

 www.astesj.com 15

Design of True Random Numbers Generators with Ternary Physical Unclonable Functions
Bertrand Francis Cambou*

School of Informatics Computing and Cyber Systems, Northern Arizona University, Flagstaff, 86004, USA

A R T I C L E I N F O A B S T R A C T

Article history:
Received: 06 April, 2018
Accepted: 02May, 2018
Online: 07 May, 2018

 Memory based ternary physical unclonable functions contain cells with fuzzy states that
are exploited to create multiple sources of physical randomness, and design true
random numbers generators. A XOR compiler enhances the randomness of the binary
data streams generated with such components, while a modulo-3 addition enhances the
randomness of the native ternary data streams, also generated with the same method.
Deviations from perfect randomness of these random numbers, in terms of probability
to be non-random, was reported as low as 10-10 in the experimental section of this paper,
which is considered as extremely random based on NIST criteria.

Keywords:
Random numbers generators
Physical unclonable functions
Ternary states

 Introduction

This paper is an extension of the work presented at the
annual computing SAI conference, London, July 2017 [1]. The
strengthening of cryptographic protocols with random numbers
[2-4] is widely accepted as mandatory to secure networks of
cyber physical systems (CPS). Both pseudo random numbers
generators (PRNG) that use mathematical methods [5-8] and
true random numbers generators (TRNG) that exploit physical
elements [9-11] are mainstream. The randomness based on
mathematical algorithms for PRNGs could be weak when
crypto-analysts armed with powerful computers know the
algorithms. Such algorithms can also consume too much
computing power, which may be a problem for small internet of
things (IoT) peripherals. The need to quantify the randomness
of PRNG, and TRNG is of prime importance [12-15]. Physical
Unclonable functions (PUF) can be valuable sources of natural
randomness [16-17], they have been adopted for the design of
true random number generators (TRNG). However, the
randomness of the physical elements is not always acceptable
when subjected to temperature changes, aging, electromagnetic
interferences, and other parametric drifts. The PUFs can be too
predictable in some circumstances, which is not necessarily
conducive to the design of quality TRNGs that rely on physical
randomness to generate a fresh random number at every query.

 We are presenting how ternary PUFs contain fuzzy elements
that are excellent sources of randomness. The method is based
on the identification of the cells of memory based PUFs that are
naturally unstable under repetitive queries. When tested, the
fuzzy cells can switch back and forth randomly between “1” and

”0”, thereby generating random data streams. We are presenting
three complementary elements:

i) how a XOR data compiler, which process the data available

from multiple ternary cells, can create an extremely
high level of randomness [18-21];

ii) how a probabilistic model allows the quantification of the
level of randomness of the TRNG;

iii) how the method can be extended to the generation of native
ternary random numbers with modulo-3 addition.

 Designing a random number generator

2.1. Ternary physical unclonable functions

 There is a growing interest in securing CPS’s with Physically
Unclonable Functions (PUFs) to strengthen security when
deployed in the cryptographic processes using a powerful set of
physically derived cryptographic primitives [22-26]. PUFs act
as virtual fingerprints for the hardware during the authentication
processes to effectively block cyber thefts, Trojans, and
malwares [27-34]. With error correcting methods, the PUFs can
also generate cryptographic keys for symmetrical encryption
schemes [35-36]. The inherent randomness, unclonability,
secrecy, and physical nature of most PUFs makes it extremely
hard to inspect during side channel attacks, or when lost to the
enemy.

2.2. Quality considerations for PUFs

 The PUFs, regardless of their design, must exhibit enough
predictability overtime for reliable authentications, or
encryption. The reference patterns of the PUFs that are

ASTESJ

ISSN: 2415-6698

*Bertrand Francis Cambou, Email : Bertrand.cambou@nau.edu

Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 3, 15-29 (2018)

www.astesj.com

Special Issue on Advancement in Engineering Technology

https://dx.doi.org/10.25046/aj030303

http://www.astesj.com/
mailto:Bertrand.cambou@nau.edu
http://www.astesj.com/
https://dx.doi.org/10.25046/aj030303

B.F. Cambou / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 3, 15-29 (2018)

 16

generated up front during the setup of protocol, called
challenges, are compared over the life of the component with
freshly generated patterns, called responses, during the
authentication cycles. Quality PUFs need low challenge-
response-pair (CRP) error rates, the intra-PUF challenge-
response Hamming distance must be small enough to insure
small level of false rejection rates (FRR). The PUF challenges
should act as predictable “digital fingerprints” of the component,
while the responses should be easily recognizable as a
measurement of the same “digital fingerprints”. Error rates in
the 3-7% range are usually acceptable when combined with error
correcting techniques [35-36]. PUFs exploit the device-to-
device randomness that is created during the manufacturing
process of micro-components; it is desirable that the average
inter-PUF hamming distance between different PUFs, divided
by the length of the PUFs, should be in the 50% range to insure
low level of false acceptance rates (FAR). This is achievable
when the level of intra-PUF randomness, also called entropy, is
high enough. PUFs with longer streams of bits have therefore
higher entropy, and lower FAR. 128-bit CRPs, or higher, are
usually required for this purpose.

 Another important figure of merit for PUFs is the number of
available CRP configurations for a unit. Strong PUFs, as
opposed to weak PUFs, contains large quantities of possible
CRPs that are addressable. For example, a ring oscillator PUF
with 128 rings is a strong PUF. The number of possible pairing
of two rings is N =�1282 � = 16,256. If the protocol use 128-bit
long CRPs, the number of possible challenges of 2128, offers
satisfactory entropy, and a low collision rate of the pairs. A
memory PUF with random addressing capabilities is even
stronger [36, 39-40]. For example, when the capacity of the
memory is in the mega-byte range, millions of configurations
are providing an entropy much higher than a 128-ring oscillator
with “only” 16,256 possible configurations. Existing PUFs can
have limitations, and lack of trustworthiness that could create a
false sense of security. The signatures of PUFs are derived from
intrinsic manufacturing variations, which could become
predictable due fabrication excursions. Properties such as
critical dimensions of printed structures, doping levels of
semiconducting layers, and threshold voltages should make each
device unique and identifiable from all other devices, abnormal
operations during the manufacturing process could alter such
randomness. When subject to changes related to temperature,
voltage, EMI, aging, and other environmental factors these
parameters can drift over time, the undesirable result, is weak
PUFs with CRP error rates as high of 20%.

 The main objective in designing ternary PUFs is to resolve
some of these issues, and to reduce the CRP error rates by
eliminating fuzzy CRPs during challenge generation. The figure
of merit is to achieve trustworthy and robust intra-PUF CRP
matching rates with low FRR during authentications, without
increasing FAR during inter-PUF authentication of malicious
challenges. The by-product of such design is the design of highly
random TRNG with the fuzzy cells.

2.3. Memory based PUFs

 The methods to design PUFs and TRNGs with SRAM
memories have been published SRAM [36-38]. SRAM based
PUFs have been successfully commercialized. When powered

up, each SRAM cells naturally flip to store either a 0, or a 1. In
most of the cases, arrays of SRAM cells return to a similar
pattern characteristic, i.e. a similar finger print. SRAM based
PUFs designed with this feature can be reliable, however heavy
error correcting methods are usually needed. The SRAM based
PUFs are not particularly immune to side channel attacks.
Significant research efforts have been published regarding the
design of PUFs with Flash RAMs [39-40], DRAMs [41-44],
magnetic RAMs [45-46], and resistive RAMs [47-49]]. The
cryptographic protocols leveraging memory PUFs are in general
distinct from the ones developed with other mainstream PUFs
such as ring oscillators, or gate delay arbiters. As shown in Fig.
1, the value of a parameter P is measured on each cell, and is
compared with a threshold. The cells with parameter P below
the threshold are “0”s, and are “1”s above the threshold.
Examples of parameter P selected to design memory PUFs
include: threshold voltages of Flash cells after fixed time
programming; charges left on DRAM cells without refresh; high
resistance value of MRAM cells after programming; and Vset of
ReRAM cells.

Figure 1: Diagram explaining the design of memory based PUF with a

parameter P, and a threshold to sort out the states 0 and 1.

The CRP matching is done after error correction. The cell-
to-cell physical parameter variations due to manufacturing
variations are too erratic for CRP generation. Fig.2 is a diagram
showing how a drift of P toward the higher value is forcing the
responses of the cells located close to the threshold to switch
from 0 to 1, which increase CRP error rates. The cells located
far from the transition are not impacted.

Figure 2: Diagram explaining the impact of a drift of parameter P toward

higher values, creating CRP errors.

2.4. Ternary PUFs

 The concept of memory based PUFs with ternary states
having random number generation capabilities is described [49-

B.F. Cambou / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 3, 15-29 (2018)

 17

52]. The measurement of P of the cells of a memory PUF allows
the segmentation of the cell population into three states. The
cells with P <T1 (a low threshold) carry the state “-“, the cells
with P >T2 (a high threshold) carry the state “+“, and the
remaining cells carry the ternary state “0” cells, see Fig.3.

Figure 3: Diagram describing the sorting of the memory PUF into ternary states

based on parameter P.

During challenge generation, the cells are sorted into ternary
states. During response generation, only the cells with “-“ or “+”
states are queried, while the cells with “0” state are ignored, see
Fig.4. The PUF CRP error rates are significantly lowered, the
distance T2-T1 acts as a buffer between the states “-“, and “+”.
When the distance T2-T1 between thresholds increases, the CRP
error rate can reach extremely low values, and is less sensitive
to various drifts.

