i mod2 = 0              i+1 mod2 = 1                        (35) 

 
P’c = ∑ [(𝒊𝒊 + 1) mod2] 𝐂𝐂𝐟𝐟,𝐢𝐢  𝐏𝐏𝐀𝐀𝐢𝐢 𝐏𝐏′𝐀𝐀𝐟𝐟−𝐢𝐢𝐢𝐢=𝐟𝐟

𝐢𝐢=𝟎𝟎               (36) 
 

If f=2k is even:    P’C= ∑  �2k2i� 𝐏𝐏𝐀𝐀𝟐𝟐𝐢𝐢𝐏𝐏′𝐀𝐀𝟐𝟐𝟐𝟐−𝟐𝟐𝐢𝐢𝐢𝐢=𝟐𝟐
𝐢𝐢=𝟎𝟎                    (37) 

 
If f=2k+1 is odd:   P’C= ∑  �2k+12i � 𝐏𝐏𝐀𝐀𝟐𝟐𝐢𝐢𝐏𝐏′𝐀𝐀𝟐𝟐𝟐𝟐+𝟏𝟏−𝟐𝟐𝐢𝐢𝐢𝐢=𝟐𝟐

𝐢𝐢=𝟎𝟎           (38) 

When  f is even, PC < P’C is written as PC=0.5-λcj or 
P’C=0.5+λcj, with λcj the deviation from randomness of cj.  

When  f is odd, PC > P’C and is written as PC=0.5+λcj or 
P’C=0.5-λcj. 

1.2 Chunks j are a combination of A-cells & B-cells  
 

The f cells randomly contain A-cells and B-cells. The 
symmetry between the A-cell and the B-cells (PA=P’B and 
P’A=PB) results in the following property:  
 If the chunk of bits {aj1, aj2, …, ajf} is generated by an 

even number of B-cells, the probabilities PC and P’C are 
the same as if the chunk was only generated by A-cells. 
If f is even, Pc and P’C are respectively computed with 
eq. (33) and (37); if f is odd, Pc and P’C are computed 
with eq. (34) and (38).  

 If the chunk of bits {aj1, aj2, …, ajf} is generated by an 
odd number of B-cells, the probabilities PC and P’C are 
the opposite of the ones generated by A-cells as 
described by eq. (37) (33) and eq (38) (34): 

 If f is even, Pc is (eq.(37)): PC=∑  �2k2i�  𝐏𝐏𝐀𝐀𝟐𝟐𝐢𝐢 𝐏𝐏′𝐀𝐀𝟐𝟐𝟐𝟐−𝟐𝟐𝐢𝐢𝐢𝐢=𝟐𝟐
𝐢𝐢=𝟎𝟎 , and 

P’c is (eq.(34)): P’C= ∑ � 2k
2i+1� 𝐏𝐏𝐀𝐀𝟐𝟐𝐢𝐢+𝟏𝟏𝐏𝐏′𝐀𝐀𝟐𝟐𝟐𝟐−𝟐𝟐𝐢𝐢−𝟏𝟏𝐢𝐢=𝟐𝟐−𝟏𝟏

𝐢𝐢=𝟎𝟎   

If f is odd, Pc is (eq.(38)): PC=∑  �2k+12i � 𝐏𝐏𝐀𝐀𝟐𝟐𝐢𝐢 𝐏𝐏′𝐀𝐀𝟐𝟐𝟐𝟐+𝟏𝟏−𝟐𝟐𝐢𝐢𝐢𝐢=𝟐𝟐
𝐢𝐢=𝟎𝟎 , and 

P’c is (eq.(35)): P’C=∑  �2k+12i+1� 𝐏𝐏𝐀𝐀𝟐𝟐𝐢𝐢+𝟏𝟏 𝐏𝐏′𝐀𝐀𝟐𝟐𝟐𝟐−𝟐𝟐𝐢𝐢𝐢𝐢=𝟐𝟐
𝐢𝐢=𝟎𝟎    

1.3 Simplification of the model  

 The objective of this model is to calculate the absolute 
deviation from perfect randomness, it is not important to know 
if PC> P’C, or if P’C> PC. In all cases, lλcjl is the statistical 
deviation from pure randomness, regardless of PC being greater 
or lower than P’C. Therefore, assuming that all cells are A-cells 
is simplifying the computation without reducing the accuracy 
of the model. 

