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This paper is devoted to the analysis of aircraft dynamics in the cruise
flight phase under windshear conditions. The study is conducted with
reference to a point-mass aircraft model restricted to move in a vertical
plane. We formulate the problem as a differential game against the
wind disturbances: The first player, autopilot, manages, via additional
smoothing filters, the aircraft’s angle of attack and power setting. The
second player, wind, produces disturbances that are transferred, also via
smoothing filters, into most dangerous wind gusts. The state variables
of the game are subject to state constraints representing aircraft safety
conditions related, for example, to the altitude, path inclination and
velocity. Viability theory is used to compute the so-called viability kernels,
the maximal subsets of state constraints where an appropriate feedback
strategy of the first player can keep aircraft trajectories arbitrary long
for all admissible disturbances generated by the second player. A grid
method is utilized, and challenging computations in seven dimensions
are conducted on a supercomputer system.

1 Introduction

Atmospheric conditions such as windshear continue to
be considered as a source of potentially severe conse-
quences. They are dangerous for aircraft during land-
ing or take-off, because the wind gusts can occur at
relatively low altitudes. Nevertheless, windshear is
also dangerous during the cruise flight phase because
it can lead to violation of the prescribed flight level.

In view of threats related to wind disturbances,
there is permanent interest in designing robust aircraft
guidance and control schemes (possibly for use with
autopilots). The related question consists in finding
safety domains, i.e. sets of initial states from which
the control problem can be solved in the case of worst
wind disturbance whose components lie in a known
range.

There exist a large number of works devoted to the
problem of aircraft control in the presence of severe
windshears. In particular, papers [1–6] address the
problem of aircraft control during take-off in winds-
hear conditions. In works [1] and [2], the wind velocity
field is assumed to be known. It is shown that open

loop controls obtained as solutions of appropriate op-
timization problems provide satisfactory results for
rather severe wind disturbances. Nevertheless, it is
clear that the spatial distribution of wind velocity can-
not be measured with appropriate accuracy, and there-
fore feedback principles of control design are more
realistic. Different types of feedback controls are pro-
posed in papers [3–6]. In [3], the design of a feedback
robust control is based on the construction of an ap-
propriate Lyapunov function. Robust control theory
is used in [4] to develop feedback controls stabilizing
the relative path inclination and (in [5] and [6]) for the
design of feedback controls stabilizing the climb rate.

An approach based on differential game theory (see
e.g. [7]) is presented in paper [8] in connection with the
problem of landing. A high dimensional nonlinear sys-
tem of dynamic equations is linearized and reduced to
a two-dimensional differential game using a transfor-
mation of variables. The resulting differential game is
numerically solved, and optimal feedback controls are
constructed and tested in the nonlinear model against
a downburst.

*Corresponding Author: Nikolai Botkin, Boltzmannstr. 3, 85748
Garching bei München, Germany, Email: botkin@ma.tum.de

www.astesj.com 502
https://dx.doi.org/10.25046/aj030161

http://www.astesj.com
http://www.astesj.com


N. Botkin et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 502-510 (2018)

Another method, also based on differential game
theory, is used in papers [9] and [10] to find feedback
controls that are effective against downbursts. This ap-
proach assumes the computation of the value function,
which is a viscosity solution (see. e.g. [11] and [12]) of
an appropriate Hamilton-Jacobi equation. The numer-
ical implementation utilizes dynamic programming
techniques described in [13] and [14]. The case of
known wind velocity field as well as the case of un-
known wind disturbances are considered.

Recent investigations [15] and [16] utilize a method
(see [17]) for the fast computation of rough approx-
imations of solvability sets in linear conflict control
problems. Using techniques of sequential linearization,
this method is applied to nonlinear aircraft dynamics
to design an appropriate control for take-off in the
presence of downbursts.

