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 Tenants associated with a cloud-hosted application seek to reduce running costs and 
minimize resource consumption by sharing components and resources. However, despite 
the benefits, sharing resources can affect tenant’s access and overall performance if one 
tenant abruptly experiences a significant workload, particularly if the application fails to 
accommodate this sudden increase in workload. In cases where a there is a higher or 
varying degree of isolation between components, this issue can become severe. This paper 
aims to present novel solutions for deploying components of a cloud-hosted application 
with the purpose of guaranteeing the required degree of multitenancy isolation through a 
mathematical optimization model and metaheuristic algorithm. Research conducted 
through this paper demonstrates that, when compared, optimal solutions achieved through 
the model had low variability levels and percent deviation. This paper additionally provides 
areas of application of our optimization model as well as challenges and recommendations 
for deploying components associated with varying degrees of isolation. 
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1. Introduction  

Designing and planning component deployment of a cloud-
hosted application with multiple tenants demands special 
consideration of the exact category of components that are to be 
distributed, the number of components to be shared, and the 
supporting cloud resources required for component deployment. 
[1] This is because there are different or varying degrees of 
multitenancy isolation. For instance, in components providing 
critical functionality, the degree of isolation is higher compared to 
components that only require slight re-configuration prior to 
deployment [2]. 

A low degree of isolation actively encourages tenants to share 
resources and components, resulting in lower resource 
consumption and reduced operating costs, however, there are 
potential challenges in both security and performance in the 
instance where one component sees a sudden workload surge. A 
high degree of isolation tends to deliver less security interference, 
although there are challenges instigated by high running costs and 
resource consumption in view that these tenants are not sharing 

resources [2]. Consequently, the software architect's main 
challenge is to first identify solutions to the opposing trade-off of 
high degrees of isolation  (including excessive resource 
consumption issues and high operating costs), versus low degrees 
of isolation (including performance interference issues).   

Motivated by these key challenges,  this paper presents a 
model for the deployment of components which provides 
exemplary solutions specific to cloud-based applications and aims 
to do so in a way that secures the segregation of multitenancy. The 
approach for this research includes creating an optimization 
model which is mapped to a Multichoice Multidimensional 
Knapsack Problem (MMKP) before solutions are tested using a 
metaheuristic. The approach is analysed through comparing the 
different optimal solutions achieved which then collectively 
compose an exhaustive search tool to analyse the solutions 
capacity specifially for minor problem occurance, in its entireity.  

This paper and its research questions: "How can we optimize 
the way components of a cloud-hosted service is deployed for 
guaranteeing multitenancy isolation?”. It is possible to 
guarantee the specific degree of isolation essential between 
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tenants, whilst efficiently managing the supporting resources at 
the same time through component deployment optimization of the 
cloud-based application. 

This paper expands on the previous work conducted in [3]. 
The core contributions of this article are:  
1. Mathematical optimization model providing optimal 
component deployment solutions appropriate for cloud-based 
applications to guarantee multitenancy isolation. 
2. Mathematical equations inspired by open multiclass queuing 
network models to determine the average request totals for 
granting component and resource access. 
3. Variants of metaheuristic solutions to deliver optimization 
model resolutions attributed to simulated annealing. 
4. Guidelines and recommendations for component deployment 
in cloud-hosted applications seeking to guarantee required levels 
of multitenancy isolation. 
5. Application areas of a cloud-hosted service where it is possible 
for the optimization model to be directly applied to component 
deployment with the aim to guarantee required degree of 
multitenancy isolation. 
 

The remainder of this paper is structured as outlined below: 
Section II focuses on the challenge of identifying and delivering 
near-optimal component deployment solutions specific to cloud-
hosted applications that guarantee the essential levels of 
multitenancy isolation; Section III presents the Optimisation 
Model; the following section presents the Metaheuristic Solution;  
Section V considers the Open Multiclass Queuing Model; Section 
VI evaluates the results and presents the experimental setup; 
Section VII discusses the results;  Section VIII discusses the 
model’s application areas for the model; and Section IX conclude 
with recommendations of future work. 

2. Optimising the Deployment of Components of Cloud-
hosted Application with Guarantee for Multitenancy Isolation 
 
This section examines multitenancy isolation, the conflicting 
trades-offs in delivering optimal deployment influenced by the 
varying degrees of multitenancy isolation, and other associated 
research on cloud resources and optimal allocation of such 
resources. 
 
2.1. Multitenancy Isolation and Trade-offs for Achieving Varying 
Degrees of Isolation 
 

In a multitenant architecture (also referred to as multitenancy), 
multiple tenants are able to access a single instance of a cloud 
service. These tenants have to be isolated when there are changes 
in workload.  In the same way that it is possible to isolate multiple 
tenants, it is also possible to isolate multiple components of a 
cloud-hosted application.  
In this paper, we define “Multitenancy Isolation” as a way of 
ensuring that other tenants are not affected by the required 
performance, stored data volume, and access privileges of one of 
the tenants. accessing the cloud-hosted application [3] [4]. 
 