 Experimental analysis with XOR compiler 

9.1. Variations of ReRAM memory PUFs 

The experimental data presented in this paper is based on the 
study of resistive random-access memory (ReRAM). The cells 
of ReRAMs, see references [53-60], are constructed with stacks 
of two electrodes separated by solid electrolytes, the first one is 
active to REDOX cycles, and the second one is inert. As shown 
in Figure 13, differential voltages applied on these stacks can 

move positively, or negatively, elements such as positive 
oxygen vacancies or positive metallic cations, which result in 
varying the resistance of the stacks. The basic physical effect 
described in Fig. 13, can be achieved with several manufacturing 
technologies: 
  Conductive bridge random access memories 

(CBRAM) that are based on the conduction of cations 
such as Ag+, or Cu+ through solid chalcogenide 
electrolytes, or porous silicon [53-58].  The active 
electrodes could be made of copper, or silver, while the 
inert electrode can be fabricated with tungsten;  

 Memristors devices can operate as ReRAM, or act as 
active Boolean gates [59-60]. The conductive filaments 
usually contain oxygen vacancies. The solid electrolyte 
can be fabricated with HfO, or TaOx.  

 
Figure. 13: Diagram showing the programming-erase cycles of a ReRAM. 

After initial forming, the operations are reversible. 
 

In this work, we had access to Cu/TaOx/Pt resistive crossbar 
arrays fabricated on thermally oxidized Si wafers, Reference 
[38]. The Cu/TaOx/Pt switches from “0” to “1” based on the 
formation and the rupture of filaments, made of oxygen 
vacancies, bridging the dielectric between both electrodes. The 
initial conditioning of the ReRAM cells, in which conductive 
filaments are formed, typically requires a positive voltage of 
approximately 2 to 5 Volt. After forming, the cells can respond 
to programming and erasing cycles. It exists a minimum 
negative Vreset voltage applied across the cells, in the -0.5 to -
3.0 Volt range, that force the positive ions or oxygen vacancies 
to migrate back, breaking the conductive filament. The resulting 
high resistance state (HRS) is then in the 20 Mohm range. In the 
positive direction, a minimum Vset voltage applied across the 
switch, reposition the positive ions or oxygen vacancies, 
forming again the conductive filament. As shown in Fig. 14, 
when the voltage is ramping, the current remains low until Vset 
is reached, then the current quickly increases. This effect is 
reversible, and the filaments can partially be dissolved with 
opposite voltages.  

The parameter 𝒫𝒫, that is analyzed for the purpose of designing 
TRNGs, is the distribution of the Vset across the cells of 
ReRAM arrays. The entire population of all cells of the array 
has a Vset distribution that is well represented by a normal 
distribution having a standard variation σArray=0.5V and a 
median value of 2.1V . The repetitive measurement of the Vset 
of each cells is also well represented by a normal distribution 
having a standard distribution σCell= 0.1V.  

 For the purpose of random number generation, the Vset of 
each cell is measured; a cell is considered as a “0” state when 
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Vset<2.1V, and a “1” state when Vset>2.1V. The cells having 
average Vset measurements at or close to 2.1 Volt, are good 
candidates for TRNG. The five populations described below are 
subsets of the total distribution of cells of the array: 

 

 
Figure. 14: Experimental characterization of the programming-erase cycles of a 

ReRAM. The cells are responding to positive, and negative voltage ramps, 
showing Vset, and Vreset. 

 

 Case-1: Only 2% of the cells are the ternary 0-states. 
They are used to generate the random numbers. For 
these cells parameter 𝒫𝒫 is close to the transition of 2.1 
Volt. Half of the cells, the A-cells, have PA=0.52 
probabilities to be “1”, P’A=0.48 probabilities to be “0”, 
with λA=2 10-2. The second group, the B-cells, have 
PB=0.48 probabilities to be “1”, P’B=0.52 probabilities 
to be “0”, with λB=λA=2 10-2.   