The current paper addresses the problem of re-
taining trajectories in an appropriate flight domain
(AFD) corresponding to the cruise flight phase (cf. [18]
and [19]). Viability theory (see e.g. [20]) provides nu-
merical methods (see e.g. [21], [22], and the Appendix)
for finding the viability kernel, i.e. the largest set of
initial states lying in the AFD from which viable tra-
jectories emanate. More precisely, it includes all initial
states for which there exists a feedback control that
generates trajectories remaining in the viability ker-
nel for all possible admissible wind gusts. In the case
where the initial state does not belong to the viability
kernel, there exists a method of designing a wind dis-
turbance such that all trajectories violate the AFD for
all possible controls.

As for wind conditions, it is assumed that only
bounds on the wind velocity components are imposed.
The dynamics of the aircraft will be considered as a dif-
ferential game (cf. [9] and [10]) where the first player
chooses control inputs, whereas the second player
forms the worst wind disturbance. It is assumed that
the first player is able to measure the current state vec-
tor, whereas the second player can measure both the
current state vector and the current control (“future”
values are not available) of the first player. There-
fore, the second player may use the so-called feedback
counter strategies (see [7]).

The current paper has common features with the
open-access publication [23] concerning the model de-
scription and solution method. It should be noted that
the publication [23] is mainly focused on theoretical
fundamentals of the differential game approach. Re-
garding computational results, paper [23] formulates a
problem of constructing the viability kernel in seven di-
mensions and performs several steps of the algorithm
to show its feasibility. In contrast, the current paper ad-
dresses aspects of implementation on large scale grid
computers and completely solves the above mentioned
seven-dimensional problem including simulation of
optimal trajectories.

The paper is structured as follows:
Section 2 outlines a point-mass aircraft model de-

scribing the vertical motion of a generic modern re-
gional jet transport aircraft. The model is closely re-

lated to the one described in paper [23]. The difference
consists in a more clear method of deriving the dynam-
ics equations.

In Section 3, state constraints related to the cruise
flight phase are formulated, and the corresponding
computed viability kernels are demonstrated through
their three-dimensional sections. Additionally, trajec-
tories yielded by an optimal feedback strategy, work-
ing against an optimal control of the disturbance, are
shown. It should be noted that an optimal control of
the disturbance can be constructed either as counter
or pure feedback strategy because the so called saddle
point condition holds for the differential game under
consideration.

Section 4 outlines some aspects of parallel im-
plementation of the computational method on a su-
percomputer system. The parallelization principles
and data flow inside and between compute nodes are
sketched. The novelty of our approach and comparison
with existing software tools are discussed.

Section 6 (Appendix) briefly outlines the concept of
differential games and viability kernels. Grid schemes
for the computation of them are sketched. The details
can be found in [23].

2 Model equations

In this section, a point-mass model representing the
vertical motion of a generic modern regional jet trans-
port aircraft is considered. Table 1 introduces eu-
clidean coordinate systems (COS) that are necessary to
compute the forces exerted on the aircraft. The origins
of COSs are located either at the aircraft gravity cen-
ter (CG) or at a fixed reference point (O) on the earth
surface.

Table 1: Aircraft coordinate systems
COS Index x-axis Origin
Local N Parallel to the Earth’s

surface (xN ) and up-
wards (zN )

O

Kinematic K In direction of
−−→
VK CG

Aerodynam. A In direction of
−−→
VA CG

Thrust P In positive direction
of the symmetry axis
of the turbine (aft
looking forward)

CG

Body Fixed B In direction of the
nose and in the sym-
metry plane of the air-
craft

CG

Here, ~VK and ~VA are kinematic and aerodynamic
aircraft velocities, respectively. The angles defining
the relationship between the coordinate systems are
the following (see also Figure 1):
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αK the kinematic angle of attack,
αA the aerodynamic angle of attack,
γK the kinematic path inclination angle,
σ the thrust inclination angle.

Parallel to the ground surface

Figure 1: Aircraft coordinate systems and angles

Matrices for the transformations K → N (Kine-
matic to Local ), A→ B (Aerodynamic to Body), B→ K
(Body to Kinematic), and P → B (Thrust to Body) are
defined as follows:

MNK =
[
cos(γK ) −sin(γK )
sin(γK ) cos(γK )

]
,

MBA =
[
cos(αA) −sin(αA)
sin(αA) cos(αA)

]
,

MKB =
[
cos(αK ) −sin(αK )
sin(αK ) cos(αK )

]
,

MBP =
[
cos(σ ) −sin(σ )
sin(σ ) cos(σ )

]
.

