

www.astesj.com 174

A Model for Optimising the Deployment of Cloud-hosted Application Components for Guaranteeing
Multitenancy Isolation

Laud Charles Ochei*,1, Christopher Ifeanyichukwu Ejiofor2

1School of Computing and Digital Media, Robert Gordon University, United Kingdom

2Department of Computer Science, University of Port Harcourt, Nigeria

A R T I C L E I N F O A B S T R A C T

Article history:
Received: 25 November, 2017
Accepted: 24 February, 2018
Online: 27 March, 2018

 Tenants associated with a cloud-hosted application seek to reduce running costs and
minimize resource consumption by sharing components and resources. However, despite
the benefits, sharing resources can affect tenant’s access and overall performance if one
tenant abruptly experiences a significant workload, particularly if the application fails to
accommodate this sudden increase in workload. In cases where a there is a higher or
varying degree of isolation between components, this issue can become severe. This paper
aims to present novel solutions for deploying components of a cloud-hosted application
with the purpose of guaranteeing the required degree of multitenancy isolation through a
mathematical optimization model and metaheuristic algorithm. Research conducted
through this paper demonstrates that, when compared, optimal solutions achieved through
the model had low variability levels and percent deviation. This paper additionally provides
areas of application of our optimization model as well as challenges and recommendations
for deploying components associated with varying degrees of isolation.

Keywords:
Cloud-hosted application
Multitenancy
Degree of Isolation
Simulated Annealing
Metaheuristic
Optimization model
Component
Cloud deployment

1. Introduction

Designing and planning component deployment of a cloud-
hosted application with multiple tenants demands special
consideration of the exact category of components that are to be
distributed, the number of components to be shared, and the
supporting cloud resources required for component deployment.
[1] This is because there are different or varying degrees of
multitenancy isolation. For instance, in components providing
critical functionality, the degree of isolation is higher compared to
components that only require slight re-configuration prior to
deployment [2].

A low degree of isolation actively encourages tenants to share
resources and components, resulting in lower resource
consumption and reduced operating costs, however, there are
potential challenges in both security and performance in the
instance where one component sees a sudden workload surge. A
high degree of isolation tends to deliver less security interference,
although there are challenges instigated by high running costs and
resource consumption in view that these tenants are not sharing

resources [2]. Consequently, the software architect's main
challenge is to first identify solutions to the opposing trade-off of
high degrees of isolation (including excessive resource
consumption issues and high operating costs), versus low degrees
of isolation (including performance interference issues).

Motivated by these key challenges, this paper presents a
model for the deployment of components which provides
exemplary solutions specific to cloud-based applications and aims
to do so in a way that secures the segregation of multitenancy. The
approach for this research includes creating an optimization
model which is mapped to a Multichoice Multidimensional
Knapsack Problem (MMKP) before solutions are tested using a
metaheuristic. The approach is analysed through comparing the
different optimal solutions achieved which then collectively
compose an exhaustive search tool to analyse the solutions
capacity specifially for minor problem occurance, in its entireity.

This paper and its research questions: "How can we optimize
the way components of a cloud-hosted service is deployed for
guaranteeing multitenancy isolation?”. It is possible to
guarantee the specific degree of isolation essential between

ASTESJ

ISSN: 2415-6698

*Laud Charles Ochei, Aberdeen, United Kingdom. l.c.ochei@rgu.ac.uk

Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 2, 174-183 (2018)

www.astesj.com

Special Issue on Advancement in Engineering Technology

https://dx.doi.org/10.25046/aj030220

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj030220

L.C. Ochei et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 2, 174-183 (2018)

www.astesj.com 175

tenants, whilst efficiently managing the supporting resources at
the same time through component deployment optimization of the
cloud-based application.

This paper expands on the previous work conducted in [3].
The core contributions of this article are:
1. Mathematical optimization model providing optimal
component deployment solutions appropriate for cloud-based
applications to guarantee multitenancy isolation.
2. Mathematical equations inspired by open multiclass queuing
network models to determine the average request totals for
granting component and resource access.
3. Variants of metaheuristic solutions to deliver optimization
model resolutions attributed to simulated annealing.
4. Guidelines and recommendations for component deployment
in cloud-hosted applications seeking to guarantee required levels
of multitenancy isolation.
5. Application areas of a cloud-hosted service where it is possible
for the optimization model to be directly applied to component
deployment with the aim to guarantee required degree of
multitenancy isolation.

The remainder of this paper is structured as outlined below:
Section II focuses on the challenge of identifying and delivering
near-optimal component deployment solutions specific to cloud-
hosted applications that guarantee the essential levels of
multitenancy isolation; Section III presents the Optimisation
Model; the following section presents the Metaheuristic Solution;
Section V considers the Open Multiclass Queuing Model; Section
VI evaluates the results and presents the experimental setup;
Section VII discusses the results; Section VIII discusses the
model’s application areas for the model; and Section IX conclude
with recommendations of future work.

2. Optimising the Deployment of Components of Cloud-
hosted Application with Guarantee for Multitenancy Isolation

This section examines multitenancy isolation, the conflicting
trades-offs in delivering optimal deployment influenced by the
varying degrees of multitenancy isolation, and other associated
research on cloud resources and optimal allocation of such
resources.

2.1. Multitenancy Isolation and Trade-offs for Achieving Varying
Degrees of Isolation

In a multitenant architecture (also referred to as multitenancy),
multiple tenants are able to access a single instance of a cloud
service. These tenants have to be isolated when there are changes
in workload. In the same way that it is possible to isolate multiple
tenants, it is also possible to isolate multiple components of a
cloud-hosted application.
In this paper, we define “Multitenancy Isolation” as a way of
ensuring that other tenants are not affected by the required
performance, stored data volume, and access privileges of one of
the tenants. accessing the cloud-hosted application [3] [4].

A high degree of isolation is achieved when there is little or no
impact on other tenants when a substantial increase in workload
occurs for one of the tenants, and vice versa. The three cloud
patterns that describe the varying degrees of multitenancy
isolation are:
(i) Dedicated Component: tenants cannot share components;
however, a component may be associated with one or more
tenants or resources;
(ii) Tenant-isolated Component: tenants can share resources or
components, and isolation of these is guaranteed; and
(iii) Shared Component: tenants can share resources or
components, but these remain separate from other components.