PA=P’B=0.52; P’A=PB=0.48; λB=λA=2 10-2        (39) 
 Case-2: 4% of the cells are ternary 0-states. The 

probabilities as defined above are: 
PA=P’B=0.54; P’A=PB=0.46; λB=λA=4 10-2     (40) 

 Case-3: 7% of the cells are ternary states. The 
probabilities as defined above are:  

PA=P’B=0.56; P’A=PB=0.44; λB=λA=6 10-2      (41) 
 Case-4: 11% of the cells are ternary states. The 

probabilities as defined above are:  
PA=P’B=0.60; P’A=PB=0.40; λB=λA=1 10-1      (42) 

 Case-5: 100% of the cells are included. The 
probabilities as defined above are:  

PA=P’B=0.90; P’A=PB=0.10; λB=λA=4 10-1     (43) 
 

In this last case, there are no ternary states, the entire 
memory array is used to generate random numbers.The reason 
we are considering this range of options is to quantify the 
effectiveness of the XOR data compiler to generate a random 
number as a function of how tight the ternary state distribution 
is. Case-1 is the one with the highest initial randomness, while 
Case-5 is the lowest one. 

9.2. Effect of the XOR compiler on the TRNG  

 The probabilistic model presented in this section is used to 
analyze the five experimental cases presented above. Fig 15. and 
Fig. 16 summarize the impact of the XOR data compiler when f 
varies from 2 to 5. We are observing a lack of efficiency of the 

XOR compiler in case-5, the one without ternary states. The lack 
of initial randomness of this case is such that the XORing cannot 
“clean up” the stream. In other cases, the XOR data compiler 
when combined with the ternary 0-states is very efficient. Case-
1 with the highest level of initial randomness is benefiting the 
most from the XOR compiler: with 5-cell XOR, λC=5.12 10-8, 
which is a very small deviation from absolute randomness. 

 
Figure 15: Deviation from non-randomness by experimental case 

 

 
Figure 16: Increased efficiency of the XOR compiler 

 
 Example of algorithms for TRNG 

10.1. Minimization of the impact of parameter drifts 

 The randomness of the TRNG originates from the physical 
parameters of multiple cells that provide independent sources of 
physical randomness. This is a fundamental strength compared 
with mathematically generated pseudo RNG (PRNG) because 
mathematical algorithms cannot describe unclonable physical 
elements. The cell-to-cell randomness is due to micro-variations 
during manufacturing and natural noise effect during 
measurements. However, physical elements can vary often in a 
predictable way when subject to effects such as temperature 
change, biasing conditions, and induced attacks. For example, 
the value of the Vset of a resistive RAM goes down when 
subject to higher temperature. A hacker could submit the 
physical element to a hot air blower to increase temperature, 
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reduce Vset, thereby making both A-cells and B-cells appear 
similar, creating a high probability to be tested as “0”. Such a 
drift or malicious attack could results in a collapse of the level 
of randomness with lower entropy. The remedy of such an attack 
is to make the size of the population of A-cells and B-cells 
equivalent, by adjusting the threshold (T2) between the “0” 
states, and “1” states, in the median point of the 0-cell 
distribution, see Fig 17: 

 
Figure. 17: Algorithm to reduce the effect of a parameter drift. 

1) Identify ni cells of the memory PUF that are part of the 
fuzzy 0-cells; ni = mi∗f, in preparation of the f-bit XOR 
compiler;  

2) Measure parameter 𝒫𝒫 of  all these ni cells; 
3) Identification of the threshold TM  placed at the median 

value of all measurements of parameter 𝒫𝒫 of the 
population. By design, half of the cells should have a 
value below TM, and half above TM.  

4) Generate ni bits, “0”s below TM, and “1”s above TM. 
5) Use the XOR compiler to combine chunks of f bits 

together. 
6) The resulting stream of mi bits is the stream of the 

TRNG. 
 

 With this method the raw data stream generated by the 
memory array and the 0-cell has a population with equal 
numbers of “0”s and “1”, regardless of a potential drift in 
temperature caused by a natural variation, or caused by the hot 
air blower of the hacker. The method is applicable to 
compensate for any drifts, noise, or aging; the integrity of the 
TRNG is thereby protected. 

10.2. Generalization to other TRNG designs 

When the physical component generates a data stream with 
a deviation from absolute randomness λin, it is possible to model 
the size f of the chunks that are XORed together, as described in 
Fig.8, to meet a particular λout objective. The model can be used 
as a predictive tool. For example, as shown Fig.18, the number 
f necessary to compile a data stream of various initial 
randomness can be anticipated to be λC<5 10-8  or λC< 10-10 . 
This could be valuable to adjust the compilation as a function of 
the monitoring of the randomness of the incoming data stream. 