The position propagation is given in the local coor-
dinate system (N ), whereas the translation dynamics
are derived in the kinematic coordinate system (K).
The model equations read as follows:

ẋN = VK cos(γK ) , (1)

żN = VK sin(γK ) , (2)

V̇K =
XT
m
, (3)

γ̇K =
ZT
mVK

. (4)

Here, XT and ZT denote the components of the total
force ~FT represented in the kinematic coordinate sys-
tem (K), and the notation m stands for the aircraft
mass. As usually, ~FT comprises aerodynamic, propul-
sion, and gravitation forces:

~FT = ~FA + ~FP + ~FG.

Aerodynamic forces. They are defined as follows:

~FA =MKBMBA

[
CD
CL

]
1
2
ρV 2

A S,

where CD and CL are the drag and lift coefficients, re-
spectively, ρ = ρ(h) is the air density (depends on the

altitude), VA the aerodynamic velocity, and S the wing
reference area.

The lift and drag coefficients CD(αA,M) and
CL(αA,M) are taken in the form:

CD (αA,M) = cD1 + cD2 αA + cD3 M + cD4 α
2
A + cD5 αAM

+cD6 M
2 + cD7 α

3
A + cD8 α

2
AM + cD9 αAM

2, (5)

CL(αA,M) = cL1 + cL2αA + cL3M + cL4α
2
A + cL5αAM

+cL6M
2 + cL7α

3
A + cL8α

2
AM + cL9αAM

2, (6)

where the coefficients cDi and cLi , i = 1, ...9 are deter-
mined from least square fitting to experimental data.

The absolute value, VA, of the aerodynamic velocity
can be derived using its relation to the kinematic veloc-
ity ~VK in the Local frame (N ) and the wind velocities
Wx and Wz in the xN and zN directions, respectively.
Therefore,

VA =

∥∥∥∥∥∥(~VK )N −
[
Wx
Wz

]∥∥∥∥∥∥ , (7)

and finally, using the matrix MNK , this implies the
formula

V 2
A = (VK cosγK −Wx)2 + (VK sinγK −Wz)

2.

The aerodynamic angle of attack αA is computed
as follows:

αA = arctan
(
wA
uA

)
,

where uA and wA are xB and zB-components of the
aerodynamic velocity, respectively.

The Mach number M is defined as follows:

M =
VA
c
, c =

√
κRT (h),

where c is the speed of sound, κ the adiabatic index
for air, R the gas constant for ideal gases, and T (h) the
temperature of air at the altitude h. See [23] for more
details.
Propulsion Forces. Thrust forces are modeled consid-
ering a two-engine setup. Thus,

~FP = 2MKBMBP~FPnet, ~FPnet =
[
fV (δT ,M)
fγ (δT ,M)

]
,

where δT ∈ [0,1] is the thrust setting, and the functions
fV and fγ are approximated similar to formulas (5) and
(6), with δT instead of αA. See [23] for more details.

Gravitation Force. For a simple gravitational model
with constant acceleration g, the corresponding force
is computed as:

FG =MKN

[
0
−g

]
,

where MKN is the inverse (transpose) of MNK.
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The following two equations are added to the dy-
namics (1)-(4) to exclude jumps in the controls:

α̇K = α̃K , δ̇T = δ̃T (8)

Furthermore, the following equations produce
smoothing of wind disturbances:

Ẇx = −kw(Wx − W̃x), Ẇz = −kw(Wz − W̃z), (9)

where the time constant, kw, is chosen as kw = 1s−1.

3 Problem setting and simulation
results

Problem. The model consists of equations (2), (3), (4),
(8), and (9). Thus, the state vector has seven variables:
zN , VK , γK , αK , δT , Wx, and Wz. The controls are as-
sociated with the rate of the angle of attack, α̃K , and
the rate of the thrust setting, δ̃T . Their instantaneous
changes are permitted. The disturbances are now as-
sociated with the artificial variables W̃x and W̃z that
are inputs of the filters (9). Thus, the physical wind
components Wx and Wz do not exhibit instantaneous
jumps.