A high degree of isolation is achieved when there is little or no 
impact on other tenants when a substantial increase in workload 
occurs for one of the tenants, and vice versa. The three cloud 
patterns that describe the varying degrees of multitenancy 
isolation are:  
(i) Dedicated Component: tenants cannot share components; 
however, a component may be associated with one or more 
tenants or resources; 
(ii) Tenant-isolated Component: tenants can share resources or 
components, and isolation of these is guaranteed; and  
(iii) Shared Component: tenants can share resources or 
components, but these remain separate from other components. 
 
If components required a high degree of isolation between them, 
then each tenant requires that each component is duplicated. This 
can be expensive and also lead to increased resource consumption. 
On the other hand, there could also be a need for a low degree of 
isolation which could, in contrast, reduce cost and resource 
consumption. However, any changes in workload levels that the 
application cannot cope with risk interference [4]. The question, 
therefore, is how optimal solutions can be identified to resolve 
trade-offs when conflicting alternatives arise. 
 
2.2. Related Work on Optimal Deployment and Allocation of 
Cloud Resources 

Research on optimal resource allocation in the cloud is quite 
significant, however, much fewer studies focus on optimal 
solutions in relation to component deployment across cloud-based 
applications in a way which guarantees the required degree of 
multitenancy isolation. Researchers in [5] and [6] aim to keep 
cloud architecture costs to a minimum by implementing a 
multitenant SaaS Model. Other authors [7] concentrated on 
bettering execution times for SaaS providers whilst reducing 
resource consumption using evolutionary algorithms opposed to 
traditional heuristics. A heuristic is defined in [8] for the capacity 
planning purposes for the SaaS inspired by a utility model. The 
aim of the utility model was to generate profit increases and so it 
largely concentrated on business-related aspects of delivering the 
SaaS application. 

It is explained in [9] how optimal configuration can be 
identified for virtual servers, such as using certain tests to 
determine the required volumes of memory for application 
hosting. Optimal component distribution is discussed and 
analyzed by [10] in relation to virtual servers. Research conducted 
in [11] is of a similar nature to this paper in that it attempts to 
reduce costs (using a heuristic search approach is inspired on hill 
climbing), specifically in relation to the use of VMs from an IaaS 
provider with limitations around SLAs response time. 

The studies noted above predominantly focus on scaling back 
costs associated with cloud architectural resources. The use of 
metaheuristics is not considered in these studies in delivering 
optimal solutions that can guarantee the required degree of 
multitenancy isolation. Additionally, previous research involving  
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optimization models have operated with one objective; an 
example is where [11] look to minimize VM operational costs. 
For this paper’s model, a bi-objective case is used (i.e., 
maximising the required degree of multitenancy isolation and 
number of requests permitted to access a component). Thereafter, 
a modern metaheuristic inspired by simulated annealing is used to 
solve the model. 

3. Problem Formalisation and Notation 

This section defines the problem and explains the process of 
mapping it to a Multichoice Multidimensional Knapsack Problem 
(MMKP). 

3.1. Description of the Problem 
 
Assuming a tenant has multiple components associated with 

the same supporting cloud infrastructure. A team may represent a 
team or department, a company with a responsibility to design a 
cloud-based application, its components, and underlying 
processes. Components varying in size and function has to 
integrate with their cloud-hosted application to achieve effective 
deployment in a multitenant style. It is also possible to define 
component categories based on different features, such as 
function, for example, processing or storage. Within these 
categories, different components are likely to have differing 
degrees of isolation enabling some components to deliver the 
same function which can hence be accessed and used by multiple 
tenants, opposed to other components which may be solely 
allocated to certain tenants or departments. 
 

Every component within an application needs a particular 
allocation of resources from the cloud infrastructure in order to 
support the volume of requests received. In instances where one 
component in the application experiences surges in workload, 
then it must be considered how the designer can choose 
components to deliver optimal deployment to effectively respond 
to the sudden changes in such a manner that: (i) maximises 
component degrees of isolation through ensuring they behave in 
the same way as components of other tenants, thus, isolating 
against one and other; and (ii) maximises the total requests 
permitted to access and use each components. 
 
3.2 Mapping the Problem to a Multichoice Multidimensional 
Knapsack Problem (MMKP) 

The above mentioned optimal component deployment problem 
can be closely linked to a 0-1 Multichoice Multidimensional 
Knapsack Problem (MMKP). An MMKP is a variant of the 
Knapsack Problem commonly depicted as a member of the NP-
hard class of problems. For the purpose of this paper, the problem 
of focus can be formally defined as: 

Definition 1 (Optimal Component Deployment Problem): 
Consider that there are N groups of components (C1,...,CN) with 
each group having ai (1 ≤ i ≤ N) components useful for designing 
(or integrating with) a cloud-hosted application. Each component 

of the application is affiliated with: (i) the degree of isolation that 
is required between components (Iij); (ii) the rate at which requests 
arrive to the component λij; (iii) the service demand of resources 
required to support the component Dij; (iii) the average request 
totals permitted to access the component Qij and (iv) resources for  
supporting the component, rij = rij

1 ,rij
2 ,...,rij

n . For the cloud to 
properly support all components, a certain volume of resources 
are required; the total number of resources needed can be 
calculated as R = (R1,R2,...,Rn).  

The aim of an MMKP is to choose one component present in 
each category for deployment to the cloud in a manner that 
ensures that if one component sees sudden increases in load, then 
the: (a) the degree of isolation of other components is maximized;         
(b) the total requests permitted to access the component and 
application is maximised without using more resources than are 
actually available. 