 
Figure 18: Predictive model – f-bit needed for a given objective λ 

The proposed method to design TRNG is not limited to 
ReRAM arrays, and Vset as parameter 𝒫𝒫.  The method is 
applicable to any memory device as long as it is possible to 
identify a parameter 𝒫𝒫 that can be reliably tested to sort out the 
cells and identify enough unstable 0-cells. The algorithm 
presented Fig. 17 is generic: 
 Flash or EEPROM memory: parameter 𝒫𝒫 can be the 

trans-conductance of the cells after fixed time 
programming. The threshold voltage of each cell, after 
fixed time injection of electrons in the floating gate, 
vary cell-to-cell due to variations in fabrication 
parameters such as tunnel oxide thickness and doping 
levels. Very small changes of threshold voltage can 
create major changes in the trans-conductance, which 
are desirable sources of randomness. 

 DRAM memory: parameter 𝒫𝒫 could be the 
measurement of the residual charge left in a cell after 
constant discharging time. One effective method is to 
program all cells, and put the refresh cycle on hold. The 
fuzzy cells can flip above or below the threshold value 
of residual charge. 

 ReRAM memory: In addition of the Vset as presented 
in this paper, parameter 𝒫𝒫 could be the Vreset (threshold 
voltage to erase the cells), Roff (resistivity on the high 
resistance state), or Ron (resistivity on the low 
resistivity state). Some parameters like Roff can be 
flaky, and jump in a non-erratic way from a set of 
several discrete values, which is not a desirable source 
of randomness for a TRNG. 

 SRAM memory: the PUFs are based on the 
determinations of the cells flipping to either a 0 state, or 
a 1 state after power-off- power-on cycles. However, 3 
to 5% of the SRAM cells are fuzzy, they can switch on 
either states at each cycle. The recommended 
methodology is to test the SRAM array, and keep track 
of the 0-states for TRNG.  

 The use of the XOR compiler enhances the randomness of 
any data streams regardless of their origin. The XORing by 
chunk of f-bits is therefore applicable to a stream of ni incoming 
bits, as shown in Fig.19. 

1) If the length of the incoming stream of ni bits is not an 
integer number multiple of  f, the two are related by 
eq(44), ri is the remainder of ni congruent f.  

ni = mi ∗ f + ri                            (44) 

2) Several 0’s can be added to the stream of ri bits to form 
a chunk with a length f. The total number of chunks 
will be equal to mi + 1. 

3) The XORing is done by chunks of f bits. 
4) The resulting stream of mi + 1 has a deviation to non-

randomness that is lower than the incoming stream ni. 

 
Figure. 19: Generalization of the concept to any data streams. 
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 Native ternary random numbers generators 

In this section, we are presenting a method to directly 
generate native random trits from PUF memory arrays, as well 
as ways to enhance randomness with modulo 3 sum adders. As 
presented in the first section, the fuzzy cells of the PUFs are used 
as multiple sources of randomness, and the XOR compilers 
replace mod3 adders.  Ternary computing uses trits, for example 
(0, 1, 2) or balanced (-, 0, +), instead of the bits (0, 1) used in 
binary computing [61-67]. Can ternary computing improve 
cybersecurity and Information Assurance [68-70]? Ternary 
computing is not a new concept, and is more complex to 
implement than binary computing. One suggested architecture 
uses heterogeneous computing elements, and combine binary 
units to run legacy codes, and native ternary computing units for 
security [71]: 

 Better handling of the natural fuzziness, with lower 
reliance on error correction codes; 

 Can take advantage of ternary hardware, and advances 
in microelectronics, such as the ternary PUFs 
described in the first section of this paper [72-79]; 

 The cryptography based on ternary states has more 
entropy, and additional levels of freedom to protect both 
hardware, and software. 