The following constraints on the controls and dis-
turbances are prescribed:

α̃K ∈[−5,5]deg/s, δ̃T ∈ [−0.3,0.3]1/s,

|W̃x | ≤ 5m/s, |W̃z | ≤ 5m/s,
(10)

and the following state constraints are imposed:

hN := zN − h0 ∈ [−90,90]m,

VK ∈ [100,200]m/s, |γK | ≤ 10deg,

αK ∈ [0,16]deg, δT ∈ [0.3,1],

(11)

where h0 = 10000m being the cruise flight altitude.
Additionally, the state constraints |Wx | ≤ 5m/s and

|Wz | ≤ 5m/s hold automatically because of equations
(9) and the constraints (10).

In the numerical construction, the box [−100,100]×
[90,210]× [−15,15]× [−4,20]× [0.2,1.2]× [−6,6]× [−6,6]
of the space (hN ,VK ,γK ,αK ,δT ,Wx,Wz) was divided in
200×120×30×24×14×12×12 grid cells. The sequence
of time steps, {δ`}, was chosen as δ` ≡ 0.01, and the
computations were performed until

∣∣∣Vh`+1 −V
h
`

∣∣∣ ≤ 10−5

for all grid nodes. Totally, 4471 steps of the algorithm
(19) were done. The computation has been done on
the SuperMUC system at the Leibniz Supercomput-
ing Centre of the Bavarian Academy of Sciences and
Humanities. The computation was distributed over
100 compute nodes with 16 cores per node, which is
regarded as “middle task” on the SuperMUC system.
The runtime was about 40 h.

Figures 2-4 show different three-dimensional sec-
tions of the seven-dimensional viability kernel. Fig-
ures 5-7 respectively demonstrate the same three-
dimensional sections and the corresponding projec-
tions of two optimal trajectories emanating from points

lying in the viability kernel. The start point of trajec-
tory 0 lies near to the boundary of the viability kernel,
whereas trajectory 1 starts from a point lying deep
inside of the viability kernel. The trajectories are com-
puted when the control uses its optimal feedback strat-
egy, and the disturbance utilizes its optimal counter
feedback strategy (see the Appendix). The time step
size used in the simulation of the trajectories was equal
to 0.01. It is seen that the trajectories go to their attrac-
tion cycles and remain there. The simulation time inter-
val is [0,15min]. Figure 8 shows a three-dimensional
section of a smaller viability kernel corresponding to
the shrinkage of the state constraints (11) by the factor
0.7. The corresponding three-dimensional projection
of two optimal trajectories are shown. It is seen that the
disturbance can keep trajectory 0 outside the reduced
viability kernel because the start point lies outside of
it.

γK
VK

hN

Figure 2: A three-dimensional section of the viability
kernel: αK = 8, δT = 0.65, Wx = 0, and Wz = 0.

αK
VK

hN

Figure 3: Another three-dimensional section of the
viability kernel: γK = 0, δT = 0.65, Wx = 0, and Wz = 0.
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δT

VK

hN

Figure 4: One more three-dimensional section of the
viability kernel: γK = 0, αK = 8, Wx = 0, and Wz = 0.

γK
VK

hN

Figure 5: The section from Figure 2 and projections
of two trajectories generated by an optimal feedback
strategy of the control and an optimal counter feed-
back strategy of the disturbance. The start points are
marked with bullets.

αK
VK

hN

Figure 6: The same section as in Figure 3 and projec-
tions of the same two trajectories as in Figure 5.

δT

VK

hN

Figure 7: The same section as in Figure 4 and projec-
tions of the same two trajectories as in Figure 5.

γK

VK
hN

Figure 8: The section (αK = 8, δT = 0.65, Wx = 0, and
Wz = 0) of a smaller viability set corresponding to the
shrinkage of the state constraints by the factor of 0.7.
Projections of the same trajectories as in in Figure 5 are
shown. Since the start point 0 does not belong to this
viability set, the disturbance can keep the trajectory
outside of it.