Definition 1 identifies two objectives within the problem. An 
aggregation function is used to convert the multi-objective 
problem into a single-objective because of merging the two 
objective functions merge (i.e., g1=degree of isolation, and 
g2=number of requests) into one single objective function (i.e., 
g=optimal function) in a linear way. Because the optimal function 
of this study is linear, a priori single weight strategy is employed 
to aid defining the weight vector selected based on the decision 
maker’s individual preferences [12]. This paper also adopts the 
approach discussed in [12] for computing the absolute percentage 
difference (see section 7.1), the target solutions used to compare 
against the optimal solution (see section 7.2), and the use of the 
number of optimal function evaluations as an alternative to 
measuring the computational effort of the metaheuristic. 

Therefore, the purpose is redefined as follows: to deliver a 
near-optimal solution for component deployment to the cloud-
based application that also fulfils system requirements and 
achieves the best value possible for optimal function, G. 

Definition 2 (Optimal Function): For a cloud-hosted application 
architect, the main issues impacting the optimal deployment of 
components are changes to workload, which can be expressed as: 

� � 𝑔𝑔𝑖𝑖𝑖𝑖 . 𝑎𝑎𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖 ∊ 𝐶𝐶𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 

Subject to:        

� � 𝑟𝑟𝑖𝑖𝑖𝑖𝛼𝛼 . 𝑎𝑎𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖 ∊ 𝐶𝐶𝑖𝑖

𝑁𝑁

𝑖𝑖=1

≤  𝑅𝑅𝛼𝛼(𝛼𝛼 = 1, 2, … ,𝑁𝑁)                                          (1) 

� 𝑎𝑎𝑖𝑖𝑖𝑖 = 1
𝑁𝑁

𝑖𝑖 ∊ 𝐶𝐶𝑖𝑖

 

 

𝑎𝑎𝑖𝑖𝑖𝑖 ∈ 0,1 (i = 1, 2 ,…, N), j ∊ 𝐶𝐶𝑖𝑖                                      
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where (i) aij is fixed at 1 if component j is chosen from group Ci 

and 0 otherwise; (ii) gij is determined by a weighted calculation of 
parameters involving the degree of isolation, average requests 
permitted to access a component, and penalty for constraint 
violations. 

𝑔𝑔𝑖𝑖𝑖𝑖 =  �𝑤𝑤1 ×  𝐼𝐼𝑖𝑖𝑖𝑖� + �𝑤𝑤2 ×  𝑄𝑄𝑖𝑖𝑖𝑖� −  �𝑤𝑤3 ×  𝑃𝑃𝑖𝑖𝑖𝑖�                   (2) 

Specific weight values are allocated to w1, w2, and w3; namely 
100, 1 and 0.1 respectively. The allocation of weights is done 
using a method that provides preference to the required degree of 
isolation. The penalty, Pij, imposed for components that surmount 
resource cap is expressed as:  

𝑃𝑃𝑖𝑖𝑖𝑖 =  �𝑚𝑚𝑎𝑎𝑚𝑚 �0,�
𝑅𝑅𝑘𝑘 −  𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑘𝑘

𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑘𝑘 ��
2𝑛𝑛

𝑖𝑖=0

                                             (3) 

For every component (g), the degree of isolation, Iij, is 
assigned either 1, 2, or 3 indicating either shared, tenant-isolated 
or dedicated components, respectively. The sum described as: 
𝑟𝑟𝑖𝑖𝑖𝑖 =  𝑟𝑟𝑖𝑖𝑖𝑖1 , 𝑟𝑟𝑖𝑖𝑖𝑖2 , … , 𝑟𝑟𝑖𝑖𝑖𝑖𝑛𝑛  refers to the resource consumption in group 
Ci.  for each individual application component j. Total resource 
consumption 𝑟𝑟𝑖𝑖𝑖𝑖𝛼𝛼  for all application components needs to be lower 
than the total available resources in the cloud infrastructure R = 
Rα,(α = 1,...,m).  

It is presumed that the service demands at the CPU, RAM, 
Disk I/O, and the supporting bandwidth of each component can be 
identified and/or measured readily by the SaaS supplier or 
customer. This assumption enables us to calculate the number of 
requests, Qij that may be permitted access for each component 
through analysis of an open multiclass QN Model [13]. The 
following section expands further on the open multiclass network. 

4. Queuing Network (QN) Model 

Queueing network modelling is one modelling approach 
through which the computer system is depicted as a network of 
queues that can be solved in an analytic fashion. In its most basic 
form, a network of queues is an assembly of service centers 
representative of system resources, and customers representative 
of business activity, such as transactions [13]. Service centers are 
basically supporting resources for the components, such as CPU, 
RAM, disk and bandwidth. 

 
Assumptions: For the purpose of this paper, the following 
component assumptions are made: 
(i) components cannot support other applications or alternative 
system requirements, and is therefore exclusively deployed to one 
cloud-application; 
(ii) component arrival rates are separate to the main system state 
and so component requests may have significantly varied 
behaviours. 
(iii) it is possible to identify and effortlessly measure the service 
demands at the CPU, RAM, Disk, and Bandwidth supporting each 
component by both the SaaS provider and/or customer. 