If components required a high degree of isolation between them,
then each tenant requires that each component is duplicated. This
can be expensive and also lead to increased resource consumption.
On the other hand, there could also be a need for a low degree of
isolation which could, in contrast, reduce cost and resource
consumption. However, any changes in workload levels that the
application cannot cope with risk interference [4]. The question,
therefore, is how optimal solutions can be identified to resolve
trade-offs when conflicting alternatives arise.

2.2. Related Work on Optimal Deployment and Allocation of
Cloud Resources

Research on optimal resource allocation in the cloud is quite
significant, however, much fewer studies focus on optimal
solutions in relation to component deployment across cloud-based
applications in a way which guarantees the required degree of
multitenancy isolation. Researchers in [5] and [6] aim to keep
cloud architecture costs to a minimum by implementing a
multitenant SaaS Model. Other authors [7] concentrated on
bettering execution times for SaaS providers whilst reducing
resource consumption using evolutionary algorithms opposed to
traditional heuristics. A heuristic is defined in [8] for the capacity
planning purposes for the SaaS inspired by a utility model. The
aim of the utility model was to generate profit increases and so it
largely concentrated on business-related aspects of delivering the
SaaS application.

It is explained in [9] how optimal configuration can be
identified for virtual servers, such as using certain tests to
determine the required volumes of memory for application
hosting. Optimal component distribution is discussed and
analyzed by [10] in relation to virtual servers. Research conducted
in [11] is of a similar nature to this paper in that it attempts to
reduce costs (using a heuristic search approach is inspired on hill
climbing), specifically in relation to the use of VMs from an IaaS
provider with limitations around SLAs response time.

The studies noted above predominantly focus on scaling back
costs associated with cloud architectural resources. The use of
metaheuristics is not considered in these studies in delivering
optimal solutions that can guarantee the required degree of
multitenancy isolation. Additionally, previous research involving

http://www.astesj.com/

L.C. Ochei et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 2, 174-183 (2018)

www.astesj.com 176

optimization models have operated with one objective; an
example is where [11] look to minimize VM operational costs.
For this paper’s model, a bi-objective case is used (i.e.,
maximising the required degree of multitenancy isolation and
number of requests permitted to access a component). Thereafter,
a modern metaheuristic inspired by simulated annealing is used to
solve the model.

3. Problem Formalisation and Notation

This section defines the problem and explains the process of
mapping it to a Multichoice Multidimensional Knapsack Problem
(MMKP).

3.1. Description of the Problem

Assuming a tenant has multiple components associated with

the same supporting cloud infrastructure. A team may represent a
team or department, a company with a responsibility to design a
cloud-based application, its components, and underlying
processes. Components varying in size and function has to
integrate with their cloud-hosted application to achieve effective
deployment in a multitenant style. It is also possible to define
component categories based on different features, such as
function, for example, processing or storage. Within these
categories, different components are likely to have differing
degrees of isolation enabling some components to deliver the
same function which can hence be accessed and used by multiple
tenants, opposed to other components which may be solely
allocated to certain tenants or departments.

Every component within an application needs a particular
allocation of resources from the cloud infrastructure in order to
support the volume of requests received. In instances where one
component in the application experiences surges in workload,
then it must be considered how the designer can choose
components to deliver optimal deployment to effectively respond
to the sudden changes in such a manner that: (i) maximises
component degrees of isolation through ensuring they behave in
the same way as components of other tenants, thus, isolating
against one and other; and (ii) maximises the total requests
permitted to access and use each components.

3.2 Mapping the Problem to a Multichoice Multidimensional
Knapsack Problem (MMKP)

The above mentioned optimal component deployment problem
can be closely linked to a 0-1 Multichoice Multidimensional
Knapsack Problem (MMKP). An MMKP is a variant of the
Knapsack Problem commonly depicted as a member of the NP-
hard class of problems. For the purpose of this paper, the problem
of focus can be formally defined as:

Definition 1 (Optimal Component Deployment Problem):
Consider that there are N groups of components (C1,...,CN) with
each group having ai (1 ≤ i ≤ N) components useful for designing
(or integrating with) a cloud-hosted application. Each component

of the application is affiliated with: (i) the degree of isolation that
is required between components (Iij); (ii) the rate at which requests
arrive to the component λij; (iii) the service demand of resources
required to support the component Dij; (iii) the average request
totals permitted to access the component Qij and (iv) resources for
supporting the component, rij = rij

1 ,rij
2 ,...,rij

n . For the cloud to
properly support all components, a certain volume of resources
are required; the total number of resources needed can be
calculated as R = (R1,R2,...,Rn).

The aim of an MMKP is to choose one component present in
each category for deployment to the cloud in a manner that
ensures that if one component sees sudden increases in load, then
the: (a) the degree of isolation of other components is maximized;
(b) the total requests permitted to access the component and
application is maximised without using more resources than are
actually available.

Definition 1 identifies two objectives within the problem. An
aggregation function is used to convert the multi-objective
problem into a single-objective because of merging the two
objective functions merge (i.e., g1=degree of isolation, and
g2=number of requests) into one single objective function (i.e.,
g=optimal function) in a linear way. Because the optimal function
of this study is linear, a priori single weight strategy is employed
to aid defining the weight vector selected based on the decision
maker’s individual preferences [12]. This paper also adopts the
approach discussed in [12] for computing the absolute percentage
difference (see section 7.1), the target solutions used to compare
against the optimal solution (see section 7.2), and the use of the
number of optimal function evaluations as an alternative to
measuring the computational effort of the metaheuristic.

Therefore, the purpose is redefined as follows: to deliver a
near-optimal solution for component deployment to the cloud-
based application that also fulfils system requirements and
achieves the best value possible for optimal function, G.