4 Implementation Aspects

4.1 Grid Computing, Parallelization and
Scaling

We use a self developed software code to implement
the algorithms of the grid scheme outlined in Ap-
pendix 6.3. The code is parallelized using a mixed
MPI/OpenMP technique. The first two dimensions of
the grid are decomposed, whereas the other dimen-
sions remain unmodified. A compute node cartesian
topology (see Figure 9) is then created such that each
compute node corresponds to a grid cylinder. Ad-
ditionally, each grid cylinder is supplied with ghost
nodes that allow us to compute divided differences
(18) used e.g. in the algorithm (19). In Figure 9, the
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lines connecting the compute nodes show the data flow
supported by MPI. The parallelization inside of each
compute node (i.e. inside a grid cylinder) is supported
by OpenMP.

The problem considered in this paper deals with a
seven-dimensional grid of 200×120×30×24×14×12×12
cells. Each of the first two dimensions was divided into
10 parts. Thus, there were 100 grid cylinders, each of
size 20× 12× 30× 24× 14× 12× 12, plus the necessary
ghost grid nodes. Therefore, the required memory per
compute node was equal to about 8 GB.

Our observations show a good scaling behavior (see
Table 2). The results were obtained for the problem of
computing the viability kernel in five dimensions on
a 200× 120× 30× 24× 14 grid. The relative speedup
normalized to 32 cores and absolute timing of 30000
steps are shown.

Figure 9: Compute node cartesian topology used in our
applications.

Table 2: Scaling behavior of the code
# of Linear Observed Wall Perfor-

cores predic- scaling time mance/core
tion of [h] [GFlop/s]
scaling

32 1 1 9.7 20
128 4 3.5 2.8 17.5

1600 50 38 0.25 15.2

4.2 Novelty of the method used

This paper utilizes a new method for computing viabil-
ity kernels, which is based on the results of paper [21].
It is proven in [21] that the viability kernel is the Haus-
dorff limit of the sets {x : V (x, t) ≤ 0} as t→−∞, where
V (x, t) is the value function (see [7]) of a state con-
strained differential game .

The numerical implementation of this method re-
quires a theoretical basis and a stable numerical pro-
cedure for the treatment of transient Hamilton-Jacobi
equations related to differential games with state con-
straints. Such a theoretical basis is given in paper [13]
where the conventional conditions for viscosity solu-
tions are modified to account for state constraints. This
theoretical background is numerically implemented

in [13] and [14], which results in monotone stable grid
scheme (17) and (19). This enables us to perform a
large number of time steps, usually several thousands.

Another new feature is that the corresponding
software code is deeply parallelized using hybrid
MPI/OpenMP techniques and adapted to run on a
supercomputer system. Moreover, diverse modified
variants of the code, based on sparse representations
of grid functions, are tested.

4.3 Comparison with existing software

The well known software for solving Hamilton-Jacobi
equations is the Level Set Method Toolbox (LSMT) de-
scribed in [24]. This tool is really appropriate for solv-
ing rather general problems. However, it is not indi-
cated in the manual whether the LSMT can compute
viability kernels for differential games with state con-
straints. Moreover, according to the manual, the LSMT
is not parallelized, whereas our software runs on a
multi-node system.

5 Conclusion

This investigation shows that methods of differential
games theory and viability theory can by applied to
nonlinear aircraft models to investigate potential con-
trol abilities in the presence of wind disturbances. The
new feature of our approach is the consideration of vi-
ability kernels for differential games. Feedback strate-
gies of the players can be found from limiting grid
“value functions” defining viability kernels (cf. Ap-
pendix). It is important that the amount of stored
data is relatively small, which permits to implement
the computed feedback strategies on a flight simula-
tor. Further research will be focused on the treatment
of models with more state variables, which will allow
us to consider more realistic problems. Moreover, ac-
counting for additional sources of uncertainty such as
sensor errors or modeling uncertainties is planned.