(iv) sufficient resource is available to support each component 
during changes to workload, particularly during significant surges 
of new incoming requests. Ensuring sufficient resource means 
that there are no overloads during peak times where all 
components are operating. 
 

The assumptions noted above allow the study to utilise an 
open multiclass queuing network (QN) model for the purpose of 
calculating average requests permitted to reach the component, 
whilst simultaneously ensuring the required degree of isolation, 
as well as system requirements. The magnitude and intensity of 
workload volume in an open multiclass QN is determined by 
request arrival rates. The arrival rate is not typically reliant on the 
system state, and so is not reliant on the volume of other tenants 
in the system either [13]. 

Definition 3 (Open Multiclass Queuing Network Model): 
Assuming there is a total of N classes, where every class c is an 
open class with arrival rate λc. The arrival rates are symbolised as 
a vector by 𝜆𝜆 = (λ1, λ2, ... λN). The use of each component in class 
c at the center k is given by: 

𝑈𝑈𝑐𝑐.𝑘𝑘�𝜆𝜆� = 𝜆𝜆𝑐𝑐𝐷𝐷𝑐𝑐.𝑘𝑘                                                                           (4) 

To solve the QN model, assumptions are made, such as that a 
component stands for a single open class system hosting four 
service centers otherwise referred to as supporting resources, such 
as CPU, RAM, disk capacity and bandwidth. At any one service 
center (e.g., CPU), the average request totals for a specific 
component is: 

𝑄𝑄𝑐𝑐,𝑘𝑘�𝜆𝜆� =  
𝑈𝑈𝑐𝑐.𝑘𝑘�𝜆𝜆�

1 −  ∑ 𝑈𝑈𝑖𝑖.𝑘𝑘�𝜆𝜆�𝑁𝑁
𝑖𝑖=1

                                                          (5) 

Consequently, to determine the average amount of requests 
accessing the particular component, the length of the queue of all 
requests reaching all service centers (i.e., components’ supporting 
resources such as CPU, RAM, disk capacity and bandwidth) 
would be totaled. 

𝑄𝑄𝑐𝑐�𝜆𝜆� = �𝑄𝑄𝑐𝑐,𝑘𝑘

𝑛𝑛

𝑖𝑖=0

 𝜆𝜆                                                                            (6) 

5. Metaheuristic Search 

The optimisation problem as explained in the section before is 
an NP-hard problem renowned for its feasible search capacity and 
exponential growth [14]. The number of potential and feasible 
solutions that may achieve optimal component deployment and 
solve the problem can be determined using this equation: 

                       ��
𝑛𝑛
𝑟𝑟
��

𝑁𝑁
                                                                           (7) 
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The above equation, Equation 4, signifies the different ways one 
or more (r) components can be chosen from each group 
(comprising of n components) from a pool of numerous (N) 
groups of components, for the purpose of creating and integrating 
them into a cloud-hosted application upon receipt of updates or 
changes to workload by the component. Thus, to manage such 
changes to workloads, the specific number of different ways that 
one component can be selected (i.e., r=1) from each of the 20 
different groups (i.e., N=20), comprising of 10 items per group 
(i.e., n=10), approximately 10.24 x 1012 possible solutions can be 
identified. Contingent on the number of changes to workload and 
also the regularity of these, a cloud-hosted service quite large in 
size could experience a much greater volume of possible solutions. 

Therefore, to obtain an optimal solution for the identified 
optimisation problem, it is essential to use an efficient 
metaheuristic. In addition, this should be done in real-time with 
the SaaS customer or cloud architect. Two versions of a simulated 
annealing algorithm are implied: (i) SAGreedy, incorporates 
greedy principles in conjunction with a simulated annealing 
algorithm; (ii) SARandom, employs randomly propagated 
solutions in conjunction with a simulated annealing algorithm. 
Both of these versions can be effectively utilised to achieve near-
optimal solutions for component deployment. Additionally, an 
algorithm was developed for this study to generate an extensive 
search of the full solution area for a small problem size. Algorithm 
1 includes the algorithm for SA(Greedy). However, SA(Random) 
only needs a minor change to this algorithm, which will be 
described further in the following section. An extensive 
breakdown of Algorithm 1 can be viewed below: 

Algorithm 1 SA(Greedy) Algorithm 
 
1: 

 
SA (Greedy) (mmkpFile, N) 

2: Randomly generated N solutions 
3: Initial temperature fixed to T0 to st. dev. of all 

optimal solutions 
4: Create greedySoln a1 with optimal value g(a1) 
5: optimalSoln = g(a1) 
6: bestSoln = g(a1) 
7: for I = 1, N do 
8: Create neighbour soln a2 with optimal value 

g(a2) 
9: Mutate the soln a2 to improve it 
10: if a1 < a2 then 
11:      bestSoln = a2 
12: else 
13:      if random[0,1) < exp(-(g(a2) – g(a1))/T) then 
14:           a2 = bestSoln 
15:      end if 
16:        end if 
17:      Ti+1 = 0.9 * Ti  
18: end for 
19: optimalSoln = bestSoln 
20: Return (optimalSoln) 

 
 

5.1. The SAGreedy for Near-optimal Solution 

The first algorithm is a combination of simulation annealing 
and greedy algorithm which is used to obtain a near-optimal 
solution for the optimisation problem modelled as an MMKP. 
First, the algorithm extracts the key details from the MMKP 
problem instance before populating the encompassing variables 
(i.e., collections of different dimensions storing isolation values 
of isolation; average request totals; and the resource consumption 
of components). A basic linear cooling schedule is used, where 
Ti+1 = 0.9Ti. The method for prescribing and fixing the preliminary 
temperature T0 will be to randomly generate an optimal solution 
whose number is equivalent to the total number of groups (n) in 
the problem instance, multiplied by the number of iterations (N) 
used in the experimental settings before running the simulated 
annealing element of the algorithm.  