For example, let us assume that the length of a data stream 
is N=128. The number of possible combinations for binary 
streams is 2128= 3.4 1038, and becomes 3128= 1.2 1061  for ternary 
streams, which is considerably larger. Native random numbers 
are valuable for cryptographic protocols based on ternary 
computing. One way to create ternary random numbers is to 
convert binary random numbers into decimal numbers, then to 
convert the decimal data stream back into ternary random 
numbers. Such a method add complexity, and can potentially 
expose the random numbers to hackers. A direct generation of 
native ternary random numbers is therefore desirable. The 
definition of deviation from perfect randomness for ternary 
TRNG, is similar to the one developed for binary data streams. 
As presented in the first section, each bit ai of the perfectly 
binary random stream {a1, …, ai, …, an} should have precisely 
the same probability to be either a “1” or a “0”. The average 
deviation from randomness, λ is given by: 

 P(ai =1) = P(ai =0) = 0.5                        (50) 

λ = ½ (|P(ai=1) - 0.5| + |P(ai=0) - 0| 

= |P(ai=1) - 0.5| = |P(ai=0) - 0.5|                (51) 

 In the case of ternary data streams of trits with “-“, “0”, and 
“+” states,  the term λ is given by: 

λ= 1/3(|P (ai  = –) – 1/3|+|P (ai  = 0) – 1/3|+|P(ai  = +) – 1/3|)  (52) 

0 = P (ai  =  – ) + P (ai  = 0 )  + P(ai  = + )                 (53) 

 Description of the method 

12.1. Segmentation of the fuzzy cells of the memory PUFs 

The fuzzy cells , the 0-cells, can be segmented into three 
subgroups, see Fig. 20: 
 The cells that have a higher probability to be tested as “-

” are called A-cells. They have an average probability 

PA= - to be tested as “-” , PA= 0 to be tested as “0”, and 
PA= + to be tested as “+”. 

 The cells that have a higher probability to be tested as 
“0” are called B-cells. They have an average probability 
PB= - to be tested as “-” , PB= 0 to be tested as “0”, and 
PB= + to be tested as “+”. 

- to be tested as “-” , PC= 0 to be tested as “0”, and 
PC= + to be tested as “+”. 

 
Figure 20: segmentation of the fuzzy cells in trits 

 

The selection of the transition of parameter 𝒫𝒫 between “-” 
and “0” , T2, and the transition of parameter 𝒫𝒫 between “0” and 
“+”, can be such that the total number of A-cells selected within 
the 0-cells equal the number of B-cells, and the number of C-
cells. The deviation from perfect randomness λ of the stream of 
native ternary random numbers generated from the fuzzy cells 
A, B, C is given by: 

λ= |1/9- P A= -| + |1/9- PA=0| + |1/9- PA= +|
9

+ |1/9- P B= -| + |1/9- PB=0| + |1/9- PB= +|
9

+

 |1/9- P C= -| + |1/9- PC=0| + |1/9- PC= +|
9

                    (54) 

12.2. Enhancement of the randomness with mod3 adders 

The algorithm using a mod3 adder, see Fig.21 and 22, is 
similar to the one presented section A.                                                      

1) The number of cells needed to generate a stream of mi 
trits  is ni = mi∗f , they are selected as part of the fuzzy 
0-cells of the ternary memory PUF; 

2) Parameter 𝒫𝒫 is measured on all ni cells; 
3) The population of ni cells is segmented into three third 

based on the value of 𝒫𝒫. The threshold separating the 
bottom third and the central third is T2; the threshold 
separating the central third and to top third is T3; 

4) With the segmentation in three done step 3, the ni cells 
at the bottom third are carrying “-“state, the cells in the 
middle are “0”s, and the cells at the top third are “+”s; 

5) The stream of trits is added by chunks of f  trits; Instead 
of a XOR compiler, the mod 3 adder of chunk of trits 
enhance randomness. With mod 3 sum adders, two input 
trits ai, and ai+1 are transformed into ci = ai ⊕ ai+1, with 
the following truth table: 

(ai =0; ai+1 = -), or (ai = -; ai+1 =0), or (ai=ai+1 =+)ci =  - 

(ai =+; ai+1= -), or (ai = -; ai+1= +), or (ai=ai+1 =0)ci = 0 
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(ai=0; ai+1= +), or (ai= +; ai+1 =0), or (ai=ai+1 = -)ci = + 

6) The resulting mi trits are more random.  