Acknowledgment This work was supported by the
DFG grants TU427/2-1 and HO4190/8-1. Computer
resources for this project have been provided by the
Gauss Centre for Supercomputing/Leibniz Supercom-
puting Centre under grant: pr74lu.

6 Appendix

This section briefly summarizes a method presented
in [23] for computing viability kernels. Such a sum-
mary should help to provide a self-contained presenta-
tion.

6.1 Differential game

Consider a conflict control system with the au-
tonomous dynamics

ẋ = f (x,u,v), x ∈ Rn, u ∈ P ⊂ Rp, v ∈Q ⊂ Rq. (12)
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Here; x stands for the state vector; u and v denote con-
trol inputs of the first and second players, respectively;
and the compact sets P and Q describe constraints
imposed on the control and disturbance variables, re-
spectively. Further, it is assumed that all functions of
x have global properties. For example, the right-hand
side f is supposed to be bounded, continuous, and
Lipschitzian in x on Rn × P ×Q.

In the following, it is assumed that the Isaacs saddle
point condition

min
u∈P

max
v∈Q
〈s, f (x,u,v)〉 = max

v∈Q
min
u∈P
〈s, f (x,u,v)〉, (13)

is true for all s ∈ Rn and x ∈ Rn. Note that this condi-
tion holds for the problem under consideration because
controls and disturbances are additively separated in
the model equations.

6.2 Viability kernel

For any v ∈Q, consider the differential inclusion

ẋ ∈ Fv(x) = co{f : f (x,u,v),u ∈ P } (14)

Let G ⊂ Rn be a compact set such that G = intG,
this set will play the role of the state constraint. Let T
be an arbitrary fixed time instant, and N = (−∞,T ]×G.
For any subset W ⊂ N and any time instant t ≤ T ,
define the time section of W through the relation
W (t) := {x ∈ Rn : (t,x) ∈W }.

Definition 1 (u-stability property [7]) A set W ⊂ N
is called u−stable on (−∞,T ] if for any position (t∗,x∗) ∈
W , for any time instant t∗ ∈ [t∗,T ], for any fixed v ∈ Q,
there exists a solution x(·) of the differential inclusion (14)
with the initial condition x(t∗) = x∗ such that (t∗,x(t∗)) ∈
W .

The next proposition is taken as a basis of the defi-
nition of viability kernels.

Proposition 1 [see [21] for the proof] Let W be a maxi-
mal u-stable subset of N = (−∞,T ]×G. If W (t) , ∅ for
any t ≤ T , then the set

K =
⋂

t≤T
W (t)

is nonempty, and W (t)→ K in the Hausdorff metric as
t→−∞. The set K is called the viability kernel of G and
denoted by V iab(G).

Proposition 2 Let t̄ > 0 be an arbitrary time instant, and
x∗ ∈ V iab(G). Then there exists a feedback strategy A(x)
of the first player such that all trajectories yielded by A
and started at t = 0 from x∗ remain in the set V iab(G)
for all t ∈ [0, t̄] and any actions of the second player. If
x∗ < V iab(G), then there exists a feedback strategy B(x)
and a time instant tf such that all trajectories yielded by
B and started at t = 0 from x∗ violate the state constraint
G for t > tf and any actions of the first player.

6.3 Grid method for computing viability
kernels

For the implementation of numerical method, it is con-
venient to represent viability kernels as level sets of
an appropriate function. Let Gλ be a family of state
constraint sets defined by the relation

Gλ = {x ∈ Rn, g(x) ≤ λ}, (15)

where a continuous function g is chosen in such a way
that, e.g., G0 being the desired state constraint. It is
necessary to construct a function V representing the
viability kernels as follows:

V iab(Gλ) = {x ∈ Rn,V (x) ≤ λ}. (16)

Such a function can be computed as a limiting so-
lution, as t→−∞, of an appropriate Hamilton-Jacobi
equation arising from conflict control problems with
state constraints (see [13]). A grid approximation
of V is computed as described below (cf. [21], [22],
and [23]).