Definition 2 (Optimal Function): For a cloud-hosted application
architect, the main issues impacting the optimal deployment of
components are changes to workload, which can be expressed as:

� � 𝑔𝑔𝑖𝑖𝑖𝑖 . 𝑎𝑎𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖 ∊ 𝐶𝐶𝑖𝑖

𝑁𝑁

𝑖𝑖=1

Subject to:

� � 𝑟𝑟𝑖𝑖𝑖𝑖𝛼𝛼 . 𝑎𝑎𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖 ∊ 𝐶𝐶𝑖𝑖

𝑁𝑁

𝑖𝑖=1

≤ 𝑅𝑅𝛼𝛼(𝛼𝛼 = 1, 2, … ,𝑁𝑁) (1)

� 𝑎𝑎𝑖𝑖𝑖𝑖 = 1
𝑁𝑁

𝑖𝑖 ∊ 𝐶𝐶𝑖𝑖

𝑎𝑎𝑖𝑖𝑖𝑖 ∈ 0,1 (i = 1, 2 ,…, N), j ∊ 𝐶𝐶𝑖𝑖

http://www.astesj.com/

L.C. Ochei et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 2, 174-183 (2018)

www.astesj.com 177

where (i) aij is fixed at 1 if component j is chosen from group Ci

and 0 otherwise; (ii) gij is determined by a weighted calculation of
parameters involving the degree of isolation, average requests
permitted to access a component, and penalty for constraint
violations.

𝑔𝑔𝑖𝑖𝑖𝑖 = �𝑤𝑤1 × 𝐼𝐼𝑖𝑖𝑖𝑖� + �𝑤𝑤2 × 𝑄𝑄𝑖𝑖𝑖𝑖� − �𝑤𝑤3 × 𝑃𝑃𝑖𝑖𝑖𝑖� (2)

Specific weight values are allocated to w1, w2, and w3; namely
100, 1 and 0.1 respectively. The allocation of weights is done
using a method that provides preference to the required degree of
isolation. The penalty, Pij, imposed for components that surmount
resource cap is expressed as:

𝑃𝑃𝑖𝑖𝑖𝑖 = �𝑚𝑚𝑎𝑎𝑚𝑚 �0,�
𝑅𝑅𝑘𝑘 − 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑘𝑘

𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑘𝑘 ��
2𝑛𝑛

𝑖𝑖=0

 (3)

For every component (g), the degree of isolation, Iij, is
assigned either 1, 2, or 3 indicating either shared, tenant-isolated
or dedicated components, respectively. The sum described as:
𝑟𝑟𝑖𝑖𝑖𝑖 = 𝑟𝑟𝑖𝑖𝑖𝑖1 , 𝑟𝑟𝑖𝑖𝑖𝑖2 , … , 𝑟𝑟𝑖𝑖𝑖𝑖𝑛𝑛 refers to the resource consumption in group
Ci. for each individual application component j. Total resource
consumption 𝑟𝑟𝑖𝑖𝑖𝑖𝛼𝛼 for all application components needs to be lower
than the total available resources in the cloud infrastructure R =
Rα,(α = 1,...,m).

It is presumed that the service demands at the CPU, RAM,
Disk I/O, and the supporting bandwidth of each component can be
identified and/or measured readily by the SaaS supplier or
customer. This assumption enables us to calculate the number of
requests, Qij that may be permitted access for each component
through analysis of an open multiclass QN Model [13]. The
following section expands further on the open multiclass network.

4. Queuing Network (QN) Model

Queueing network modelling is one modelling approach
through which the computer system is depicted as a network of
queues that can be solved in an analytic fashion. In its most basic
form, a network of queues is an assembly of service centers
representative of system resources, and customers representative
of business activity, such as transactions [13]. Service centers are
basically supporting resources for the components, such as CPU,
RAM, disk and bandwidth.

Assumptions: For the purpose of this paper, the following
component assumptions are made:
(i) components cannot support other applications or alternative
system requirements, and is therefore exclusively deployed to one
cloud-application;
(ii) component arrival rates are separate to the main system state
and so component requests may have significantly varied
behaviours.
(iii) it is possible to identify and effortlessly measure the service
demands at the CPU, RAM, Disk, and Bandwidth supporting each
component by both the SaaS provider and/or customer.

(iv) sufficient resource is available to support each component
during changes to workload, particularly during significant surges
of new incoming requests. Ensuring sufficient resource means
that there are no overloads during peak times where all
components are operating.

The assumptions noted above allow the study to utilise an
open multiclass queuing network (QN) model for the purpose of
calculating average requests permitted to reach the component,
whilst simultaneously ensuring the required degree of isolation,
as well as system requirements. The magnitude and intensity of
workload volume in an open multiclass QN is determined by
request arrival rates. The arrival rate is not typically reliant on the
system state, and so is not reliant on the volume of other tenants
in the system either [13].

Definition 3 (Open Multiclass Queuing Network Model):
Assuming there is a total of N classes, where every class c is an
open class with arrival rate λc. The arrival rates are symbolised as
a vector by 𝜆𝜆 = (λ1, λ2, ... λN). The use of each component in class
c at the center k is given by:

𝑈𝑈𝑐𝑐.𝑘𝑘�𝜆𝜆� = 𝜆𝜆𝑐𝑐𝐷𝐷𝑐𝑐.𝑘𝑘 (4)

To solve the QN model, assumptions are made, such as that a
component stands for a single open class system hosting four
service centers otherwise referred to as supporting resources, such
as CPU, RAM, disk capacity and bandwidth. At any one service
center (e.g., CPU), the average request totals for a specific
component is:

𝑄𝑄𝑐𝑐,𝑘𝑘�𝜆𝜆� =
𝑈𝑈𝑐𝑐.𝑘𝑘�𝜆𝜆�

1 − ∑ 𝑈𝑈𝑖𝑖.𝑘𝑘�𝜆𝜆�𝑁𝑁
𝑖𝑖=1

 (5)

Consequently, to determine the average amount of requests
accessing the particular component, the length of the queue of all
requests reaching all service centers (i.e., components’ supporting
resources such as CPU, RAM, disk capacity and bandwidth)
would be totaled.