When the problem instance and/or the total iterations is low, 
the magnitude of optimal solutions created may be limited by the 
number of groups (n) in the problem instance, multiplied by total 
iterations (N) used in the experimental settings. Next, the initial 
temperature T0 is determined for the standard deviation of all 
optimal solutions (Line 2-3) through random generation. The 
algorithm then uses the greedy solution as the preliminary 
solution (Line 4) which is assumed as the best current solution. 
The simulated annealing process enhances the greedy solution 
further providing a near-optimal solution for cloud component 
deployment. 

The execution of the algorithm in its most basic form for the 
instance C(4,5,4) is explained as follows: let us imagine that the 
total number of iterations is 100, 400 (i.e., 4 groups x 100 
iterations) optimal solutions are randomly generated before 
calculating the standard deviation for all solutions. Assuming a 
value of 50.56, T0 is identified as 50. It is also assumed that the 
algorithm creates a foremost greedy solution with g(a1) = 2940.12, 
before a current random solution with g(a2) = 2956.55. The 
solution a2 will substitute a1 with probability, P =exp(-
16.43/50)=0.72, because g(a2) > g(a1). In lines 14 to 16, a random 
number (rand) is generated between 0 and 1; if rand <0.72, a2 

replaces a1 and we proceed with a2. Alternatively, the study 
continues with a1. Now, the temperature T is reduced providing 
T1 = 45 (Line 17). Iterations continue until N (that is, the identified 
number of iterations set to enable the algorithm to function), is 
reached, thus the search converges with a high probability of near-
optimal solution. 

5.2. The SA(Random) for Optimal Solutions 

Considering the SA(Random) metaheuristic version, a solution 
is also randomly generated before being encompassed within the 
simulated annealing process to provide a preliminary solution. It 
can be seen in Line 4 that rather than creating a greedy solution, a 
random solution is created. An optimal solution representative of 
a set of components with the highest total isolation value and 
number of requests permitted to reach the component access is 
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then output by the algorithm. Every time a variance in workload 
is experiences, the optimal solution alters to respond to this. 

6. Evaluation 

We describe in the section how each instance was generated as 
well as the process, procedure and set up of the experiment. 

6.1. Instance Generation 

Reflective of different capacities and sizes, a number of 
problem instances were randomly generated. Instances were 
divided into two categories determined by those cited frequently 
in current literature: (i) OR benchmark Library [15] and other 
standard MMKP benchmarks, and (ii) the new irregular 
benchmarks used in [16]. All these benchmarks were used for 
single objective problems. This study edited and modified this 
benchmark to fit into a multi-objective case through assigning 
each component with one of two profit values: isolation values 
and average number of requests [17]. 

The values of the MMKP the instance, were produced as 
follows: (i) random generation of isolation values in the interval 
[1-3]; (ii) values of component consumption of CPU, RAM, disk 
and bandwidth (i.e., the weights) were generated in the interval 
[1-9]; (iii) individual component resource limits (i.e., knapsack 
capacities for CPU, RAM, disk and bandwidth) were created  by 
halving the maximum resource consumption possible (see 
Equation 7).  

𝑐𝑐𝑘𝑘 =  
1
2

 ×   𝑚𝑚  ×   𝑅𝑅                                                                         (8) 

An identical principle has been employed to create instances for 
OR Benchmark Library, as well as for instances used in [18] [19]. 
This research considers the total resources/constraints as four (4) 
for each group, which reflects the minimal resource requirement 
to deploy a component to the cloud. The notation for each instance 
is: C(n,r,m), representing the number of groups, the amount of 
components in each group, and resource totals. 

6.2. Experimental Setup and Procedure 

For consistency, all experiments were set up and operated 
using Windows 8.1 on a SAMSUNG Laptop with an Intel(R) 
CORE(TM) i7-3630QM at 2.40GHZ, 8GB memory and 1TB 
swap space on the hard disk. Table I outlines the experimental 
parameters. The algorithm was tested using different sized 
instances of different densities. In relation to large instances, it 
was not possible to conduct an exhaustive search due to a lack of 
memory resource on the machine used.  

As a result of this limitation, the MMKP instance was 
implemented first, C(4,5,4), to provide a benchmark for analysis 
to enable algorithm comparison. 

 

Table 1. Parameters used in the Experiments 

Parameters Value 
Isolation Value [1,2,3] 
No. of Requests [0,10] 
Resource 
consumption 

[0,10] 

No. of Iterations N=100 (except Table 4) 
No. of Random 
Changes 

5 

Temperature T0 = st.dev of N randomly generated 
solns. 

Linear Cooling 
Schedule 

Ti+1 =0.9Ti 

 
7. Results  

Section 7 discusses the experiment results. 