Let δ > 0 be a time step length, and the tuple
h := (h1, ...,hn) defines space step sizes. Set |h| :=
max{h1, ...,hn} and introduce the following upwind op-
erator defined on grid functions related to the dis-
cretization h:

Π(φ;δ,h)(x) = φ(x) + δmin
u∈P

max
v∈Q

n∑
i=1

(pright

i f +
i + pleft

i f
−
i ),

(17)
with fi being the components of f (x,u,v), and

a+ = max {a,0}, a− = min {a,0},

pright

i = [φ(x1, ...,xi + hi , ...,xn)−φ(x1, ...,xi , ...,xn)]/hi ,

pleft
i = [φ(x1, ...,xi , ...,xn)−φ(x1, ...,xi − hi , ...,xn)]/hi .

(18)

Let {δ`} be a sequence of positive reals such that
δ` → 0 and

∑∞
`=0 δ` =∞. Consider the following grid

scheme:

Vh`+1 = max
{
Π

(
Vh` ;δ` ,h

)
, gh

}
, Vh0 = gh, ` = 0,1, . . . ,

(19)
where gh is the restriction of g to the grid defined by h.

It can be proven that Vh` monotonically converges
point-wise to a grid function Vh, and this function de-
fine approximations of the viability kernels according
to formula (16), see [23] for more details.

Remark 1 In (17), the operation minu∈P maxv∈Q can be
changed for maxv∈Qminu∈P to obtain almost the same
result. The difference tends to zero with |h|. The proof
follows from the fact that the original operator (17) and
the modified one satisfy the same consistency condition
(see [13]) involving the following Hamiltonian H :

H(x,p) := max
v∈Q

min
u∈P
〈p,f (x,u,v)〉 = min

u∈P
max
v∈Q
〈p,f (x,u,v)〉.

Numerical computations confirm this observation.
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6.4 Control design

This section outlines one of possible methods of control
design. Consider the grid scheme (19) assuming that `
is large enough so that the required approximation is
reached, i.e.

∣∣∣Vh`+1 −V
h
`

∣∣∣
L∞
≤ ε.

The optimal control u and the worst disturbance
v(u) at the current state x of the game can be found as
solutions of the following program:

u,v→min
u∈P

max
v∈Q
Lh

[
Vh`

](
x+ τf (x,u,v)

)
. (20)

Here, Lh is an interpolation operator (see e.g. [14]) de-
fined on the corresponding grid functions, and τ being
a parameter which should be several times larger than
the time step size of the simulation procedure to pro-
vide some stabilization. Note that the function Vh` can
be transferred to a sparse grid (see e.g. [25] and [26]),
which may essentially reduce the storage space. The
disadvantage of such a technique is a certain loss of
accuracy and a slower performance.

Remark 2 As it is described above, the second player uses
the so-called feedback counter strategies, i.e. functions of
x and u, where u being the current control action of the
first player. Since the saddle point condition (13) holds,
the theory of differential games says that the second player
can achieve the same result using pure feedback strategies,
i.e. functions of x. For example, a near optimal strategy
of the second player can be obtained as a solution of the
problem

u,v→max
v∈Q

min
u∈P
Lh

[
Vh`

](
x+ δf (x,u,v)

)
,

see also Remark 1. Thus, the both players achieve optimal
results using pure feedback strategies.

Remark 3 If u and v appear linearly in the right-hand
side of (12), then min and max operations in (17) and
(20) can be computed only over extreme points of the sets
P and Q respectively. This can be proven using the same
arguments as in Remark 1.

Remark 4 If x0 being a start point of the game, then x0
lies in the approximate viability kernel defined as:

{x ∈ Rn : Vh` (x) ≤ Vh` (x0)},

and all trajectories approximately remain in this set. How-
ever, if the second player works non-optimally for a while,
then, most likely, Vh` (x(t̄)) < Vh` (x0) for some t̄ > 0, and
therefore, the state vector x(t̄) lies now in the smaller via-
bility kernel

{x ∈ Rn : Vh` (x) ≤ Vh` (x(t̄))}.

Thus, faults of the second player improve the result of the
first one.
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