𝑄𝑄𝑐𝑐�𝜆𝜆� = �𝑄𝑄𝑐𝑐,𝑘𝑘

𝑛𝑛

𝑖𝑖=0

 𝜆𝜆 (6)

5. Metaheuristic Search

The optimisation problem as explained in the section before is
an NP-hard problem renowned for its feasible search capacity and
exponential growth [14]. The number of potential and feasible
solutions that may achieve optimal component deployment and
solve the problem can be determined using this equation:

 ��
𝑛𝑛
𝑟𝑟
��

𝑁𝑁
 (7)

http://www.astesj.com/

L.C. Ochei et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 2, 174-183 (2018)

www.astesj.com 178

The above equation, Equation 4, signifies the different ways one
or more (r) components can be chosen from each group
(comprising of n components) from a pool of numerous (N)
groups of components, for the purpose of creating and integrating
them into a cloud-hosted application upon receipt of updates or
changes to workload by the component. Thus, to manage such
changes to workloads, the specific number of different ways that
one component can be selected (i.e., r=1) from each of the 20
different groups (i.e., N=20), comprising of 10 items per group
(i.e., n=10), approximately 10.24 x 1012 possible solutions can be
identified. Contingent on the number of changes to workload and
also the regularity of these, a cloud-hosted service quite large in
size could experience a much greater volume of possible solutions.

Therefore, to obtain an optimal solution for the identified
optimisation problem, it is essential to use an efficient
metaheuristic. In addition, this should be done in real-time with
the SaaS customer or cloud architect. Two versions of a simulated
annealing algorithm are implied: (i) SAGreedy, incorporates
greedy principles in conjunction with a simulated annealing
algorithm; (ii) SARandom, employs randomly propagated
solutions in conjunction with a simulated annealing algorithm.
Both of these versions can be effectively utilised to achieve near-
optimal solutions for component deployment. Additionally, an
algorithm was developed for this study to generate an extensive
search of the full solution area for a small problem size. Algorithm
1 includes the algorithm for SA(Greedy). However, SA(Random)
only needs a minor change to this algorithm, which will be
described further in the following section. An extensive
breakdown of Algorithm 1 can be viewed below:

Algorithm 1 SA(Greedy) Algorithm

1:

SA (Greedy) (mmkpFile, N)

2: Randomly generated N solutions
3: Initial temperature fixed to T0 to st. dev. of all

optimal solutions
4: Create greedySoln a1 with optimal value g(a1)
5: optimalSoln = g(a1)
6: bestSoln = g(a1)
7: for I = 1, N do
8: Create neighbour soln a2 with optimal value

g(a2)
9: Mutate the soln a2 to improve it
10: if a1 < a2 then
11: bestSoln = a2
12: else
13: if random[0,1) < exp(-(g(a2) – g(a1))/T) then
14: a2 = bestSoln
15: end if
16: end if
17: Ti+1 = 0.9 * Ti
18: end for
19: optimalSoln = bestSoln
20: Return (optimalSoln)

5.1. The SAGreedy for Near-optimal Solution

The first algorithm is a combination of simulation annealing
and greedy algorithm which is used to obtain a near-optimal
solution for the optimisation problem modelled as an MMKP.
First, the algorithm extracts the key details from the MMKP
problem instance before populating the encompassing variables
(i.e., collections of different dimensions storing isolation values
of isolation; average request totals; and the resource consumption
of components). A basic linear cooling schedule is used, where
Ti+1 = 0.9Ti. The method for prescribing and fixing the preliminary
temperature T0 will be to randomly generate an optimal solution
whose number is equivalent to the total number of groups (n) in
the problem instance, multiplied by the number of iterations (N)
used in the experimental settings before running the simulated
annealing element of the algorithm.

When the problem instance and/or the total iterations is low,
the magnitude of optimal solutions created may be limited by the
number of groups (n) in the problem instance, multiplied by total
iterations (N) used in the experimental settings. Next, the initial
temperature T0 is determined for the standard deviation of all
optimal solutions (Line 2-3) through random generation. The
algorithm then uses the greedy solution as the preliminary
solution (Line 4) which is assumed as the best current solution.
The simulated annealing process enhances the greedy solution
further providing a near-optimal solution for cloud component
deployment.

The execution of the algorithm in its most basic form for the
instance C(4,5,4) is explained as follows: let us imagine that the
total number of iterations is 100, 400 (i.e., 4 groups x 100
iterations) optimal solutions are randomly generated before
calculating the standard deviation for all solutions. Assuming a
value of 50.56, T0 is identified as 50. It is also assumed that the
algorithm creates a foremost greedy solution with g(a1) = 2940.12,
before a current random solution with g(a2) = 2956.55. The
solution a2 will substitute a1 with probability, P =exp(-
16.43/50)=0.72, because g(a2) > g(a1). In lines 14 to 16, a random
number (rand) is generated between 0 and 1; if rand <0.72, a2

replaces a1 and we proceed with a2. Alternatively, the study
continues with a1. Now, the temperature T is reduced providing
T1 = 45 (Line 17). Iterations continue until N (that is, the identified
number of iterations set to enable the algorithm to function), is
reached, thus the search converges with a high probability of near-
optimal solution.

5.2. The SA(Random) for Optimal Solutions

Considering the SA(Random) metaheuristic version, a solution
is also randomly generated before being encompassed within the
simulated annealing process to provide a preliminary solution. It
can be seen in Line 4 that rather than creating a greedy solution, a
random solution is created. An optimal solution representative of
a set of components with the highest total isolation value and
number of requests permitted to reach the component access is

http://www.astesj.com/

L.C. Ochei et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 2, 174-183 (2018)

www.astesj.com 179

then output by the algorithm. Every time a variance in workload
is experiences, the optimal solution alters to respond to this.

6. Evaluation

We describe in the section how each instance was generated as
well as the process, procedure and set up of the experiment.