7.1 Comparison of the Obtained Solutions with the Optimal 
Solutions 

The results delivered by algorithms SA(Greedy) and 
SA(Random) were initially compared with the optimal solutions 
generated by an exhaustive search for a small problem instance in 
the entire solution space (i.e., C(4,5,4)). Table 2 and Table 3 
portray the findings. The instance id used is noted in Column 1 of 
Table 2. The second, third and fourth columns respectively 
highlight the optimal function variables as (FV/IV/RV), 
representing the optimal function value, isolation value, and 
number of permitted requests, for Optimal, SA(Random) and 
SA(Greedy) algorithms. The first and second columns of Table 3 
depict a proportion of the optimal values for SA(Random) and 
SA(Greedy) algorithms, respectively. The final two columns note 
the absolute percentage difference, indicative of the solution 
quality, for SA(Random) and SA(Greedy) algorithms, which is 
measured as follows: 

                                      
|𝑓𝑓(𝑠𝑠) − 𝑓𝑓(𝑠𝑠∗)|

𝑓𝑓(𝑠𝑠∗)
                                              (9) 

                                                                                      
where s is the obtained solution and s* is the optimal solution 
generated by the exhaustive search. 

It is clear that SA(Greedy) and SA(Random) provide very 
similar results. Solutions identified for SA(Random) are almost 
100% close most of the time to their optimal solution, and over 
83% in a smaller proportion of cases whilst in just one occurrence 
it was below 66%.  SA(Greedy) also delivered nearly 100% close 
solutions created to the optimal solution in a considerable number 
of cases, and more than 83% in others. Overall, SA(Greedy) 
delivered better results than SA(Random) when considering 
percent deviation from the optimal solution. 

7.2 Comparison of the Obtained Solutions to a Target Solution 

It was not possible to run instances greater than C(4,5,4) 
because of hardware limitations (i.e., CPU and RAM).  
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Consequently, the results were compared to a target solution. 
The target solution for percent deviation and performance rate 
was determined as (n x max(I) x w1) and ((n x max(I) x w1) + 
(0.5 x (n x max(Q) x w2))), respectively. So, for instance 
C(150,20,4), the target solution for computing percent deviation 
sit at 45,000. 

Table III, IV, and V demonstrates average solution behaviour: 
(i) on a significant selection of varied instances using the same 
parameters; (ii) over various runs on the same instance (with 
differing quantities of optimal evaluation); and (iii) over different 
runs on the same instance. The robustness of solutions in relation 
to their behaviour on varying types of instances using the same 
parameters was measured. Table III shows this measure and that 
solutions are strong when considering average deviation of 
solution behaviour for both the SA(Greedy) and SA(Random), as 
implied through their low variability scores.  

The average percent deviation and standard deviation (of the 
percent deviations), for SA(Greedy) is marginally greater than 
SA(Random) as a result of the significant absolute difference 
between some solutions and the reference solution. For example, 
the percent deviations of SA(Greedy) for the instances C(100,20,4) 
and C150,20,4) are higher than SA(Random). The results show 
how SA(Random) performs much better than SA(Greedy) in 
reference to small instances up to C(80,20,4). 

Table IV compares solution quality with optimal function 
evaluations. It can be determined that the overall solution quality 
is good when both algorithms are tested on large instances. Once 
again, the standard deviation for SA(Greedy) is notably lower 
than SA(Random) in addition to great percent deviation stability. 
Table V highlighted that SA(Greedy) is stronger than 
SA(Random) evidenced by the average optimal values and low 
solution variability. The performance rate (PR) was computed by 
determining the reference solution as a function of the quantity of 
optimal evaluations. The PR of SA(Greedy) is marginally higher 
than SA(Random).  

Figure I depict the relationship of solution quality relating to 
optimal values (i.e., fitness value) and the volume of optimal 
function evaluations. It can be seen from the diagram that 
SA(Greedy) benefited a little from the preliminary greedy 
solution more than SA(Random) when optimal function 
evaluations are few. Nonetheless, solution quality for both 
algorithms are better as iterations increase. Once 100 optimal 
evaluations are reached, the optimal solution stabilizes, but 
thereafter fails to show any further noticeable improvement. 

Figure 2 portrays correlations between solution quality relating 
to percent deviation and the total function evaluations. In line with 
expectations, SA(Random) reported a smaller percent deviation 
than SA(Greedy) in the majority of results, particularly in 
instances where function evaluations are few. An explanation for 
this could be the low function evaluation total used in the study. 
However, percent deviation for SA(Greedy) showed greater 
stability despite being greater than SA(Greedy)’s results. 

Table 2. Comparison of SA(Greedy) and SA(Random) with the Optimal Solution 

Inst-
id 

Optimal 
(FV/IV/RV) 

SA(R) 
(FV/IV/RV) 

SA(Greedy) 
(FV/IV/RV) 

I1 1213.93/12/24 1218/12/18 1218/12/18 

I2 1213.97/12/14 1208.99/12/9 1109/11/9 

I3 1222.99/12/23 1120/11/20 1120/11/20 

I4 1119.98/11/20 1023/10/23 1019/10/19 

I5 1219.99/12/20 1017/10/17 1017/10/17 

I6 1229.92/12/30 1020.96/10/21 1022.99/10/23 

I7 1224.90/12/25 1018/10/18 1018/10/18 

I8 1228.96/12/29 822/8/22 1224.99/12/29 

I9 1021.97/10/22 912/9/12 912/9/12 

I10 1236/12/36 1236/12/36 1236/12/36 

 
 

 
Figure 1. Relationship between Optimal Values and Function Evaluations. 