Figure 4: Diagram showing the response generation. The “0” states are ignored,

only the cells with “-“ and “+” challenges are considered

 Random number generators

3.1. Pseudo Random number generators

There are numerous excellent PRNG available to the system
developers, which are highly reliable [4-8]. For example, a
PRNG {a1, a2, …, an} can be designed with congruential
generators, where a is the multiplier, c the increment, m the
modulus, and Xi , b, c, m are natural numbers, typically, c and m
are chosen to be relatively prime:

 ai+1 = (b ai + c) mod m (1)
 Other example of PRNG can constructed by using iterative
encryption, as shown in Fig 5, ai+1 is the cipher of Xi which is
encrypted by the code E, and the key Ki . Proving that a PRNG

or a TRNG is “random” is a very complicated task that could
take years to validate, and billions of data points. The National
Institute of Standard and Technology (NIST) has developed an
excellent suite of tools available on line that can test the
randomness of any random numbers generators [12-15].

Figure 5: Generating the random number PRN from two numbers ai Ki, and the

encryption scheme E.

Examples of parameters that are tested include deviation
from randomness, a frequency test (monobit test), Serial test
(two-bit test), a Poker test (non-overlapping parts), run tests (gap
and blocks), and autocorrelation tests [Menezes, van Oorschot,
Vanstone - Handbook of Applied Cryptography].

 In this paper, we are using statistical analysis to quantify
randomness, and the parameter λ defined below in this section.
Each bit “ai” of a data stream of n bits should have a 50%
probability to be either a “1” or a “0”. The average deviation
from perfect randomness λ is given by:

P(ai =1) = P(ai =0) = 0.5 (2)

 λ = | 0.5 - P(ai =1) | = | 0.5 - P(ai =0) | (3)

 Assuming that the length of the data stream is n =128, with
P(ai =0) = 0.5, the number of possible combinations, also called
entropy, is 2128= 3.4 1038, which is large enough to protect
cryptographic functions from existing or foreseeable computers.
When the RNG is not totally random, in this case λ≠0, the
entropy is lower than 2128, and is further reduced with larger λ.
A position paper from (NIST) [12], suggested in 1999 that λ
greater than 10-3 would not be acceptable, sophisticated crypto-
analysis methods could be effective to break the PRNG. NIST
in 2010 and others [33-34] revisited this. The value of λ that is
acceptable to get a safe TRNG is a moving target as modern
computers get increasingly powerful. To the best of our
knowledge, λ<10-5 is currently considered an excellent target,
while λ<10-10 is considered outstanding.

3.2. Use of XOR to enhance PRNGs

Exclusive OR, XOR, is a Boolean logic gate widely adopted
in cryptography [18-21]. Two input bits ai and ai+1 are
transformed into ci = ai ⊕ ai+1, with the following equations:

ci =0 if ai = ai+1 (0⊕0 or 1⊕1) (4)

ci =1 if ai ≠ ai+1 (0⊕1 or 0⊕1) (5)

 XOR logic is part of most encryption algorithms such as the
Data Encryption System (DES), the Advanced Encryption
System (AES), and hash functions such as SHA. XOR functions
are adding confusion and randomization in the encryption
process while been reversible in the decryption process. As part
of the encryption, the data streams generated by plain texts are

B.F. Cambou / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 3, 15-29 (2018)

 18

often XORed with cryptographic keys, or sub-keys, then XORed
again during decryption. XOR scramblers can enhance
randomization in multicarrier communications [19]. XOR are
also used to generate scrambling sequences to achieve data
randomization in a memory circuit, as well as enhancing random
number generators [20]. Some of the important reasons for the
use of XOR functions in cryptography are:
 ci is not disclosing the value of ai and ai+1:
ci =0 can be the result of the pair 00, or the pair 11;
ci =1 can be the result of the pair 01, or the pair 10;
 XOR is a symmetrical function when applied twice:
 ai ⊕ ai+1⊕ ai+1 = ai (6)
 If two bits ai and ai+1 are random, the bit ci, defined by

ci =ai ⊕ ai+1, is even more random than ai or ai+1 .
These properties are exploited in the design of the XOR data
compiler as presented in section 4.

3.3. Ternary PUFs as sources of randomness

The cells of a ternary PUF with “0” state, as described in section
2.3, are exploited as sources of randomness to design TRNG [1,
17], as explained in Figure 6. The cells located in the center of
the distribution, the “0” states, can flip back and forward when
the value of their parameter P is compared to a threshold
centered in the median point of the distribution.

Figure 6: Diagram showing how the cells with “0” states

 can be sources of randomness

When the distance T2-T1 between the two thresholds used to
select the cells with “0” states is reduced, the probability to test
these cells either as below the median, or above the median at
each query is closer to 50%. For example, the selection of 1,000
cells located close to the median will represents a strong pool to
design TRNG. These 1,000 cells can be queried many times to
generate long random numbers. Each cell acts as a single source
of independant randomness subject to noise, and measurement
uncertainties. Within the cells of a particular memory array, the
distribution of the physical parameter 𝒫𝒫, which determine if a
cell is a “0” or a “1”, is following a distribution with a standard
variation σArray due to cell-to-cell variations created during
manufacturing, and other instabilities. Repetitive measurements
of parameter 𝒫𝒫 on the same cell follow a distribution with the
standard variation σCell responding to various measurement
instabilities, noise, and environmental variations. Low error rate
PUFs, with predictable CRPs, should have these variations
verifying:

σCell ⪡ σArray (7)

 When the variations within cells are much lower than the
cell-to-cell variations, the “finger print” of the memory PUF is
stable and predictable. On the opposite side, to design a TRNG,
it is desirable to select only the cells extremely close to the
transition of parameter 𝒫𝒫 between “0’ and “1”, i.e. the one with
ternary state “0”. If TM is the median of the distribution, the
average value Tx of 𝒫𝒫 of each -cells should be such that:

 |Tx – TM | ⪡ σCell (8)

 This maximizes the chance of a random number to flip
between “0s” and “1s”. In order to enhance the level of
randomness only a very small percentage of the memory arrays
are selected as sources of randomness. Current secure micro-
controllers have very large embedded memory density, typically
in the 1 to 100 Mbits, the percentage of the array consumed for
TRNG can be relatively small. In the following sections, we are
developing a statistical model to study how to enhance the
randomness of a data stream generated from the fuzzy cells. One
of the tradeoffs to model is the compromise between tightly
selecting the “0” cells around the median TM, versus improving
randomness; in the case of the generation of native ternary
streams, we study the use of modulo3 adders.

 Modeling a ternary PUF for TRNG

 As shown in Fig 7, the cells that are sorted as unstable with
a “0” state can be segmented into two subgroups:
 The cells that have a higher probability to be tested

above the median are called A-cells, see Fig 8. They
have an higher average probability PA to generate a
“1”in the stream of random numbers, their average
deviation to randomness is λA. The A cells have an
average probability P’A to generate a “0” in the stream
of random number:

 PA= 0.5+ λA (9)

P’A= 0.5- λA; 1= P’A + PA (10)

 The cells that have a higher probability to be tested
below the median are called B-cells, see Fig 9. They
have an average probability P’B to generate a “0”, and
an average deviation to randomness λB. The average
probability PB to be generate a “1”is:

 P’B= 0.5+ λB (11)

PB= 0.5- λB; 1= P’B + PB (12)

The selection of the transition TM of parameter 𝒫𝒫 can be such
that the number of A-cells equal the number of B-cells and:

 PA= P’B , P’A= PB , λA= λB. (13)

Figure 7: The “0” states are segmented into the A cells that more often

measured above the median, and the B cells below the median.

B.F. Cambou / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 3, 15-29 (2018)

 19

Figure. 8: A-cells with higher probability PA to generate a 1.

Figure. 9: B-cells with higher probability P’B to generate a 0.

 A XOR data compiler for TRNG

 As presented below in the experimental section, with 2% of
the cell population selected as fuzzy 0-cell, λA= λB ≈ 2 10-2 ,
which is far from the level of randomness needed to generate
quality TRNG, this based on NIST criteria. In this section, a
XOR compiler is developed, with the objective to enhance the
level of randomness of the resulting streams, see Fig.10.

Figure. 10: Description of the effect of the XOR operations

 The XOR compiler transforms the incoming streams ai , i ∈
{1 to n}, generated by the memory PUF by out coming streams
cj, j ∈ {1 to m}, m<n, of higher level of randomness. The stream
of n random numbers generated from the ternary memory PUF
is shown below.

Incoming stream: {a1, a2, …, ai, …an} (14)

This stream is grouped in chunks of f bits, i ∈ {1 to f } ; f < n.

Chunk of bits: {a1j, a2j, …, aij, …, afj} (15)

For example, 1,280 random bits are grouped in 128 chunks of
10 bits. With a XOR, the stream cj , with j ∈ {1 to m} and n=m.f
, is generated from the stream ai , as shown in Fig 10.

Out coming stream: {c1, c2, …, cj, …, cm} (16)
 cj=a1j⊕a2j⊕…⊕aij⊕…⊕afj (17)

Such a XOR compiler can be implemented in hardware with
only a few logic gates which can be inserted as part of the crypto-
processor of the secure processor. The PRNGs presented
section 3.1, are generated sequentially, the random number ai+1
of a stream of n bits is generated from the previous random
numbers ai . Conversely, the TRNGs with XOR gates can be
generated in parallel eq (17) in one cycle. XOR gate is also an
addition modulo 2 without carry over. A quicker way to compute
eq (17) is to count how many “1s” are presents in the stream {a1j,
a2j , .., afj}. If the number of “1s” in the stream is odd then cj =1,
when even cj=0.

cj = a1j⊕ a2j⊕ …⊕ afj = (a1j+ a2j+ … + afj) mod 2 (18)

 Modeling a 2-bit XOR compiler

We analyze a 2-bit XOR compiler, the incoming data stream
of 2n bits is “XORed” two bits by two bits to generate a stream
of n bits, f=2. There are three possible configurations for each
“XORing”: both cells are A-cells, one cell is an A-cell and the
second is a B-cell, and both cells are B-cells. Let us choose:
PA=P’B=0.52; P’A=PB=0.48; λB=λA=2 10-2.