6.1. Instance Generation

Reflective of different capacities and sizes, a number of
problem instances were randomly generated. Instances were
divided into two categories determined by those cited frequently
in current literature: (i) OR benchmark Library [15] and other
standard MMKP benchmarks, and (ii) the new irregular
benchmarks used in [16]. All these benchmarks were used for
single objective problems. This study edited and modified this
benchmark to fit into a multi-objective case through assigning
each component with one of two profit values: isolation values
and average number of requests [17].

The values of the MMKP the instance, were produced as
follows: (i) random generation of isolation values in the interval
[1-3]; (ii) values of component consumption of CPU, RAM, disk
and bandwidth (i.e., the weights) were generated in the interval
[1-9]; (iii) individual component resource limits (i.e., knapsack
capacities for CPU, RAM, disk and bandwidth) were created by
halving the maximum resource consumption possible (see
Equation 7).

𝑐𝑐𝑘𝑘 =
1
2

 × 𝑚𝑚 × 𝑅𝑅 (8)

An identical principle has been employed to create instances for
OR Benchmark Library, as well as for instances used in [18] [19].
This research considers the total resources/constraints as four (4)
for each group, which reflects the minimal resource requirement
to deploy a component to the cloud. The notation for each instance
is: C(n,r,m), representing the number of groups, the amount of
components in each group, and resource totals.

6.2. Experimental Setup and Procedure

For consistency, all experiments were set up and operated
using Windows 8.1 on a SAMSUNG Laptop with an Intel(R)
CORE(TM) i7-3630QM at 2.40GHZ, 8GB memory and 1TB
swap space on the hard disk. Table I outlines the experimental
parameters. The algorithm was tested using different sized
instances of different densities. In relation to large instances, it
was not possible to conduct an exhaustive search due to a lack of
memory resource on the machine used.

As a result of this limitation, the MMKP instance was
implemented first, C(4,5,4), to provide a benchmark for analysis
to enable algorithm comparison.

Table 1. Parameters used in the Experiments

Parameters Value
Isolation Value [1,2,3]
No. of Requests [0,10]
Resource
consumption

[0,10]

No. of Iterations N=100 (except Table 4)
No. of Random
Changes

5

Temperature T0 = st.dev of N randomly generated
solns.

Linear Cooling
Schedule

Ti+1 =0.9Ti

7. Results

Section 7 discusses the experiment results.

7.1 Comparison of the Obtained Solutions with the Optimal
Solutions

The results delivered by algorithms SA(Greedy) and
SA(Random) were initially compared with the optimal solutions
generated by an exhaustive search for a small problem instance in
the entire solution space (i.e., C(4,5,4)). Table 2 and Table 3
portray the findings. The instance id used is noted in Column 1 of
Table 2. The second, third and fourth columns respectively
highlight the optimal function variables as (FV/IV/RV),
representing the optimal function value, isolation value, and
number of permitted requests, for Optimal, SA(Random) and
SA(Greedy) algorithms. The first and second columns of Table 3
depict a proportion of the optimal values for SA(Random) and
SA(Greedy) algorithms, respectively. The final two columns note
the absolute percentage difference, indicative of the solution
quality, for SA(Random) and SA(Greedy) algorithms, which is
measured as follows:

|𝑓𝑓(𝑠𝑠) − 𝑓𝑓(𝑠𝑠∗)|

𝑓𝑓(𝑠𝑠∗)
 (9)

where s is the obtained solution and s* is the optimal solution
generated by the exhaustive search.

It is clear that SA(Greedy) and SA(Random) provide very
similar results. Solutions identified for SA(Random) are almost
100% close most of the time to their optimal solution, and over
83% in a smaller proportion of cases whilst in just one occurrence
it was below 66%. SA(Greedy) also delivered nearly 100% close
solutions created to the optimal solution in a considerable number
of cases, and more than 83% in others. Overall, SA(Greedy)
delivered better results than SA(Random) when considering
percent deviation from the optimal solution.

7.2 Comparison of the Obtained Solutions to a Target Solution

It was not possible to run instances greater than C(4,5,4)
because of hardware limitations (i.e., CPU and RAM).

http://www.astesj.com/

L.C. Ochei et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 2, 174-183 (2018)

www.astesj.com 180

Consequently, the results were compared to a target solution.
The target solution for percent deviation and performance rate
was determined as (n x max(I) x w1) and ((n x max(I) x w1) +
(0.5 x (n x max(Q) x w2))), respectively. So, for instance
C(150,20,4), the target solution for computing percent deviation
sit at 45,000.

Table III, IV, and V demonstrates average solution behaviour:
(i) on a significant selection of varied instances using the same
parameters; (ii) over various runs on the same instance (with
differing quantities of optimal evaluation); and (iii) over different
runs on the same instance. The robustness of solutions in relation
to their behaviour on varying types of instances using the same
parameters was measured. Table III shows this measure and that
solutions are strong when considering average deviation of
solution behaviour for both the SA(Greedy) and SA(Random), as
implied through their low variability scores.

The average percent deviation and standard deviation (of the
percent deviations), for SA(Greedy) is marginally greater than
SA(Random) as a result of the significant absolute difference
between some solutions and the reference solution. For example,
the percent deviations of SA(Greedy) for the instances C(100,20,4)
and C150,20,4) are higher than SA(Random). The results show
how SA(Random) performs much better than SA(Greedy) in
reference to small instances up to C(80,20,4).

Table IV compares solution quality with optimal function
evaluations. It can be determined that the overall solution quality
is good when both algorithms are tested on large instances. Once
again, the standard deviation for SA(Greedy) is notably lower
than SA(Random) in addition to great percent deviation stability.
Table V highlighted that SA(Greedy) is stronger than
SA(Random) evidenced by the average optimal values and low
solution variability. The performance rate (PR) was computed by
determining the reference solution as a function of the quantity of
optimal evaluations. The PR of SA(Greedy) is marginally higher
than SA(Random).

Figure I depict the relationship of solution quality relating to
optimal values (i.e., fitness value) and the volume of optimal
function evaluations. It can be seen from the diagram that
SA(Greedy) benefited a little from the preliminary greedy
solution more than SA(Random) when optimal function
evaluations are few. Nonetheless, solution quality for both
algorithms are better as iterations increase. Once 100 optimal
evaluations are reached, the optimal solution stabilizes, but
thereafter fails to show any further noticeable improvement.