 
Figure 2. Relationship between Percent Deviation and Function evaluations. 

8. Discussion 

In Section 8 the implication of the results is discussed further 
and recommendations for component deployment of a cloud-
hosted application that guarantees multitenancy isolation are 
considered and presented. 

8.1 Quality of the Solutions 

Solution quality was measured encompassing percent 
deviation from either the optimal or reference solution. Tables II, 
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III and IV note solutions generated by SA(Greedy) which 
demonstrate a low percent deviation. The results also indicate that 
SA(Greedy) performs efficiently for large instances. However, 
Table III clearly evidences SA(Random) outperforming 
SA(Greedy) on small instances, that is, from C(5,20,4) to 
C(80,20,4). 

Table 3. Computation of a Fraction of the Obtained Solutions with the Optimal 
Solution. 

Inst-id 
SA-
R/Opt 

 SA-
G/Opt 

%D 
(SA-R) 

%D 
(SA-G) 

I1 0.995  0.995 0.48 0.48 
I2 0.996  0.914 0.41 8.65 
I3 0.916  0.916 8.42 8.42 
I4 0.913  0.910 8.66 9.02 
I5 0.834  0.834 16.64 16.64 
I6 0.830  0.832 16.99 16.82 
I7 0.831  0.831 16.89 16.89 
I8 0.669  0.997 33.11 0.32 
I9 0.892  0.892 10.76 10.76 
I10 1  1 0 0 
ST.DEV 0.097  0.064 9.73 6.43 

 

Table 4. Comparison of the Quality of Solution with Instance size 

Inst 
(n=20) 

SA-R SA-G SA-R SA-
G 

C(5) 1528/15/28 1517/15/1
7 

1.87 1.13 

C(10) 3058/30/58 3057/30/5
7 

1.93 1.9 

C(20) 6082/60/82 6002/59/1
02 

1.37 0.03 

C(40) 12182/120/1
82 

12182/120
/182 

1.52 1.52 

C(60) 18317/180/3
17 

18317/180
/317 

1.76 1.76 

C(80) 24388/240/3
88 

24380/240
/380 

1.62 1.58 

C(100) 30252/298/4
52 

30505/300
/505 

0.84 1.68 

C(150) 45648/449/7
48 

45793/450
/793 

1.44 1.76 

Avg. %D  1.54 1.42 
STD of Avg. %D  0.33 0.57 

 
8.2. Computational Effort and Performance Rate of Solutions 

Hardware limitations of the computer used for the study 
restricted evaluation and full consideration of computational 
effort for metaheuristics. On the other hand, it was still possible 
to compute algorithm performance rates as a function of optimal 
evaluation totals. Typically, the number of optimal evaluations is 

considered a computational effort indicator that is independent to 
the utilised computer system. Table V indicates that the 
performance rate of SA(Greedy) is marginally higher than 
SA(Random) when we put into consideration the total reference 
solutions achieved.  

Table 5. Comparing Solution Quality vs. No. of Optimal Evaluations 

No. of 
Iteration SA(R) SA(G) %D 

(SA-R) 
%D 
(SA-G) 

1 44242.1 45776.8 3.30 0.06 
100 45760.7 45776.9 0.02 0.06 
200 45760.7 45790 0.02 0.09 
300 45783 45790 0.07 0.09 
400 45760.7 45790 0.02 0.09 
500 45760.7 45790 0.02 0.09 
600 45770.1 45790 0.04 0.09 
700 45770.1 45790 0.04 0.09 
800 45783 45790 0.07 0.09 
900 45783 45790 0.07 0.09 
1000 45783 45790 0.07 0.09 
Worst 44242.1 45776.8 0.02 0.06 
Best 45783 45790 3.30 0.09 
Average 45632.46 45787.61 0.34 0.08 
STD 439.77 5.07 0.93 0.01 

 

8.3. Robustness of the Solutions 

Low variability was seen from the SA(Greedy) algorithm 
particularly when run with large instances, therefore suggesting it 
delivers stronger solutions than SA(Random) making SA(Greedy) 
the most suitable algorithm for real-time use in a fast-paced 
environment experiencing regular changes to workload levels. 
Figure 1 demonstrates instability in SA(Random) for a small 
amount of evaluations, although following 1,000 evaluations it 
was seen to converge eventually at the optimal solution. In 
contrast, the SA(Greedy) showed steady improvement as 
evaluations increased. 

8.4. Required Degree of Isolation 

The study’s optimisation model assumes that each component 
for deployment (or group of components) is linked to certain 
degree of isolation. By mapping the problem to a Multichoice 
Multidimensional Knapsack Problem linking each component to 
a profit values: either isolation value; or number of requests 
permitted to access a component, this was achieved. As a result of 
this, it was possible to monitor each component separately and 
independently, responding to each of their unique demands. 
Where limitations are faced, such as through cost, time or effort 
used to tag each component, a different algorithm could enable us 
to perform this function dynamically. In our research prior to this 
[20], an algorithm capable of dynamically learning the properties 
of current components in a repository was developed with this 
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information then used to associate each component with the 
required degree of isolation. 