 Number of A-cells is even: two A-cells, or two B-cells

 The probability P’C to have cj=a1j⊕a2j at “0” is
occurring when the two cells (a1j, a2j) are at (00) or (11):

 P’C = 𝐏𝐏′𝐀𝐀𝟐𝟐 + 𝐏𝐏𝐀𝐀𝟐𝟐 = 0.5008 λC =8 10-4 (19)

The probability PC to have cj=a1j⊕a2j at “1” is occurring
when the two cells (a1j, a2j) are at (01) or (10):

 PC =2 (PA P’A) = 0.4992 (20)

 Number of A-cells is odd: one A-cells, and one B-cell.

The probability PC to have cj=a1j⊕a2j at “1” is occurring
when the two cells (a1j, a2j) are at (01) or (10):

 P’C = 𝐏𝐏𝐀𝐀𝟐𝟐 + 𝐏𝐏′𝐀𝐀𝟐𝟐 = 0.5008 λC =8 10-4 (21)

The probability P’C to have cj=a1j⊕a2j at “0” is occurring
when the two cells (a1j, a2j) are at (00) or (11):

 PC =2 (PA P’A) = 0.4992 (22)

 Let us assume that the incoming stream with 2n bits is
generated from a memory PUF with 50% A-cells and 50% B-
cells, and with λA=2 10-2. The 2-bit XOR compiler can
statistically generate an out coming stream of n bits having 50%
C-cells, and 50% D-cells with λC=8 10-4, see Fig. 11. The C-cells
are made of pairs of either AA cells or BB cells, while the D-
cells are made of pairs of either AB cells or BA cells. In both
cases, f =2 is even. The general equations developed below in
section 8, eq. (29) to (39) are applicable. When the number of
B-cell is even PC < P’C, and are reversed when the number of B-

B.F. Cambou / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 3, 15-29 (2018)

 20

cell is odd PC > P’C. The deviation from randomness λC=8 10-4
is 25 times smaller than the deviation before the 3bit-XOR
compilation, λA=2 10-2.

Figure. 11: Diagram showing a 2-bit XOR compiler.

 Modeling a 3-bit XOR compiler

 In this section we analyze a 3-bit XOR compiler, in
which the incoming data stream of 3n bits is “XORed” three bits
by three bits to generate a stream of n bits, f=3. We are again
choosing the same example:

 PA=P’B=0.52; P’A=PB=0.48; λB=λA=2 10-2.

There are four possible configurations for each “XORing”:
three cells are A-cells, two cells are A-cells & one cell is B-cell,
one cell is A-cell & two cells are B-cells, and finaly three cells
are B-cells.
 Number of B-cells is even: three A-cells, A-cell & two

B-cells. The probability PC to have cj=a1j⊕a2j⊕a3j at
“1” is occurring when the three cells (a1j, a2j, a3j) are at
(111), (100), (010) or (001):

 PC = 𝐏𝐏𝐀𝐀𝟑𝟑 + 3 𝐏𝐏𝐀𝐀𝐏𝐏′𝐀𝐀𝟐𝟐 = 0.500032 λC=3.2 10-5 (23)

 The probability P’C to have cj=a1j⊕a2j⊕a3j at “0” is
occurring when the three cells (a1j, a2j, a3j) are at (000),
(110), (011) or (101):

 P’C = 𝐏𝐏′𝐀𝐀𝟑𝟑 + 3 𝐏𝐏′𝐀𝐀𝐏𝐏𝐀𝐀𝟐𝟐 = 0.499968 (24)

 Number of B-cells is odd: Three B-cells, B-cell & two
A-cells. The probability P’C to have cj=a1j⊕a2j⊕a3j at
“0” is occurring when the three cells (a1j, a2j, a3j) are at
(000), (110), (011) or (101):

 P’C = 𝐏𝐏𝐀𝐀𝟑𝟑 + 3 𝐏𝐏𝐀𝐀𝐏𝐏′𝐀𝐀𝟐𝟐 = 0.500032 λC=3.2 10-5 (25)

 The probability P’C to have cj=a1j⊕a2j⊕a3j at “0” is
occurring when the three cells (a1j, a2j, a3j) are at (000),
(110), (011) or (101):

 PC = 𝐏𝐏′𝐀𝐀𝟑𝟑 + 3 𝐏𝐏′𝐀𝐀𝐏𝐏𝐀𝐀𝟐𝟐 = 0.499968 (26)

 Let us assume that the incoming stream with 3n bits is
generated by a memory PUF having 50% A-cells, and 50% B-
cells, and with λA=2 10-2. The 3-bit XOR compiler can
statistically generate an out coming stream of 128 bits having
50% C-cells, and 50% D-cells with λC=3.2 10-5, see Fig. 12. The
C-cells are made of triplets of either AAA cells, ABB cells BAB
cells, or BBA cells. The D-cells are made of triplets of either
AAB cells, ABA cells, BAA cells, or BBB cells.

 In both cases, f=3 is odd. The general equations developed
in the next section, eq. (29) to (38) are applicable. When the
number of B-cells is even, PC < P’C, and are reversed when the
number of B-cells is odd, PC > P’C. The resulting deviation from
randomness, λc=3.2 10-5, is 25x25=625 times smaller than the
deviation before the 3-XOR compilation, λA=2 10-2. It is
interesting to notice that a 3-bits XOR data compiler needs only
50% more starting cells than a 2-bits compiler, and has a level
of non-randomness 25 times lower.

Figure. 12: Diagram showing a 3-bits XOR compiler.

 Modeling the XOR compiler in general terms

The goal is to develop a model that quantifies the effect of a
XOR compiler, which enhance the level of randomization of a
data stream, as a function of the size f of the chunk of incoming
bits that are XORed together. The incoming stream {a1, …, ai,
…an} has a deviation from randomness λA , and the out coming
stream {c1, c2, …, cj, …, cm} has a deviation λC. This variation
is obtained by computing PC, the probability for cj, to be a “1:

 ∣ λC ∣ = 1- PC (27)

The incoming random bits aij are generated from A-cells or
B-cells of the ternary PUFs. As stated in section 4.1, the
transition TM is selected in such a way that the probability to
have an A-cell, and a B-cell is equal to 0.5. If each of the f long
chunks have s A-cells and t B-cells with s+t=f. The numbers of
possible combinations (f, s) is:

Cf,s = �𝐟𝐟𝐬𝐬� = f ! / s ! (f-s) ! (28):

1.1 All cells of chunk j are A-cells.

 The probability of any of the A-cells of the stream to be a
“1” is PA, and the probability to be a “0”is P’A. Both PA and P’A
are following Bernoulli formula:

1= ∑ �𝐟𝐟𝐢𝐢� 𝐏𝐏𝐀𝐀𝐢𝐢 𝐏𝐏′𝐀𝐀𝐟𝐟−𝐢𝐢𝐢𝐢=𝐟𝐟
𝐢𝐢=𝟎𝟎 (29)

1=∑ [𝒊𝒊 mod2]�𝐟𝐟𝐢𝐢�𝐏𝐏𝐀𝐀
𝐢𝐢 𝐏𝐏′𝐀𝐀𝐟𝐟−𝐢𝐢

𝒊𝒊=𝒇𝒇
𝒊𝒊=𝟎𝟎 +∑ [𝒊𝒊 + 1mod2]�𝐟𝐟𝐢𝐢�𝐏𝐏𝐀𝐀

𝐢𝐢 𝐏𝐏′𝐀𝐀𝐟𝐟−𝐢𝐢
𝒊𝒊=𝒇𝒇
𝒊𝒊=𝟎𝟎

1= Pc + P’c (30)

The terms 𝐏𝐏𝐀𝐀𝐢𝐢 𝐏𝐏′𝐀𝐀𝐟𝐟−𝐢𝐢 of eq. (29) and (30) correspond to a
configuration where i bits are “1s”, and f-i bits are “0”.