Mod 3 addition increases randomness, the knowledge of ci is 
not disclosing the value of ai and ai+1.  ci = -, 0, or + can be the 
result of three possible pairs {ai ai+1}, with equal probability. If 
two trits ai and ai+1 are somewhat random, the trit ci is even more 
random than either ai  or ai+1. Let us assume that the stream of 
random trits generated by the 0-cells of the memory PUF array 
is {a1, a2, …, ai, …an}. 

 
Figure 21: Algorithm to reduce the effect of a parameter drift. 

 

 
Figure 22: description of the mod 3 adder 

As it is shown in  Fig.22, this stream is grouped in chunks of 
f trits {a1j, a2j, …, aij, …, ajf} with f < n. For example, 1,280 
random bits a grouped in 128 chunks of 10 bits. The resulting 
stream of random trits obtained with mod 3 sum adders data {c1, 
c2, …, cj, …, cm} is defined as follow:                                       

ci = a1j⊕ a2j ⊕ … ⊕ aij⊕ …⊕ ajf mod 3             (55) 

Mod 3 sum adders can be implemented at the software level, 
or in hardware with only a few logic gates. These gates can be 
inserted in the state machine of the PUF memory to directly feed 
secure processors, and crypto-processors with streams of 
randomly generated trits.  

 Modeling of the randomness after mod3 additions 

13.1. Model with mod3 addition by chunks of two trits 

In this section we are proposing a simplified model that 
quantifies the level of randomness of mod 3 adders when two 
adjacent trits are added mod3. Fig.23 shows such a scheme. We 
are assuming that the 0-cells are distributed into three type of 
cells (A, B, and C), each of them with a probability of 
occurrence of 1/3. Statistically the stream of trits {a1, a2, …, ai, 
…an} contain trits with equal probability to be “-“, “0”, or “+”, 

also with a value of 1/3. However A-cells have a higher 
probability to have “-“s, B-cells have a higher probability to 
have “0”s, and C-cells have a higher probability to have “+”s. 

 
Figure 23: description of the mod 3 adder by chunk of two trits 

 

In Fig.24, we are showing an arbitrary set of probabilities 
verifying that the probability to have either A, B, or C cells is 
1/3, and the probability to have either “-“, “0”, or “+” states is 
also 1/3. In this table: 

PA= - = 1/9 + ΔA- ∗ λ ; with ΔA1 = 1.8                   (55) 

PB= 0 = 1/9 + ΔB0 ∗ λ ; with ΔA2 = 0.9                  (56) 

PC=+ = 1/9 + ΔC+ ∗ λ ; with ΔC+ =1.8                   (57) 

 
Figure 24: example of probabilistic representation 

 

The initial randomness is: 

λi = (1/9)(∣ ∑ Δ𝐴𝐴=𝑖𝑖𝑖𝑖=+
𝑖𝑖=− ∣ +∣ ∑ Δ𝐵𝐵=𝑖𝑖𝑖𝑖=+

𝑖𝑖=− ∣ +∣ ∑ Δ𝐶𝐶=𝑖𝑖𝑖𝑖=+
𝑖𝑖=− ∣) 

= 1/9 (3.6 + 1.8 + 3.6) ∗ λ = λ                   (58) 

Other tables and more complicated model can replace this 
arbitrary representation; however, the suggested simplified 
model describes quite well the experimental observations. When 
the cells are combined by pairs, and the trits added mod 3, 9 
combinations of cells are possible with an equal probability of 
1/9: AA, AB, AC, BA, BB, BC, CA, CB, CC. The average 
probability to have trits with “-“, “0”, and “+” is 1/3. 

 Two cells AA have three possible combinations which can 
result in a trit at “-“ : 
 Both cells at “+”, the probability is: (PA= + ∗ PA= + ); 
 The first cell is at “0”, the second at “-“ , the probability 

is: (PA= 0 ∗ PA= - ); 
 The first cell is at “-“, the second at “0”, the probability 

is: (PA= - ∗ PA= 0 ). 

The resulting probability PAA= - that two cells AA can result 
in a trit at “-“ is given by:  
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PAA= - =(PA= +∗ PA= +)+(PA=0 ∗  PA= -)+(PA= -∗  PA=0 ) 

=(1/9-1.35∗λ)2+2(1/9+1.8∗λ)(1/9-0.45∗λ)=1/27+0.2∗λ2  (59) 

In Fig.25 is showing the result of the computations of 27 
configurations: probability to get “-“, “0”, or “1” after addition 
mod 3 for each pair PAA= -, PAA= 0, PAA= +, PAB= -, PAB=0,… 

 
Figure 25: probability per configuration after mod 3 addition of two trits. 