Table 6. Robustness of Solutions over Different Runs on the Same Instance. 

Runs SA(R) SA(G) %D 
SA-R 

%D 
SA-G 

1 45767 45658 1.70 1.46 
2 45793 45744 1.76 1.65 
3 45663 45793 1.47 1.76 
4 45460 45658 1.02 1.46 
5 45567 45658 1.26 1.46 
6 45562 45793 1.25 1.76 
7 45569 45658 1.26 1.46 
8 45567 45658 1.26 1.46 
9 45682 45658 1.52 1.46 
10 45663 45767 1.47 1.70 
Worst 45460 45658 1.02 1.46 
Best 45793 45793 1.76 1.76 
Avg 45629 45705 1.40 1.57 
STD 97.67 58.40 0.22 0.13 
Perf. 
Rate 

2.0E-04 3.0E-04   

 

9. Application Areas for Utilizing the Optimization Model 

In this section, we discuss the various areas where our 
optimization model can be applied to the deployment components 
of a cloud-hosted service for guaranteeing the required degree of 
multitenancy isolation. 

9.1. Optimal Allocation in a resource constrained environment 

Our optimization model can be used to optimize the allocation 
of resources especially in a resource constrained environment. or 
where there are frequent changes in workload. This can be 
achieved by integrating our model into a load balancer/manager. 
Many cloud providers have auto-scaling programs (e.g., Amazon 
Auto scaling) for scaling applications deployed on their cloud 
infrastructure, usually based on per-defined scaling rules. 
However, these scaling programs do not have a functionality to 
provide for guaranteeing the isolation of tenants (or components) 
associated with the deployed service. It is the responsibility of the 
customer to implement such a functionality for individual service 
deployed to the cloud. In an environment where there are frequent 
workload changes, there would be a high possibility of 
performance interference. In such a situation, our model can be 
used to select the optimal configuration for deploying a 
component that maximizes the number of request that can be 
allowed to access the component while at the same maximizing 
the degree of isolation between tenants (or components).    

9.2. Monitoring Runtime Information of Components  
Another area where our model can be very useful is in 

monitoring the runtime information of components. Many 
providers offer monitoring information on network availability 

and utilization of components deployed on their cloud 
infrastructure based on some pre-defined configuration rules. 
However, none of this information can assure that the component 
is functioning efficiently and guarantees the required degree of 
multitenancy isolation on the application level. It is the 
responsibility of the customer to extract and interpret these values, 
adjust the configuration, and thus provide optimal configuration 
that guarantees the required degree of multitenancy isolation. 

Our model can be implemented in the form of a simple web 
service-based application to monitor the service and automatically 
change the rules, for example, based on previous experiences, user 
input, or once the average utilization of resources exceeds a 
defined threshold.  This application can be either be deployed 
separately or integrated into different cloud-hosted services for 
monitoring the health status of a cloud service. 

9.2. Managing the Provisioning and Decommissioning of 
Components  

The provisioning and decommissioning of components or 
functionality offered to customers by many cloud providers is 
through the configuration of pre-defined rules. For example, a rule 
can state that once an average utilization of a system resource (e.g., 
RAM, disk space) exceeds a defined threshold then a component 
shall be started. When runtime information of components is 
extracted, and made available as stated earlier, they can be used 
to make important decisions concerning the provisioning of 
required components and decommissioning of unused 
components. 

10. Conclusion and Future Work 

Within this research, to provide a further contribution to the 
current literature on multitenancy isolation and optimized 
component deployment, we have developed an optimisation 
model alongside a metaheuristic solution largely inspired by 
simulated annealing for the purpose of delivering near-optimal 
component deployment solutions specific to cloud-based 
applications that guarantee multitenancy isolation. First, an 
optimisation problem was formulated to capture the 
implementation of the required degree of isolation between 
components. Next, the problem was mapped against an MMKP to 
enable early resolution through the use of a metaheuristic. 

Results show greater consistency and dependability from 
SA(Greedy), particularly when functioning on large instances, 
whereas SA(Random) operates sufficiently on small instances. 
When considering algorithm strength, SA(Greedy) portrayed low 
variability and thus generates higher quality solutions in dynamic 
environments experiencing regular changes in workload levels. 
SA(random) appears to have greater sensitivity and instability to 
small deviations of input instances compared to SA(Greedy), 
more so in relation to large instances.  

We intend on testing the MMKP problem instances further using 
various metaheuristic types (e.g., genetic and estimated 
distribution algorithms) and combinations (e.g., simulated 
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annealing merged with genetic algorithm) with the aim of 
identifying the most efficient metaheuristic to generate optimal 
solutions to operate in a variety of cloud deployment situations. 
For future research, a decision support system will be developed 
capable of creating or integrating an elastic load balancer for 
runtime information monitoring in relation to single specific 
components in order to deliver near-optimal component 
deployment solutions specific to responses required from cloud-
hosted applications to changes in workload. This would be of 
immense value to cloud designers and SaaS customers for 
decision making around the provision and decommission of 
components. 
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