The probability PC, is the sum of all terms having i odd:
i mod2 = 1 i+1 mod2 = 0 (31)

 Pc = ∑ [𝒊𝒊 mod2]�fi� 𝐏𝐏𝐀𝐀𝐢𝐢 𝐏𝐏′𝐀𝐀𝐟𝐟−𝐢𝐢𝐢𝐢=𝐟𝐟

𝐢𝐢=𝟎𝟎 (32)

B.F. Cambou / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 3, 15-29 (2018)

 21

If f=2k is even: PC= ∑ � 2k
2i+1� 𝐏𝐏𝐀𝐀𝟐𝟐𝐢𝐢+𝟏𝟏𝐏𝐏′𝐀𝐀𝟐𝟐𝟐𝟐−𝟐𝟐𝐢𝐢−𝟏𝟏𝐢𝐢=𝟐𝟐−𝟏𝟏

𝐢𝐢=𝟎𝟎 (33)

If f=2k+1 is odd: PC= ∑ �2k+12i+1� 𝐏𝐏𝐀𝐀𝟐𝟐𝐢𝐢+𝟏𝟏𝐏𝐏′𝐀𝐀𝟐𝟐𝟐𝟐−𝟐𝟐𝐢𝐢𝐢𝐢=𝟐𝟐
𝐢𝐢=𝟎𝟎 (34)

The probability P’C is the sum of all terms having i even:
i mod2 = 0 i+1 mod2 = 1 (35)

P’c = ∑ [(𝒊𝒊 + 1) mod2] 𝐂𝐂𝐟𝐟,𝐢𝐢 𝐏𝐏𝐀𝐀𝐢𝐢 𝐏𝐏′𝐀𝐀𝐟𝐟−𝐢𝐢𝐢𝐢=𝐟𝐟

𝐢𝐢=𝟎𝟎 (36)

If f=2k is even: P’C= ∑ �2k2i� 𝐏𝐏𝐀𝐀𝟐𝟐𝐢𝐢𝐏𝐏′𝐀𝐀𝟐𝟐𝟐𝟐−𝟐𝟐𝐢𝐢𝐢𝐢=𝟐𝟐
𝐢𝐢=𝟎𝟎 (37)

If f=2k+1 is odd: P’C= ∑ �2k+12i � 𝐏𝐏𝐀𝐀𝟐𝟐𝐢𝐢𝐏𝐏′𝐀𝐀𝟐𝟐𝟐𝟐+𝟏𝟏−𝟐𝟐𝐢𝐢𝐢𝐢=𝟐𝟐

𝐢𝐢=𝟎𝟎 (38)

When f is even, PC < P’C is written as PC=0.5-λcj or
P’C=0.5+λcj, with λcj the deviation from randomness of cj.

When f is odd, PC > P’C and is written as PC=0.5+λcj or
P’C=0.5-λcj.

1.2 Chunks j are a combination of A-cells & B-cells

The f cells randomly contain A-cells and B-cells. The
symmetry between the A-cell and the B-cells (PA=P’B and
P’A=PB) results in the following property:
 If the chunk of bits {aj1, aj2, …, ajf} is generated by an

even number of B-cells, the probabilities PC and P’C are
the same as if the chunk was only generated by A-cells.
If f is even, Pc and P’C are respectively computed with
eq. (33) and (37); if f is odd, Pc and P’C are computed
with eq. (34) and (38).

 If the chunk of bits {aj1, aj2, …, ajf} is generated by an
odd number of B-cells, the probabilities PC and P’C are
the opposite of the ones generated by A-cells as
described by eq. (37) (33) and eq (38) (34):

 If f is even, Pc is (eq.(37)): PC=∑ �2k2i� 𝐏𝐏𝐀𝐀𝟐𝟐𝐢𝐢 𝐏𝐏′𝐀𝐀𝟐𝟐𝟐𝟐−𝟐𝟐𝐢𝐢𝐢𝐢=𝟐𝟐
𝐢𝐢=𝟎𝟎 , and

P’c is (eq.(34)): P’C= ∑ � 2k
2i+1� 𝐏𝐏𝐀𝐀𝟐𝟐𝐢𝐢+𝟏𝟏𝐏𝐏′𝐀𝐀𝟐𝟐𝟐𝟐−𝟐𝟐𝐢𝐢−𝟏𝟏𝐢𝐢=𝟐𝟐−𝟏𝟏

𝐢𝐢=𝟎𝟎

If f is odd, Pc is (eq.(38)): PC=∑ �2k+12i � 𝐏𝐏𝐀𝐀𝟐𝟐𝐢𝐢 𝐏𝐏′𝐀𝐀𝟐𝟐𝟐𝟐+𝟏𝟏−𝟐𝟐𝐢𝐢𝐢𝐢=𝟐𝟐
𝐢𝐢=𝟎𝟎 , and

P’c is (eq.(35)): P’C=∑ �2k+12i+1� 𝐏𝐏𝐀𝐀𝟐𝟐𝐢𝐢+𝟏𝟏 𝐏𝐏′𝐀𝐀𝟐𝟐𝟐𝟐−𝟐𝟐𝐢𝐢𝐢𝐢=𝟐𝟐
𝐢𝐢=𝟎𝟎

1.3 Simplification of the model

 The objective of this model is to calculate the absolute
deviation from perfect randomness, it is not important to know
if PC> P’C, or if P’C> PC. In all cases, lλcjl is the statistical
deviation from pure randomness, regardless of PC being greater
or lower than P’C. Therefore, assuming that all cells are A-cells
is simplifying the computation without reducing the accuracy
of the model.

 Experimental analysis with XOR compiler

9.1. Variations of ReRAM memory PUFs

The experimental data presented in this paper is based on the
study of resistive random-access memory (ReRAM). The cells
of ReRAMs, see references [53-60], are constructed with stacks
of two electrodes separated by solid electrolytes, the first one is
active to REDOX cycles, and the second one is inert. As shown
in Figure 13, differential voltages applied on these stacks can

move positively, or negatively, elements such as positive
oxygen vacancies or positive metallic cations, which result in
varying the resistance of the stacks. The basic physical effect
described in Fig. 13, can be achieved with several manufacturing
technologies:
 Conductive bridge random access memories

(CBRAM) that are based on the conduction of cations
such as Ag+, or Cu+ through solid chalcogenide
electrolytes, or porous silicon [53-58]. The active
electrodes could be made of copper, or silver, while the
inert electrode can be fabricated with tungsten;

 Memristors devices can operate as ReRAM, or act as
active Boolean gates [59-60]. The conductive filaments
usually contain oxygen vacancies. The solid electrolyte
can be fabricated with HfO, or TaOx.

Figure. 13: Diagram showing the programming-erase cycles of a ReRAM.

After initial forming, the operations are reversible.

In this work, we had access to Cu/TaOx/Pt resistive crossbar
arrays fabricated on thermally oxidized Si wafers, Reference
[38]. The Cu/TaOx/Pt switches from “0” to “1” based on the
formation and the rupture of filaments, made of oxygen
vacancies, bridging the dielectric between both electrodes. The
initial conditioning of the ReRAM cells, in which conductive
filaments are formed, typically requires a positive voltage of
approximately 2 to 5 Volt. After forming, the cells can respond
to programming and erasing cycles. It exists a minimum
negative Vreset voltage applied across the cells, in the -0.5 to -
3.0 Volt range, that force the positive ions or oxygen vacancies
to migrate back, breaking the conductive filament. The resulting
high resistance state (HRS) is then in the 20 Mohm range. In the
positive direction, a minimum Vset voltage applied across the
switch, reposition the positive ions or oxygen vacancies,
forming again the conductive filament. As shown in Fig. 14,
when the voltage is ramping, the current remains low until Vset
is reached, then the current quickly increases. This effect is
reversible, and the filaments can partially be dissolved with
opposite voltages.

The parameter 𝒫𝒫, that is analyzed for the purpose of designing
TRNGs, is the distribution of the Vset across the cells of
ReRAM arrays. The entire population of all cells of the array
has a Vset distribution that is well represented by a normal
distribution having a standard variation σArray=0.5V and a
median value of 2.1V . The repetitive measurement of the Vset
of each cells is also well represented by a normal distribution
having a standard distribution σCell= 0.1V.

 For the purpose of random number generation, the Vset of
each cell is measured; a cell is considered as a “0” state when

B.F. Cambou / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 3, 15-29 (2018)

 22

Vset<2.1V, and a “1” state when Vset>2.1V. The cells having
average Vset measurements at or close to 2.1 Volt, are good
candidates for TRNG. The five populations described below are
subsets of the total distribution of cells of the array:

Figure. 14: Experimental characterization of the programming-erase cycles of a

ReRAM. The cells are responding to positive, and negative voltage ramps,
showing Vset, and Vreset.

 Case-1: Only 2% of the cells are the ternary 0-states.
They are used to generate the random numbers. For
these cells parameter 𝒫𝒫 is close to the transition of 2.1
Volt. Half of the cells, the A-cells, have PA=0.52
probabilities to be “1”, P’A=0.48 probabilities to be “0”,
with λA=2 10-2. The second group, the B-cells, have
PB=0.48 probabilities to be “1”, P’B=0.52 probabilities
to be “0”, with λB=λA=2 10-2.

PA=P’B=0.52; P’A=PB=0.48; λB=λA=2 10-2 (39)
 Case-2: 4% of the cells are ternary 0-states. The

probabilities as defined above are:
PA=P’B=0.54; P’A=PB=0.46; λB=λA=4 10-2 (40)

 Case-3: 7% of the cells are ternary states. The
probabilities as defined above are:

PA=P’B=0.56; P’A=PB=0.44; λB=λA=6 10-2 (41)
 Case-4: 11% of the cells are ternary states. The

probabilities as defined above are:
PA=P’B=0.60; P’A=PB=0.40; λB=λA=1 10-1 (42)

 Case-5: 100% of the cells are included. The
probabilities as defined above are:

PA=P’B=0.90; P’A=PB=0.10; λB=λA=4 10-1 (43)

In this last case, there are no ternary states, the entire
memory array is used to generate random numbers.The reason
we are considering this range of options is to quantify the
effectiveness of the XOR data compiler to generate a random
number as a function of how tight the ternary state distribution
is. Case-1 is the one with the highest initial randomness, while
Case-5 is the lowest one.

9.2. Effect of the XOR compiler on the TRNG

 The probabilistic model presented in this section is used to
analyze the five experimental cases presented above. Fig 15. and
Fig. 16 summarize the impact of the XOR data compiler when f
varies from 2 to 5. We are observing a lack of efficiency of the

XOR compiler in case-5, the one without ternary states. The lack
of initial randomness of this case is such that the XORing cannot
“clean up” the stream. In other cases, the XOR data compiler
when combined with the ternary 0-states is very efficient. Case-
1 with the highest level of initial randomness is benefiting the
most from the XOR compiler: with 5-cell XOR, λC=5.12 10-8,
which is a very small deviation from absolute randomness.