Figure 2 portrays correlations between solution quality relating
to percent deviation and the total function evaluations. In line with
expectations, SA(Random) reported a smaller percent deviation
than SA(Greedy) in the majority of results, particularly in
instances where function evaluations are few. An explanation for
this could be the low function evaluation total used in the study.
However, percent deviation for SA(Greedy) showed greater
stability despite being greater than SA(Greedy)’s results.

Table 2. Comparison of SA(Greedy) and SA(Random) with the Optimal Solution

Inst-
id

Optimal
(FV/IV/RV)

SA(R)
(FV/IV/RV)

SA(Greedy)
(FV/IV/RV)

I1 1213.93/12/24 1218/12/18 1218/12/18

I2 1213.97/12/14 1208.99/12/9 1109/11/9

I3 1222.99/12/23 1120/11/20 1120/11/20

I4 1119.98/11/20 1023/10/23 1019/10/19

I5 1219.99/12/20 1017/10/17 1017/10/17

I6 1229.92/12/30 1020.96/10/21 1022.99/10/23

I7 1224.90/12/25 1018/10/18 1018/10/18

I8 1228.96/12/29 822/8/22 1224.99/12/29

I9 1021.97/10/22 912/9/12 912/9/12

I10 1236/12/36 1236/12/36 1236/12/36

Figure 1. Relationship between Optimal Values and Function Evaluations.

Figure 2. Relationship between Percent Deviation and Function evaluations.

8. Discussion

In Section 8 the implication of the results is discussed further
and recommendations for component deployment of a cloud-
hosted application that guarantees multitenancy isolation are
considered and presented.

8.1 Quality of the Solutions

Solution quality was measured encompassing percent
deviation from either the optimal or reference solution. Tables II,

http://www.astesj.com/

L.C. Ochei et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 2, 174-183 (2018)

www.astesj.com 181

III and IV note solutions generated by SA(Greedy) which
demonstrate a low percent deviation. The results also indicate that
SA(Greedy) performs efficiently for large instances. However,
Table III clearly evidences SA(Random) outperforming
SA(Greedy) on small instances, that is, from C(5,20,4) to
C(80,20,4).

Table 3. Computation of a Fraction of the Obtained Solutions with the Optimal
Solution.

Inst-id
SA-
R/Opt

 SA-
G/Opt

%D
(SA-R)

%D
(SA-G)

I1 0.995 0.995 0.48 0.48
I2 0.996 0.914 0.41 8.65
I3 0.916 0.916 8.42 8.42
I4 0.913 0.910 8.66 9.02
I5 0.834 0.834 16.64 16.64
I6 0.830 0.832 16.99 16.82
I7 0.831 0.831 16.89 16.89
I8 0.669 0.997 33.11 0.32
I9 0.892 0.892 10.76 10.76
I10 1 1 0 0
ST.DEV 0.097 0.064 9.73 6.43

Table 4. Comparison of the Quality of Solution with Instance size

Inst
(n=20)

SA-R SA-G SA-R SA-
G

C(5) 1528/15/28 1517/15/1
7

1.87 1.13

C(10) 3058/30/58 3057/30/5
7

1.93 1.9

C(20) 6082/60/82 6002/59/1
02

1.37 0.03

C(40) 12182/120/1
82

12182/120
/182

1.52 1.52

C(60) 18317/180/3
17

18317/180
/317

1.76 1.76

C(80) 24388/240/3
88

24380/240
/380

1.62 1.58

C(100) 30252/298/4
52

30505/300
/505

0.84 1.68

C(150) 45648/449/7
48

45793/450
/793

1.44 1.76

Avg. %D 1.54 1.42
STD of Avg. %D 0.33 0.57

8.2. Computational Effort and Performance Rate of Solutions

Hardware limitations of the computer used for the study
restricted evaluation and full consideration of computational
effort for metaheuristics. On the other hand, it was still possible
to compute algorithm performance rates as a function of optimal
evaluation totals. Typically, the number of optimal evaluations is

considered a computational effort indicator that is independent to
the utilised computer system. Table V indicates that the
performance rate of SA(Greedy) is marginally higher than
SA(Random) when we put into consideration the total reference
solutions achieved.

Table 5. Comparing Solution Quality vs. No. of Optimal Evaluations

No. of
Iteration SA(R) SA(G) %D

(SA-R)
%D
(SA-G)

1 44242.1 45776.8 3.30 0.06
100 45760.7 45776.9 0.02 0.06
200 45760.7 45790 0.02 0.09
300 45783 45790 0.07 0.09
400 45760.7 45790 0.02 0.09
500 45760.7 45790 0.02 0.09
600 45770.1 45790 0.04 0.09
700 45770.1 45790 0.04 0.09
800 45783 45790 0.07 0.09
900 45783 45790 0.07 0.09
1000 45783 45790 0.07 0.09
Worst 44242.1 45776.8 0.02 0.06
Best 45783 45790 3.30 0.09
Average 45632.46 45787.61 0.34 0.08
STD 439.77 5.07 0.93 0.01

8.3. Robustness of the Solutions

Low variability was seen from the SA(Greedy) algorithm
particularly when run with large instances, therefore suggesting it
delivers stronger solutions than SA(Random) making SA(Greedy)
the most suitable algorithm for real-time use in a fast-paced
environment experiencing regular changes to workload levels.
Figure 1 demonstrates instability in SA(Random) for a small
amount of evaluations, although following 1,000 evaluations it
was seen to converge eventually at the optimal solution. In
contrast, the SA(Greedy) showed steady improvement as
evaluations increased.