 

The resulting deviation from randomness λ'f after addition is 
the average deviation of these 27 configurations:   

λ'f = (1/27) ∑ |Δ .  𝝀𝝀2| ≈ 2.27 𝝀𝝀2                  (60) 

For example, if the initial deviation from randomness for the 
incoming stream is λi = 2 10-2; the resulting deviation is: 

λ’f = 2.27 ∗( 2 ∗ 10-2)2 =  8.7 10-4               (61) 

After addition, the 9 possible configurations shown in Fig.25 
can be then combined into 3 types of cells A’, B’, and C. For 
example, the cells that are mainly “-“, the A’-cells consist of the 
mod3 additions of CC, AB, and BA pairs. In this case, the 
average deviation from randomness of A’-cells when they are 
containing a trit “-“is: 

 (λ’f A’= - )= 1/3(( λ’f CC= - ) + (λ’f AB= -) + (λ’f BA= -)) 

= 1/3 (2.43+2.43+4.46) ∗ 𝛌𝛌𝟐𝟐 = 3.10 ∗ 𝛌𝛌𝟐𝟐               (62) 

13.2. Extension of the model with chunks of four trits 

The method presented section II 2.2 can be extended to the 
addition mod3 of 4 sequential trits to generate trits of higher 
randomness. Rather than starting with the three types of cells A, 
B, and C having a deviation from randomness λ, the same 
computation is done with the cells A’, B’, and C’ having a 
deviation from randomness equal to 2.27 ∗ 𝛌𝛌2 . 

The resulting deviation from randomness λ"f of the new 
stream of trits and mod 3 addition of chunks of four bits is: 

λ"f = 2.27 (λ’f)2 = 2.27 (2.27)2 𝛌𝛌4≈ 11.3 𝛌𝛌4               (63) 

If the initial deviation is λ= 2 10-2; the resulting deviation is: 

λ”f = 11.3 ∗ (2 ∗ 10-2)4 = 1.81 10-6                 (64) 

By extension, after addition of 8 sequential trits, the 
deviation from randomness λ”” will be: 

λ””f = 2.27 (λ”f) 2≈ 290 𝛌𝛌8                      (65) 

If the initial deviation is λ= 2 10-2; the resulting deviation is: 

λ””f = 290 ∗ (2 ∗ 10-2)8  = 7.4 10-12                (66) 

 Experimental analysis with mod3 adders 

 The analysis is based on the data presented in the first section 
related to the measurement of the Vset of ReRAM devices. We 
are again considering the same five cases to sort out the fuzzy 
“0-cells”: 
 Case-1: Only 2% of the cells are 0-cells. For these cells 

parameter 𝒫𝒫 is very close to the transition of 2.1 Volt. 
λi=2 10-2; 

 Case-2: 4% of the cells are 0-cells. λi=4 10-2;  
 Case-3: 7% of the cells are 0-cells. λi=6 10-2; 
 Case-4: 11% of the cells are 0-cells. λi=1 10-1; 

This range of options allows the quantification of the 
effectiveness of the addition mod 3 to scramble the trits, as a 
function of the initial randomness coming from the ternary PUF 
memory. Case-1 is the one with the higher initial randomness, 
while Case-4 is the lowest one. 

The probabilistic model developed above, is the base of the 
analysis of the four experimental cases. The results of the 
computations are shown in Fig.26 and Fig. 27.  

The impact of the addition modulo 3 addition on the level of 
randomness on the resulting data streams of trits is increasing 
when the number of cells f involved in the addition increases 
from f = 2 to f = 8.  

 
Figure 26: modeling of the effect of mod 3 addition as a function of the 

experimental cases. 
In all cases the addition mod 3 when applied to a data stream 

of trits generated by a PUF is very efficient to enhance 
randomness. Case 1, the one with the highest level of initial 
randomness, benefit the most from mod 3 sum adders.  

It is interesting to notice that the XOR compiler, and the mod 
3 addition have similar effects in improving randomness. The 
model can be used as a predictive tool to anticipate the level of 
randomness of streams of trits. For example, as shown in Fig.27, 
the number cells necessary to get λ<5 10-6 for case 1 is 4, it is 5 
for case 2, it is 6 for case 3, and it is higher than 8 for case 4. 