Figure 15: Deviation from non-randomness by experimental case

Figure 16: Increased efficiency of the XOR compiler

 Example of algorithms for TRNG

10.1. Minimization of the impact of parameter drifts

 The randomness of the TRNG originates from the physical
parameters of multiple cells that provide independent sources of
physical randomness. This is a fundamental strength compared
with mathematically generated pseudo RNG (PRNG) because
mathematical algorithms cannot describe unclonable physical
elements. The cell-to-cell randomness is due to micro-variations
during manufacturing and natural noise effect during
measurements. However, physical elements can vary often in a
predictable way when subject to effects such as temperature
change, biasing conditions, and induced attacks. For example,
the value of the Vset of a resistive RAM goes down when
subject to higher temperature. A hacker could submit the
physical element to a hot air blower to increase temperature,

B.F. Cambou / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 3, 15-29 (2018)

 23

reduce Vset, thereby making both A-cells and B-cells appear
similar, creating a high probability to be tested as “0”. Such a
drift or malicious attack could results in a collapse of the level
of randomness with lower entropy. The remedy of such an attack
is to make the size of the population of A-cells and B-cells
equivalent, by adjusting the threshold (T2) between the “0”
states, and “1” states, in the median point of the 0-cell
distribution, see Fig 17:

Figure. 17: Algorithm to reduce the effect of a parameter drift.

1) Identify ni cells of the memory PUF that are part of the
fuzzy 0-cells; ni = mi∗f, in preparation of the f-bit XOR
compiler;

2) Measure parameter 𝒫𝒫 of all these ni cells;
3) Identification of the threshold TM placed at the median

value of all measurements of parameter 𝒫𝒫 of the
population. By design, half of the cells should have a
value below TM, and half above TM.

4) Generate ni bits, “0”s below TM, and “1”s above TM.
5) Use the XOR compiler to combine chunks of f bits

together.
6) The resulting stream of mi bits is the stream of the

TRNG.

 With this method the raw data stream generated by the
memory array and the 0-cell has a population with equal
numbers of “0”s and “1”, regardless of a potential drift in
temperature caused by a natural variation, or caused by the hot
air blower of the hacker. The method is applicable to
compensate for any drifts, noise, or aging; the integrity of the
TRNG is thereby protected.

10.2. Generalization to other TRNG designs

When the physical component generates a data stream with
a deviation from absolute randomness λin, it is possible to model
the size f of the chunks that are XORed together, as described in
Fig.8, to meet a particular λout objective. The model can be used
as a predictive tool. For example, as shown Fig.18, the number
f necessary to compile a data stream of various initial
randomness can be anticipated to be λC<5 10-8 or λC< 10-10 .
This could be valuable to adjust the compilation as a function of
the monitoring of the randomness of the incoming data stream.

Figure 18: Predictive model – f-bit needed for a given objective λ

The proposed method to design TRNG is not limited to
ReRAM arrays, and Vset as parameter 𝒫𝒫. The method is
applicable to any memory device as long as it is possible to
identify a parameter 𝒫𝒫 that can be reliably tested to sort out the
cells and identify enough unstable 0-cells. The algorithm
presented Fig. 17 is generic:
 Flash or EEPROM memory: parameter 𝒫𝒫 can be the

trans-conductance of the cells after fixed time
programming. The threshold voltage of each cell, after
fixed time injection of electrons in the floating gate,
vary cell-to-cell due to variations in fabrication
parameters such as tunnel oxide thickness and doping
levels. Very small changes of threshold voltage can
create major changes in the trans-conductance, which
are desirable sources of randomness.

 DRAM memory: parameter 𝒫𝒫 could be the
measurement of the residual charge left in a cell after
constant discharging time. One effective method is to
program all cells, and put the refresh cycle on hold. The
fuzzy cells can flip above or below the threshold value
of residual charge.

 ReRAM memory: In addition of the Vset as presented
in this paper, parameter 𝒫𝒫 could be the Vreset (threshold
voltage to erase the cells), Roff (resistivity on the high
resistance state), or Ron (resistivity on the low
resistivity state). Some parameters like Roff can be
flaky, and jump in a non-erratic way from a set of
several discrete values, which is not a desirable source
of randomness for a TRNG.

 SRAM memory: the PUFs are based on the
determinations of the cells flipping to either a 0 state, or
a 1 state after power-off- power-on cycles. However, 3
to 5% of the SRAM cells are fuzzy, they can switch on
either states at each cycle. The recommended
methodology is to test the SRAM array, and keep track
of the 0-states for TRNG.

 The use of the XOR compiler enhances the randomness of
any data streams regardless of their origin. The XORing by
chunk of f-bits is therefore applicable to a stream of ni incoming
bits, as shown in Fig.19.

1) If the length of the incoming stream of ni bits is not an
integer number multiple of f, the two are related by
eq(44), ri is the remainder of ni congruent f.

ni = mi ∗ f + ri (44)

2) Several 0’s can be added to the stream of ri bits to form
a chunk with a length f. The total number of chunks
will be equal to mi + 1.

3) The XORing is done by chunks of f bits.
4) The resulting stream of mi + 1 has a deviation to non-

randomness that is lower than the incoming stream ni.

Figure. 19: Generalization of the concept to any data streams.

B.F. Cambou / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 3, 15-29 (2018)

 24

 Native ternary random numbers generators

In this section, we are presenting a method to directly
generate native random trits from PUF memory arrays, as well
as ways to enhance randomness with modulo 3 sum adders. As
presented in the first section, the fuzzy cells of the PUFs are used
as multiple sources of randomness, and the XOR compilers
replace mod3 adders. Ternary computing uses trits, for example
(0, 1, 2) or balanced (-, 0, +), instead of the bits (0, 1) used in
binary computing [61-67]. Can ternary computing improve
cybersecurity and Information Assurance [68-70]? Ternary
computing is not a new concept, and is more complex to
implement than binary computing. One suggested architecture
uses heterogeneous computing elements, and combine binary
units to run legacy codes, and native ternary computing units for
security [71]:

 Better handling of the natural fuzziness, with lower
reliance on error correction codes;

 Can take advantage of ternary hardware, and advances
in microelectronics, such as the ternary PUFs
described in the first section of this paper [72-79];

 The cryptography based on ternary states has more
entropy, and additional levels of freedom to protect both
hardware, and software.

For example, let us assume that the length of a data stream
is N=128. The number of possible combinations for binary
streams is 2128= 3.4 1038, and becomes 3128= 1.2 1061 for ternary
streams, which is considerably larger. Native random numbers
are valuable for cryptographic protocols based on ternary
computing. One way to create ternary random numbers is to
convert binary random numbers into decimal numbers, then to
convert the decimal data stream back into ternary random
numbers. Such a method add complexity, and can potentially
expose the random numbers to hackers. A direct generation of
native ternary random numbers is therefore desirable. The
definition of deviation from perfect randomness for ternary
TRNG, is similar to the one developed for binary data streams.
As presented in the first section, each bit ai of the perfectly
binary random stream {a1, …, ai, …, an} should have precisely
the same probability to be either a “1” or a “0”. The average
deviation from randomness, λ is given by:

 P(ai =1) = P(ai =0) = 0.5 (50)

λ = ½ (|P(ai=1) - 0.5| + |P(ai=0) - 0|

= |P(ai=1) - 0.5| = |P(ai=0) - 0.5| (51)

 In the case of ternary data streams of trits with “-“, “0”, and
“+” states, the term λ is given by:

λ= 1/3(|P (ai = –) – 1/3|+|P (ai = 0) – 1/3|+|P(ai = +) – 1/3|) (52)

0 = P (ai = –) + P (ai = 0) + P(ai = +) (53)

 Description of the method

12.1. Segmentation of the fuzzy cells of the memory PUFs

The fuzzy cells , the 0-cells, can be segmented into three
subgroups, see Fig. 20:
 The cells that have a higher probability to be tested as “-

” are called A-cells. They have an average probability

PA= - to be tested as “-” , PA= 0 to be tested as “0”, and
PA= + to be tested as “+”.

 The cells that have a higher probability to be tested as
“0” are called B-cells. They have an average probability
PB= - to be tested as “-” , PB= 0 to be tested as “0”, and
PB= + to be tested as “+”.

- to be tested as “-” , PC= 0 to be tested as “0”, and
PC= + to be tested as “+”.

Figure 20: segmentation of the fuzzy cells in trits

The selection of the transition of parameter 𝒫𝒫 between “-”
and “0” , T2, and the transition of parameter 𝒫𝒫 between “0” and
“+”, can be such that the total number of A-cells selected within
the 0-cells equal the number of B-cells, and the number of C-
cells. The deviation from perfect randomness λ of the stream of
native ternary random numbers generated from the fuzzy cells
A, B, C is given by:

λ= |1/9- P A= -| + |1/9- PA=0| + |1/9- PA= +|
9

+ |1/9- P B= -| + |1/9- PB=0| + |1/9- PB= +|
9

+

 |1/9- P C= -| + |1/9- PC=0| + |1/9- PC= +|
9

 (54)

12.2. Enhancement of the randomness with mod3 adders

The algorithm using a mod3 adder, see Fig.21 and 22, is
similar to the one presented section A.