8.4. Required Degree of Isolation

The study’s optimisation model assumes that each component
for deployment (or group of components) is linked to certain
degree of isolation. By mapping the problem to a Multichoice
Multidimensional Knapsack Problem linking each component to
a profit values: either isolation value; or number of requests
permitted to access a component, this was achieved. As a result of
this, it was possible to monitor each component separately and
independently, responding to each of their unique demands.
Where limitations are faced, such as through cost, time or effort
used to tag each component, a different algorithm could enable us
to perform this function dynamically. In our research prior to this
[20], an algorithm capable of dynamically learning the properties
of current components in a repository was developed with this

http://www.astesj.com/

L.C. Ochei et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 2, 174-183 (2018)

www.astesj.com 182

information then used to associate each component with the
required degree of isolation.

Table 6. Robustness of Solutions over Different Runs on the Same Instance.

Runs SA(R) SA(G) %D
SA-R

%D
SA-G

1 45767 45658 1.70 1.46
2 45793 45744 1.76 1.65
3 45663 45793 1.47 1.76
4 45460 45658 1.02 1.46
5 45567 45658 1.26 1.46
6 45562 45793 1.25 1.76
7 45569 45658 1.26 1.46
8 45567 45658 1.26 1.46
9 45682 45658 1.52 1.46
10 45663 45767 1.47 1.70
Worst 45460 45658 1.02 1.46
Best 45793 45793 1.76 1.76
Avg 45629 45705 1.40 1.57
STD 97.67 58.40 0.22 0.13
Perf.
Rate

2.0E-04 3.0E-04

9. Application Areas for Utilizing the Optimization Model

In this section, we discuss the various areas where our
optimization model can be applied to the deployment components
of a cloud-hosted service for guaranteeing the required degree of
multitenancy isolation.

9.1. Optimal Allocation in a resource constrained environment

Our optimization model can be used to optimize the allocation
of resources especially in a resource constrained environment. or
where there are frequent changes in workload. This can be
achieved by integrating our model into a load balancer/manager.
Many cloud providers have auto-scaling programs (e.g., Amazon
Auto scaling) for scaling applications deployed on their cloud
infrastructure, usually based on per-defined scaling rules.
However, these scaling programs do not have a functionality to
provide for guaranteeing the isolation of tenants (or components)
associated with the deployed service. It is the responsibility of the
customer to implement such a functionality for individual service
deployed to the cloud. In an environment where there are frequent
workload changes, there would be a high possibility of
performance interference. In such a situation, our model can be
used to select the optimal configuration for deploying a
component that maximizes the number of request that can be
allowed to access the component while at the same maximizing
the degree of isolation between tenants (or components).

9.2. Monitoring Runtime Information of Components
Another area where our model can be very useful is in

monitoring the runtime information of components. Many
providers offer monitoring information on network availability

and utilization of components deployed on their cloud
infrastructure based on some pre-defined configuration rules.
However, none of this information can assure that the component
is functioning efficiently and guarantees the required degree of
multitenancy isolation on the application level. It is the
responsibility of the customer to extract and interpret these values,
adjust the configuration, and thus provide optimal configuration
that guarantees the required degree of multitenancy isolation.

Our model can be implemented in the form of a simple web
service-based application to monitor the service and automatically
change the rules, for example, based on previous experiences, user
input, or once the average utilization of resources exceeds a
defined threshold. This application can be either be deployed
separately or integrated into different cloud-hosted services for
monitoring the health status of a cloud service.

9.2. Managing the Provisioning and Decommissioning of
Components

The provisioning and decommissioning of components or
functionality offered to customers by many cloud providers is
through the configuration of pre-defined rules. For example, a rule
can state that once an average utilization of a system resource (e.g.,
RAM, disk space) exceeds a defined threshold then a component
shall be started. When runtime information of components is
extracted, and made available as stated earlier, they can be used
to make important decisions concerning the provisioning of
required components and decommissioning of unused
components.

10. Conclusion and Future Work

Within this research, to provide a further contribution to the
current literature on multitenancy isolation and optimized
component deployment, we have developed an optimisation
model alongside a metaheuristic solution largely inspired by
simulated annealing for the purpose of delivering near-optimal
component deployment solutions specific to cloud-based
applications that guarantee multitenancy isolation. First, an
optimisation problem was formulated to capture the
implementation of the required degree of isolation between
components. Next, the problem was mapped against an MMKP to
enable early resolution through the use of a metaheuristic.

Results show greater consistency and dependability from
SA(Greedy), particularly when functioning on large instances,
whereas SA(Random) operates sufficiently on small instances.
When considering algorithm strength, SA(Greedy) portrayed low
variability and thus generates higher quality solutions in dynamic
environments experiencing regular changes in workload levels.
SA(random) appears to have greater sensitivity and instability to
small deviations of input instances compared to SA(Greedy),
more so in relation to large instances.

We intend on testing the MMKP problem instances further using
various metaheuristic types (e.g., genetic and estimated
distribution algorithms) and combinations (e.g., simulated

http://www.astesj.com/

L.C. Ochei et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 2, 174-183 (2018)

www.astesj.com 183

annealing merged with genetic algorithm) with the aim of
identifying the most efficient metaheuristic to generate optimal
solutions to operate in a variety of cloud deployment situations.
For future research, a decision support system will be developed
capable of creating or integrating an elastic load balancer for
runtime information monitoring in relation to single specific
components in order to deliver near-optimal component
deployment solutions specific to responses required from cloud-
hosted applications to changes in workload. This would be of
immense value to cloud designers and SaaS customers for
decision making around the provision and decommission of
components.

Conflict of Interest

The authors declare no conflict of interest.

Acknowledgment

This research was supported by the Tertiary Education Trust Fund
(TETFUND), Nigeria and IDEAS Research Institute, Robert
Gordon University, UK.

References
[1] C. Fehling, F. Leymann, R. Retter, W. Schupeck, and P. Arbitter, Cloud

Computing Patterns. Springer, 2014.
[2] R. Krebs, C. Momm, and S. Kounev, “Architectural concerns in multi-

tenant saas applications.” CLOSER, vol. 12, pp. 426–431, 2012.
[3] L. C. Ochei, A. Petrovski, and J. Bass, “Optimizing the Deployment of

Cloud-hosted Application Components for Guaranteeing Multitenancy
Isolation,” 2016 International Conference on Information Society (i-
Society 2016).