 
Figure 27: deviation from perfect randomness plotted as a function of the size 

of the chunk of trits involved in mod3 addition for the four cases. 
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Discussion and conclusion 

The use of ternary PUFs to design TRNG, combined with a 
XOR compiler, or a modulo 3 addition has the following 
benefits: 
 The cells with fuzzy behavior of a ternary PUF, the 0-

cells, can provide multiple sources of independent 
randomness. A memory arrays in the megabyte range 
can have a large quantity of such cells; 

 The randomness of the binary data streams extracted 
from the ternary 0-cells are enhanced by a XOR 
compiler. Based on a normal distribution of parameter 
𝒫𝒫, the proposed statistical model can quantify the 
deviation from pure randomness of the TRNGs. It is 
possible to calculate f, the length of the XOR, to reach 
a desired level of non-randomness λf, as a function of 
the level of non-randomness λi of the incoming data 
stream extracted from the physical element.  

 The randomness of the ternary data streams extracted 
from the 0-cells can be enhanced by a modulo 3 adder.  
It is the possible to directly generate a stream of random 
trits without having to convert binary data streams into 
ternary data streams; 

 It is possible to anticipate, with the suggested 
probabilistic model, the minimum size of chunks of data  
f that need to be processed to reach the level of 
randomness λf. This is the case for the XOR compiler, 
and the mod 3 adder; 

 The proposed methodology minimizes sensitivity to 
parameter drifts such as temperature, aging, or biasing 
conditions. It is anticipated that the drifts should not 
materially degrade the quality of the TRNGs. 

 The hardware implementation of both the XOR 
compiler, and the mod 3 adder can use known 
commercial CMOS circuitry. 

 The method can reach NIST expectations in term of 
deviation from pure randomness of the TRNG, even if 
the randomness created by the PUF is weak. 
 

The experimental section of this work, which is based on the 
measurements of the Vset of ReRAM cells, produced a 
distribution that is able to show enough randomness to generate 
random numbers. We noticed that the XOR data compiler is not 
effective when the initial data stream is not random. The model 
developed assumes that the initial random numbers generated 
from the 0-cells are symmetrically distributed between A-cells 
and B-cells.  

Other statistical distributions beside the normal one are 
under consideration in our research effort. We are not 
anticipating that these improved statistical models will 
significantly change the outcome when only cells close to the 
median distribution are selected. This is not the case for wider 
distribution of the 0-cells away from the median.  

 Future work: The objective of this work was to develop 
TRNG for cryptographic protocols that can be embedded in the 
Internet of Things (IoT). The implementation of affordable 
sources of randomness to secure IoTs can benefit from the ease 
of use of ternary PUFs, which are tamper resistant. TRNGs are 

essentials elements to encryption protocols involving PUF 
CRPs, and other cryptographic keys. We are studying the design 
of a prototype that incorporates the proposed TRNG scheme 
with various ReRAM arrays. The prototype is intended to 
automatically extract large quantities of PUF CRPs and random 
streams of bits, and trits. We intend to use the prototype to 
further validate our statistical models, and to leverage the tools 
developed by NIST that are available online to quantify the 
entropy, and the level of randomness of the TRNGs. The 
prototype should have the built-in flexibility to allow us to 
analyze multiple types of memory arrays, with different methods 
of fabrication.  

 We are interested in optimizing the randomness of the 
TRNG while reducing CRP error rates of the PUFs, and 
developing cryptographic protocols that leverage the combined 
capabilities. The method described in this paper can be used to 
the swarm dynamics generating true random noises [8], and 
other similar applications requiring TRNG. To accelerate the 
process to generate fresh random numbers on demand, the 0-
cells can be tested in advance [80], and the data can be stored in 
the memory. The read time of a ReRAM is typically 10ns/bit, so 
we believe that the generation of the TRNG has the potential to 
be done at a rate of 100Mbit/s. The method presented in this 
paper can also be extended to n-value logic, for example 
quaternary logic (4 bits), pentagonal logic (5 bits), or hexagonal 
logic (6bits). In such cases the 0-cells are divided in n different 
type of cells, and the addition of chunk of n-bits is done modulo 
n. 
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