1) The number of cells needed to generate a stream of mi
trits is ni = mi∗f , they are selected as part of the fuzzy
0-cells of the ternary memory PUF;

2) Parameter 𝒫𝒫 is measured on all ni cells;
3) The population of ni cells is segmented into three third

based on the value of 𝒫𝒫. The threshold separating the
bottom third and the central third is T2; the threshold
separating the central third and to top third is T3;

4) With the segmentation in three done step 3, the ni cells
at the bottom third are carrying “-“state, the cells in the
middle are “0”s, and the cells at the top third are “+”s;

5) The stream of trits is added by chunks of f trits; Instead
of a XOR compiler, the mod 3 adder of chunk of trits
enhance randomness. With mod 3 sum adders, two input
trits ai, and ai+1 are transformed into ci = ai ⊕ ai+1, with
the following truth table:

(ai =0; ai+1 = -), or (ai = -; ai+1 =0), or (ai=ai+1 =+)ci = -

(ai =+; ai+1= -), or (ai = -; ai+1= +), or (ai=ai+1 =0)ci = 0

B.F. Cambou / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 3, 15-29 (2018)

 25

(ai=0; ai+1= +), or (ai= +; ai+1 =0), or (ai=ai+1 = -)ci = +

6) The resulting mi trits are more random.

Mod 3 addition increases randomness, the knowledge of ci is
not disclosing the value of ai and ai+1. ci = -, 0, or + can be the
result of three possible pairs {ai ai+1}, with equal probability. If
two trits ai and ai+1 are somewhat random, the trit ci is even more
random than either ai or ai+1. Let us assume that the stream of
random trits generated by the 0-cells of the memory PUF array
is {a1, a2, …, ai, …an}.

Figure 21: Algorithm to reduce the effect of a parameter drift.

Figure 22: description of the mod 3 adder

As it is shown in Fig.22, this stream is grouped in chunks of
f trits {a1j, a2j, …, aij, …, ajf} with f < n. For example, 1,280
random bits a grouped in 128 chunks of 10 bits. The resulting
stream of random trits obtained with mod 3 sum adders data {c1,
c2, …, cj, …, cm} is defined as follow:

ci = a1j⊕ a2j ⊕ … ⊕ aij⊕ …⊕ ajf mod 3 (55)

Mod 3 sum adders can be implemented at the software level,
or in hardware with only a few logic gates. These gates can be
inserted in the state machine of the PUF memory to directly feed
secure processors, and crypto-processors with streams of
randomly generated trits.

 Modeling of the randomness after mod3 additions

13.1. Model with mod3 addition by chunks of two trits

In this section we are proposing a simplified model that
quantifies the level of randomness of mod 3 adders when two
adjacent trits are added mod3. Fig.23 shows such a scheme. We
are assuming that the 0-cells are distributed into three type of
cells (A, B, and C), each of them with a probability of
occurrence of 1/3. Statistically the stream of trits {a1, a2, …, ai,
…an} contain trits with equal probability to be “-“, “0”, or “+”,

also with a value of 1/3. However A-cells have a higher
probability to have “-“s, B-cells have a higher probability to
have “0”s, and C-cells have a higher probability to have “+”s.

Figure 23: description of the mod 3 adder by chunk of two trits

In Fig.24, we are showing an arbitrary set of probabilities
verifying that the probability to have either A, B, or C cells is
1/3, and the probability to have either “-“, “0”, or “+” states is
also 1/3. In this table:

PA= - = 1/9 + ΔA- ∗ λ ; with ΔA1 = 1.8 (55)

PB= 0 = 1/9 + ΔB0 ∗ λ ; with ΔA2 = 0.9 (56)

PC=+ = 1/9 + ΔC+ ∗ λ ; with ΔC+ =1.8 (57)

Figure 24: example of probabilistic representation

The initial randomness is:

λi = (1/9)(∣ ∑ Δ𝐴𝐴=𝑖𝑖𝑖𝑖=+
𝑖𝑖=− ∣ +∣ ∑ Δ𝐵𝐵=𝑖𝑖𝑖𝑖=+

𝑖𝑖=− ∣ +∣ ∑ Δ𝐶𝐶=𝑖𝑖𝑖𝑖=+
𝑖𝑖=− ∣)

= 1/9 (3.6 + 1.8 + 3.6) ∗ λ = λ (58)

Other tables and more complicated model can replace this
arbitrary representation; however, the suggested simplified
model describes quite well the experimental observations. When
the cells are combined by pairs, and the trits added mod 3, 9
combinations of cells are possible with an equal probability of
1/9: AA, AB, AC, BA, BB, BC, CA, CB, CC. The average
probability to have trits with “-“, “0”, and “+” is 1/3.

 Two cells AA have three possible combinations which can
result in a trit at “-“ :
 Both cells at “+”, the probability is: (PA= + ∗ PA= +);
 The first cell is at “0”, the second at “-“ , the probability

is: (PA= 0 ∗ PA= -);
 The first cell is at “-“, the second at “0”, the probability

is: (PA= - ∗ PA= 0).

The resulting probability PAA= - that two cells AA can result
in a trit at “-“ is given by:

B.F. Cambou / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 3, 15-29 (2018)

 26

PAA= - =(PA= +∗ PA= +)+(PA=0 ∗ PA= -)+(PA= -∗ PA=0)

=(1/9-1.35∗λ)2+2(1/9+1.8∗λ)(1/9-0.45∗λ)=1/27+0.2∗λ2 (59)

In Fig.25 is showing the result of the computations of 27
configurations: probability to get “-“, “0”, or “1” after addition
mod 3 for each pair PAA= -, PAA= 0, PAA= +, PAB= -, PAB=0,…

Figure 25: probability per configuration after mod 3 addition of two trits.

The resulting deviation from randomness λ'f after addition is
the average deviation of these 27 configurations:

λ'f = (1/27) ∑ |Δ . 𝝀𝝀2| ≈ 2.27 𝝀𝝀2 (60)

For example, if the initial deviation from randomness for the
incoming stream is λi = 2 10-2; the resulting deviation is:

λ’f = 2.27 ∗(2 ∗ 10-2)2 = 8.7 10-4 (61)

After addition, the 9 possible configurations shown in Fig.25
can be then combined into 3 types of cells A’, B’, and C. For
example, the cells that are mainly “-“, the A’-cells consist of the
mod3 additions of CC, AB, and BA pairs. In this case, the
average deviation from randomness of A’-cells when they are
containing a trit “-“is:

 (λ’f A’= -)= 1/3((λ’f CC= -) + (λ’f AB= -) + (λ’f BA= -))

= 1/3 (2.43+2.43+4.46) ∗ 𝛌𝛌𝟐𝟐 = 3.10 ∗ 𝛌𝛌𝟐𝟐 (62)

13.2. Extension of the model with chunks of four trits

The method presented section II 2.2 can be extended to the
addition mod3 of 4 sequential trits to generate trits of higher
randomness. Rather than starting with the three types of cells A,
B, and C having a deviation from randomness λ, the same
computation is done with the cells A’, B’, and C’ having a
deviation from randomness equal to 2.27 ∗ 𝛌𝛌2 .

The resulting deviation from randomness λ"f of the new
stream of trits and mod 3 addition of chunks of four bits is:

λ"f = 2.27 (λ’f)2 = 2.27 (2.27)2 𝛌𝛌4≈ 11.3 𝛌𝛌4 (63)

If the initial deviation is λ= 2 10-2; the resulting deviation is:

λ”f = 11.3 ∗ (2 ∗ 10-2)4 = 1.81 10-6 (64)

By extension, after addition of 8 sequential trits, the
deviation from randomness λ”” will be:

λ””f = 2.27 (λ”f) 2≈ 290 𝛌𝛌8 (65)

If the initial deviation is λ= 2 10-2; the resulting deviation is:

λ””f = 290 ∗ (2 ∗ 10-2)8 = 7.4 10-12 (66)

 Experimental analysis with mod3 adders

 The analysis is based on the data presented in the first section
related to the measurement of the Vset of ReRAM devices. We
are again considering the same five cases to sort out the fuzzy
“0-cells”:
 Case-1: Only 2% of the cells are 0-cells. For these cells

parameter 𝒫𝒫 is very close to the transition of 2.1 Volt.
λi=2 10-2;

 Case-2: 4% of the cells are 0-cells. λi=4 10-2;
 Case-3: 7% of the cells are 0-cells. λi=6 10-2;
 Case-4: 11% of the cells are 0-cells. λi=1 10-1;

This range of options allows the quantification of the
effectiveness of the addition mod 3 to scramble the trits, as a
function of the initial randomness coming from the ternary PUF
memory. Case-1 is the one with the higher initial randomness,
while Case-4 is the lowest one.

The probabilistic model developed above, is the base of the
analysis of the four experimental cases. The results of the
computations are shown in Fig.26 and Fig. 27.

The impact of the addition modulo 3 addition on the level of
randomness on the resulting data streams of trits is increasing
when the number of cells f involved in the addition increases
from f = 2 to f = 8.

Figure 26: modeling of the effect of mod 3 addition as a function of the

experimental cases.
In all cases the addition mod 3 when applied to a data stream

of trits generated by a PUF is very efficient to enhance
randomness. Case 1, the one with the highest level of initial
randomness, benefit the most from mod 3 sum adders.

It is interesting to notice that the XOR compiler, and the mod
3 addition have similar effects in improving randomness. The
model can be used as a predictive tool to anticipate the level of
randomness of streams of trits. For example, as shown in Fig.27,
the number cells necessary to get λ<5 10-6 for case 1 is 4, it is 5
for case 2, it is 6 for case 3, and it is higher than 8 for case 4.

Figure 27: deviation from perfect randomness plotted as a function of the size

of the chunk of trits involved in mod3 addition for the four cases.