[4] L. C. Ochei, J. Bass, and A. Petrovski, “Implementing the required degree
of multitenancy isolation: A case study of cloud-hosted bug tracking
system,” in 13th IEEE International Conference on Services Computing
(SCC 2016). IEEE, 2016.

[5] F. Shaikh and D. Patil, “Multi-tenant e-commerce based on saas model to
minimize it cost,” in Advances in Engineering and Technology Research
(ICAETR), 2014 International Conference on. IEEE, 2014, pp. 1–4.

[6] D. Westermann and C. Momm, “Using software performance curves for
dependable and cost-efficient service hosting,” in Proceedings of the 2nd
International Workshop on the Quality of Service-Oriented Software
Systems. ACM, 2010, p. 3.

[7] Z. I. M. Yusoh and M. Tang, “Composite saas placement and resource
optimization in cloud computing using evolutionary algorithms,” in Cloud
Computing (CLOUD), 2012 IEEE 5th International Conference on. IEEE,
2012, pp. 590–597.

[8] D. Candeia, R. A. Santos, and R. Lopes, “Business-driven long-term
capacity planning for saas applications,” IEEE Transactions on Cloud
Computing, vol. 3, no. 3, pp. 290– 303, 2015.

[9] M. L. Abbott and M. T. Fisher, The art of scalability: Scalable web
architecture, processes, and organizations for the modern enterprise.
Pearson Education, 2009.

[10] F. Leymann, C. Fehling, R. Mietzner, A. Nowak, and S. Dustdar, “Moving
applications to the cloud: an approach based on application model
enrichment,” International Journal of Cooperative Information Systems,
vol. 20, no. 03, pp. 307–356, 2011.

[11] A. Aldhalaan and D. A. Menascé, “Near-optimal allocation of vms from
iaas providers by saas providers,” in Cloud and Autonomic Computing
(ICCAC), 2015 International Conference on. IEEE, 2015, pp. 228–231.

[12] E.-G. Talbi, Metaheuristics: from design to implementation. John Wiley &
Sons, 2009, vol. 74.

[13] D. Menasce, V. Almeida, and D. Lawrence, Performance by design:
capacity planning by example. Prentice Hall, 2004.

[14] F. Rothlauf, Design of modern heuristics: principles and application.
Springer Science & Business Media, 2011.

[15] J. E. Beasley, “Or-library: distributing test problems by electronic mail,”
Journal of the operational research society, vol. 41, no. 11, pp. 1069–1072,
1990.

[16] Z. Eckart and L. Marco. Test problems and test data for multiobjective
optimizers. Computer Engineering (TIK) ETH Zurich. [Online]. Available:
http://www.tik.ee.ethz.ch/sop/.../testProblemSuite/

[17] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: a
comparative case study and the strength pareto approach,” IEEE
transactions on Evolutionary Computation, vol. 3, no. 4, pp. 257–271, 1999.

[18] R. Parra-Hernandez and N. J. Dimopoulos, “A new heuristic for solving the
multichoice multidimensional knapsack problem,” IEEE Transactions on
Systems, Man, and Cybernetics-Part A: Systems and Humans, vol. 35, no.
5, pp. 708–717, 2005.

[19] N. Cherfi and M. Hifi, “A column generation method for the multiple-
choice multi-dimensional knapsack problem,” Computational Optimization
and Applications, vol. 46, no. 1, pp. 51–73, 2010.

[20] L. C. Ochei, A. Petrovski, and J. Bass, “An approach for achieving the
required degree of multitenancy isolation for components of a cloud-hosted
application,” in 4th International IBM Cloud Academy Conference
(ICACON 2016), 2016.

http://www.astesj.com/

	2.1. Multitenancy Isolation and Trade-offs for Achieving Varying Degrees of Isolation
	In a multitenant architecture (also referred to as multitenancy), multiple tenants are able to access a single instance of a cloud service. These tenants have to be isolated when there are changes in workload. In the same way that it is possible to i...
	In this paper, we define “Multitenancy Isolation” as a way of ensuring that other tenants are not affected by the required performance, stored data volume, and access privileges of one of the tenants. accessing the cloud-hosted application [3] [4].
	A high degree of isolation is achieved when there is little or no impact on other tenants when a substantial increase in workload occurs for one of the tenants, and vice versa. The three cloud patterns that describe the varying degrees of multitenancy...
	(i) Dedicated Component: tenants cannot share components; however, a component may be associated with one or more tenants or resources;
	(ii) Tenant-isolated Component: tenants can share resources or components, and isolation of these is guaranteed; and
	(iii) Shared Component: tenants can share resources or components, but these remain separate from other components.
	If components required a high degree of isolation between them, then each tenant requires that each component is duplicated. This can be expensive and also lead to increased resource consumption. On the other hand, there could also be a need for a low...
	2.2. Related Work on Optimal Deployment and Allocation of Cloud Resources
	3. Problem Formalisation and Notation
	3.1. Description of the Problem
	Assuming a tenant has multiple components associated with the same supporting cloud infrastructure. A team may represent a team or department, a company with a responsibility to design a cloud-based application, its components, and underlying processe...
	Every component within an application needs a particular allocation of resources from the cloud infrastructure in order to support the volume of requests received. In instances where one component in the application experiences surges in workload, the...
	3.2 Mapping the Problem to a Multichoice Multidimensional Knapsack Problem (MMKP)
	6.1. Instance Generation
	6.2. Experimental Setup and Procedure
	Table 1. Parameters used in the Experiments

	7. Results
	8. Discussion
	8.1 Quality of the Solutions
	Table 4. Comparison of the Quality of Solution with Instance size

	8.2. Computational Effort and Performance Rate of Solutions
	9.1. Optimal Allocation in a resource constrained environment
	9.2. Monitoring Runtime Information of Components
	9.2. Managing the Provisioning and Decommissioning of Components
	We intend on testing the MMKP problem instances further using various metaheuristic types (e.g., genetic and estimated distribution algorithms) and combinations (e.g., simulated annealing merged with genetic algorithm) with the aim of identifying the ...
	Conflict of Interest

	Acknowledgment
	References