B.F. Cambou / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 3, 15-29 (2018)

 27

Discussion and conclusion

The use of ternary PUFs to design TRNG, combined with a
XOR compiler, or a modulo 3 addition has the following
benefits:
 The cells with fuzzy behavior of a ternary PUF, the 0-

cells, can provide multiple sources of independent
randomness. A memory arrays in the megabyte range
can have a large quantity of such cells;

 The randomness of the binary data streams extracted
from the ternary 0-cells are enhanced by a XOR
compiler. Based on a normal distribution of parameter
𝒫𝒫, the proposed statistical model can quantify the
deviation from pure randomness of the TRNGs. It is
possible to calculate f, the length of the XOR, to reach
a desired level of non-randomness λf, as a function of
the level of non-randomness λi of the incoming data
stream extracted from the physical element.

 The randomness of the ternary data streams extracted
from the 0-cells can be enhanced by a modulo 3 adder.
It is the possible to directly generate a stream of random
trits without having to convert binary data streams into
ternary data streams;

 It is possible to anticipate, with the suggested
probabilistic model, the minimum size of chunks of data
f that need to be processed to reach the level of
randomness λf. This is the case for the XOR compiler,
and the mod 3 adder;

 The proposed methodology minimizes sensitivity to
parameter drifts such as temperature, aging, or biasing
conditions. It is anticipated that the drifts should not
materially degrade the quality of the TRNGs.

 The hardware implementation of both the XOR
compiler, and the mod 3 adder can use known
commercial CMOS circuitry.

 The method can reach NIST expectations in term of
deviation from pure randomness of the TRNG, even if
the randomness created by the PUF is weak.

The experimental section of this work, which is based on the
measurements of the Vset of ReRAM cells, produced a
distribution that is able to show enough randomness to generate
random numbers. We noticed that the XOR data compiler is not
effective when the initial data stream is not random. The model
developed assumes that the initial random numbers generated
from the 0-cells are symmetrically distributed between A-cells
and B-cells.

Other statistical distributions beside the normal one are
under consideration in our research effort. We are not
anticipating that these improved statistical models will
significantly change the outcome when only cells close to the
median distribution are selected. This is not the case for wider
distribution of the 0-cells away from the median.

 Future work: The objective of this work was to develop
TRNG for cryptographic protocols that can be embedded in the
Internet of Things (IoT). The implementation of affordable
sources of randomness to secure IoTs can benefit from the ease
of use of ternary PUFs, which are tamper resistant. TRNGs are

essentials elements to encryption protocols involving PUF
CRPs, and other cryptographic keys. We are studying the design
of a prototype that incorporates the proposed TRNG scheme
with various ReRAM arrays. The prototype is intended to
automatically extract large quantities of PUF CRPs and random
streams of bits, and trits. We intend to use the prototype to
further validate our statistical models, and to leverage the tools
developed by NIST that are available online to quantify the
entropy, and the level of randomness of the TRNGs. The
prototype should have the built-in flexibility to allow us to
analyze multiple types of memory arrays, with different methods
of fabrication.

 We are interested in optimizing the randomness of the
TRNG while reducing CRP error rates of the PUFs, and
developing cryptographic protocols that leverage the combined
capabilities. The method described in this paper can be used to
the swarm dynamics generating true random noises [8], and
other similar applications requiring TRNG. To accelerate the
process to generate fresh random numbers on demand, the 0-
cells can be tested in advance [80], and the data can be stored in
the memory. The read time of a ReRAM is typically 10ns/bit, so
we believe that the generation of the TRNG has the potential to
be done at a rate of 100Mbit/s. The method presented in this
paper can also be extended to n-value logic, for example
quaternary logic (4 bits), pentagonal logic (5 bits), or hexagonal
logic (6bits). In such cases the 0-cells are divided in n different
type of cells, and the addition of chunk of n-bits is done modulo
n.

Aknowledgment

Dr. Marius Orlowski from Virginia Tech produced, and
characterized the metal oxide ReRAM samples [49]. These
measurements were used to prepare the experimental analysis.
Dr. Derek Sonderegger from the Department of Mathematics
and Statistic of Northern Arizona University provided input for
the development of the statistical model. The author is thanking
both Dr. Donald Telesca from the US Air Force Research Labs
for his support in this work.

References

[1] B. Cambou; A XOR data compiler combined with PUF for TRNG;
SAI/IEEE computing conference, July 2017;

[2] C. Paar, and J. Pezl; Understanding Cryptography- A text book for
students and practitioners; Spinger editions, 2011;

[3] C. P. Pfleeger, et al; Security in Computing; Fifth edition; Prentice Hall
editions, 2015;

[4] R. Soorat; Hardware random number generation for cryptography;
https://arxiv.org/pdf/1510.01234 , 2015;

[5] D. Glosemeyer, and B Knapp; Random Number Generation; Wolfram
Mathematical Tutorial collection, 2008;

[6] M. Stipevic, et al; true random number generator; Open problems in
Mathematics and computational science; pp.275-315, Springer, 2014;

[7] H. Katzgraber; Random Numbers in scientific computing: an
introduction; Int. school comp. science, 2010, Oldenburg, Germany

[8] Y. Shang, and R. Bouffanais; “Influence of the number of topologically
interacting neighbors on swarm dynamics”; Scientific Reports DOI:
10.1038/srep04184, 2015.

[9] Berndt Gammel, et al; Jul 2012; Random Generator configured to
combine states of memory cells; US patent No 7,979,482 B2;

[10] Daniel E Holcomb, et al; Power up SRAM state as an identifying
Fingerprint and Source of True Random Numbers; IEEE Trans. On
Computers, 2009 Vol 58, issue No09 Sept;

https://arxiv.org/pdf/1510.01234

B.F. Cambou / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 3, 15-29 (2018)

 28

[11] Sang-Yong Yoon, et al; Aug 2012; Method of operating nonvolatile
memory devices storing randomized data generated by copyback
operation; US patent No: 8990481 B2;

[12] J. Soto; Statistical testing of random number generators; 1999 – NIST;
http://csrc.nist.gov/rng/rng5.html ;

[13] A. Rukhin, and all; A statistical Test Suite For Cryptographic
Applications; NIST publication 800-22rev1a, April 2010.

[14] P. L’Ecuyer; Software for uniform random number generation:
distinguishing the good from the bad; 2001 Simulation Conference;

[15] A. Rukhin, et all; A statistical test suite for random and PRNG for
cryptographic applications; 2010, publication from NIST 800-22 rev 1a;

[16] A. Maiti, et al; PUF and TRNG: a compact and scalable implementation;
GLSVLSI’09, May 2009, Boston;

[17] B. Cambou; Sept, 2015; Random numbers generator with ternary
memory; US patent application 2017-0046129;

[18] G. Marsaglia; XOR shift RNG; Journal of Statistical software, 2003.
[19] M. C Tzannes, A. Friedmann; Nov 2001; Randomization using an XOR

scrambler in multicarrier communications; US patent No 9191939 B2;
[20] R. Davies; XOR and hardware random number generator;

http://www.robertnz.net/pdf/XOR2.pdf; February 2002;
[21] B. Cambou; Data compiler for True Random Number Generation and

Related Methods; NAU disclosure D2017-03, Aug 2016;
[22] Y. Gao, and all; Emerging Physical Unclonable Functions with

nanotechnologies; IEEE, DOI: 10.1109/ACCESS.2015.2503432;
[23] N. Beckmann, et al; Hardware-based public-key cryptography with public

physically unclonable functions; in Information Hiding, New York, NY,
USA: Springer-Verlag, 2009, pp. 206–220.

[24] Guajardo, J, et al; PUFs and PublicKey Crypto for FPGA IP Protection;
Field Programmable Logic and Applications, 2007.

[25] David. Naccache and Patrice. Frémanteau; Aug. 1992; Unforgeable
identification device, identification device reader and method of
identification; Patent US5434917.

[26] Guajardo, J., et al; FPGA Intrinsic PUFs and Their Use for IP Protection;
CHES, 2007;

[27] R. Pappu, B. Recht, J. Taylor, and N. Gershenfield; 20 Sept 2002;
Physical one-way functions; Science. Vol 297 No5589 pp2026-2030.

[28] Yier Jin; Introduction to hardware security, Electronics 2015, 4, 763-784;
doi:10.3390/electronics4040763.

[29] R. Maes; Physically Unclonable functions: constructions, properties, and
applications; Doctoral thesis- Catholic University of Leuven, 2012;

[30] Herder, C., et al; "PUFs and Applications; A Tutorial." Proceedings of the
IEEE 102, no. 8 (2014): 1126-1141;

[31] B. Gassend, et al; Silicon PUFs; CCS’ 2002;
[32] B. Gassend; Physical random functions; M.S. thesis, Dept. Electr. Eng.

Comput. Sci., MA, USA, Massachusetts Inst. Tech.., Cambridge, 2003;
[33] S. Katzenbeisser, et al; PUFs: myths, fact or busted? A security evaluation

of PUFs cast in silicon; CHES 2012;
[34] Christian Krutzik; Jan 2015; Solid state drive Physical Unclonable

Function erase verification device and method; US Patent Application
publication US 2015/0007337 A1

[35] H. Kang, Y. Hori, T. Katashita, M. Hagiwara, and K. Iwamura;
Cryptographic Key Generation from PUF Data Using Efficient Fuzzy
Extractors; in Proc. ICACT, 2014, pp.23–26.

[36] R. Maes, P. Tuyls and I. Verbauwhede, "A Soft Decision Helper Data
Algorithm for SRAM PUFs," in 2009 IEEE International Symposium on
Information Theory, 2009.

[37] Daniel E. Holcomb, Wayne P. Burleson, Kevin Fu; Nov 2008; Power-up
SRAM state as an Identifying Fingerprint and Source of TRN; IEEE
Trans. on Comp., vol 57, No 11.

[38] D. E. Holcomb, and all; Power-up SRAM state as an Identifying
Fingerprint and TRN; IEEE Trans. Comp. Nov 2008;

[39] Pravin Prabhu, Ameen Akel, Laura M. Grupp, Wing-Kei S. Yu, G.
Edward Suh, Edwin Kan, and Steven Swanson; June 2011; Extracting
Device Fingerprints from Flash Memory by Exploiting Physical
Variations; 4th int. conference on Trust and trustworthy computing;

[40] V.Zhirnov, et al; Chapter 26: Flash memories; Nanoelectronics and
Information Technology; Rainer Waser editor, 2012 Wiley;

[41] T. A. Christensen, and all; PUF utilizing EDRAM memory cell
capacitance variation; Patent: US 8,300,450B2; Oct, 2012;

[42] T. A. Christensen, J. E Sheets II; 2012; Implementing PUF utilizing
EDRAM Memory Cell Capacitance Variation; US Patent 8,300,450 B2.

[43] K.K. Chang et al; Understanding Reduced-Voltage Operation in Modern
DRAM Chips: Characterization, Analysis, and Mechanisms; Cornell
Technical Library: 1705.102992, May 2017;

[44] U. Schroder, et al; Capacitor-based Random-Access Memories;
Nanoelectronics and information technology; Wiley-vch, R. Waser
editor, pp 635-654, 2012;

[45] Xiaochun Zhu, Steven Millendorf, Xu Guo, David M. Jacobson, Kangho
Lee, Seung H. Kang, Matthew M. Nowak, Daha Fazla; March 2015;
PUFs based on resistivity of MRAM magnetic tunnel junctions; Patents.
US 2015/0071432 A1.

[46] Elena I. Vatajelu, Giorgio Di Natale, Mario Barbareschi, Lionel
Torres, Marco Indaco, and Paolo Prinetto; July 2015; STT-
MRAM-Based PUF Architecture exploiting Magnetic Tunnel
Junction Fabrication-Induced Variability; ACM transactions.

[47] A. Chen; Comprehensive Assessment of RRAM-based PUF for Hardware
Security Applications; IEDM IEEE; 2015;

[48] B.Cambou; Enhancing Secure Elements- Technology and Architecture;
Springer Int. Publishing Foundations of Hardware IP Protection, 2017;

[49] B. Cambou, and M. Orlowski; PUF designed with ReRAM and ternary
states; CISR 2016, April 2016, Oak ridge;

[50] D. Yamamoto, K. Sakiyama, K. Ohto, and M. Itoh; Uniqueness
Enhancement of PUF Responses Based on the Locations of Random
Outputting RS Latches; CHES 2011;

[51] B. Cambou; PUF generating systems and related methods; US patent
disclosure No: 62/204912; Aug 2015;

[52] B. Cambou, and F. Afghah; PUF with Multi-states and Machine Learning;
CryptArchi 2016

[53] Gilbert, Nad, et al. "A 0.6 V 8 pJ/write Non-Volatile CBRAM Macro
Embedded in a Body Sensor Node for Ultra Low Energy Applications."
VLSI Circuits (VLSIC), 2013 Symposium on. IEEE, 2013;

[54] M. N. Kozicki, M. Park, and M. Mitkova, “Nanoscale memory elements
based on solid-state electrolytes," IEEE Trans. Nanotechnol, vol. 4, pp.
331-338, May 2005;

[55] M. N. Kozicki and M. Mitkova, "Mass transport in chalcogenide
electrolyte films – materials and applications," J. of Non-Crystalline
Solids, vol. 352, pp. 567-577, March 2006;

[56] Valov, R. Waser, J. R. Jameson and M. N. Kozicki, "Electrochemical
metallization memories - Fundamentals, applications, prospects,"
Nanotechnology, vol. 22, p. 254003, June 2011;

[57] M. N. Kozicki, M. Balakrishnan, C. Gopalan, C. Ratnakumar, and M.
Mitkova, “Programmable metallization cell memory based on Ag-Ge-S
and Cu-Ge-S solid electrolytes," Proc. NVMTS, p. 8389, 2005;

[58] M. N. Kozicki, C. Gopalan, M. Balakrishnan, M. Park and M. Mitkova,
"Nonvolatile memory based on solid electrolytes," in Proc. IEEE Non-
Volatile Memory Technol. Symp., 2004;

[59] Gargi Ghosh and Marius Orlowski; 2015; Write and Erase Threshold
Voltage Interdependence in Resistive Switching Memory Cells; IEEE
trans. on Electron Devices, 62(9), pp. 2850-2857.

[60] P. R.Mickel, A. J. Lohn, B. J. Choi, J. J. Yang, M. X. Zhang, M. J.
Marinella, C. D. James, and R. S. Williams, “A physical model of
switching dynamics in tantalum oxide memristive devices,” Appl. Phys.
Lett., vol. 102, p. 223502, 2013;

[61] M. Glusker, D.M. Hogan, and P. Vass; The ternary calculating machine
of Thomas Fowler; IEEE Annals of the History of Computing, 2005;

[62] N.P. Brousentov, S.P. Maslov, J. Ramil Alvarez, and E.A. Zhogolev;
Development of Ternary computers at Moscow State University; Russian
Virtual Computer Museum; 1997-2017;

[63] G. Frieder; Ternary Computers, part 1: motivation for ternary computers;
Micro 5 Conf. record of the 5th annual workshop on Microprogramming;
1972;

[64] S. Ahmad, M. Alam; Balanced Ternary Logic For improving Computing;
IJCSIT, 2014;

[65] I. Profeanu; A ternary Arithmetic and Logic; WCE, June 2010;
[66] M.G. Nektar, D.M. Hogan, P. Vass; The ternary calculating machine of

Thomas Fowler; IEEE Annals of the History of Computing, Aug 2005;
[67] E.W. Dijkstra; Notes on structured programming; EWD 249 Technical

University, Eindhoven, Netherlands, 1969;
[68] B. Cambou, P. Flikkema, J. Palmer, D. Telesca, C. Philabaum; Can

Ternary Computing Improve Information Assurance?; MDPI, Journal
cryptography, Feb 2018;

http://csrc.nist.gov/rng/rng5.html
http://www.robertnz.net/pdf/XOR2.pdf
http://link.springer.com/search?facet-creator=%22Dai+Yamamoto%22
http://link.springer.com/book/10.1007/978-3-642-23951-9

B.F. Cambou / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 3, 15-29 (2018)

 29

[69] D.M. Miller, and M.A. Thornton; Multiple Valued Logic: Concepts and
Representations; Synthesis Lectures on Digital Circuits and Systems;
Morgan & Claypool Publishers, 2007;

[70] S. Ahmad, and M. Alam; Balanced Ternary Logic For improving
Computing; IJCSIT, 2014;

[71] P.G. Flikkema and B. Cambou; Adapting Processor Architectures for the
Periphery of the IoT Nervous System; IEEE 3rd World Forum on Internet
of Things (WF-IoT), December 2016;

[72] H. Gundersen; Aspect of balanced ternary arithmetic implemented using
CMOS recharged semi-floating gate device; thesis Oslo Univ. 2008;

[73] P.C. Balla, and A. Antoniou; Low Power Dissipation MOS Ternary Logic
Family; IEEE J of Solid State Circuits, Oct 1984;

[74] P.C. Balla, A. Antoniou; Low Power Dissipation MOS Ternary Logic
Family; IEEE J of Solid State Circuits, Oct 1984;

[75] X.W. Wu; CMOS Ternary Logic Circuits; IEE Proceedings, Feb 1990
[76] P. Nagaraju, et al; Ternary Logic Gates and Ternary SRAM

Implementation in VLSI; IJSR, Nov 2014;
[77] N.P. Wanjari, S.P. Hajare; VLSI Design and Implementation of Ternary

Logic Gates and Ternary SRAM Cell; IJECSE, April 2013;
[78] A. Srivastava, and K. Venkatapathy; Design and Implementation of a

Low Power Ternary Full Adder; VLSI design, vol 4, No.1, 1996;
[79] N.P. Wanjari, and S.P. Hajare; VLSI Design and Implementation of

Ternary Logic Gates and Ternary SRAM Cell; IJECSE, April 2013;
[80] Anuj Gupta, May 2005, Implementing Generic BIST for testing Kilo-Bit

Memories; Master Thesis No-6030402 Deemed University Patiala India

	1. Introduction
	2. Designing a random number generator
	2.1. Ternary physical unclonable functions
	2.2. Quality considerations for PUFs
	2.3. Memory based PUFs
	2.4. Ternary PUFs

	3. Random number generators
	3.1. Pseudo Random number generators
	3.2. Use of XOR to enhance PRNGs
	3.3. Ternary PUFs as sources of randomness

	4. Modeling a ternary PUF for TRNG
	5. A XOR data compiler for TRNG
	6. Modeling a 2-bit XOR compiler
	7. Modeling a 3-bit XOR compiler
	8. Modeling the XOR compiler in general terms
	9. Experimental analysis with XOR compiler
	9.1. Variations of ReRAM memory PUFs
	9.2. Effect of the XOR compiler on the TRNG

	10. Example of algorithms for TRNG
	10.1. Minimization of the impact of parameter drifts
	10.2. Generalization to other TRNG designs

	11. Native ternary random numbers generators
	12. Description of the method
	12.1. Segmentation of the fuzzy cells of the memory PUFs
	12.2. Enhancement of the randomness with mod3 adders

	13. Modeling of the randomness after mod3 additions
	13.1. Model with mod3 addition by chunks of two trits
	13.2. Extension of the model with chunks of four trits

	14. Experimental analysis with mod3 adders
	Discussion and conclusion
	Aknowledgment
	References

