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In this paper, we investigate the decentralized control problem for large-
scale interconnected systems. The synthesis of the decentralized con-
troller consists in determining gains which ensure the stability of the
global system. To calculate these gains, three approaches are presented.
Our main contribution is to develop a new decentralized stabilization
approach which the decentralized local gains are calculated and formu-
lated via the resolution of linear matrix inequalities (LMIs) problem. A
numerical simulation comparison of the three methods is performed on
an interconnected double-parallel inverted pendulum.

1 Introduction

This paper is an extension of the work originally
we presented in the International Conference on Ad-
vanced Systems and Electric Technologies, 2017 [1].
This work treats three approaches dealing with the
decentralized control of interconnected systems.

In fact, large-scale interconnected systems have re-
ceived considerable attention in recent years due to
its presence in several fields such as power electron-
ics, robotics, communication, aerospace, transporta-
tion networks, manufacturing processes, biochemical
applications and others. Designing a centralized con-
trol for these systems may not be efficient due to the
modular nature of the system that can prevent the
sharing of information between the various subsys-
tems. Thus it is important to decompose the large-
scale system into several subsystems. This decom-
position which can be physical or mathematical, can
make structures easier to control. This includes the
implementation of decentralized control law.

In this way, it is necessary to decompose the global
system into a number of interconnected subsystems
for which, instead of a single centralized controller, a
set of independent decentralized controllers is built.
Thanks to its structure, the decentralized control has
several advantages, mainly: the minimization of the
information rate processed by the control units, the
simplicity of the developed control laws compared to
the centralized case and the improvement of the reli-
ability of data transfer using only local information.

Many works in literature have been devoted to

the decentralized control problems for interconnected
systems. The decentralized adaptive control has been
studied in [2–6]. The robust decentralized control is
presented in [7–9]. The decentralized control using
sliding mode approach is developed in [10–13].

Decentralized stabilization problem is the subject
of our work. This problem is extensively studied in
the literature and different design approaches were
proposed accordingly [14–18]. To ensure the stabil-
ity of the interconnected system formed by n subsys-
tems, it is necessary to verify the local stability at each
subsystem as well as the overall stability taking into
account their interconnection.

The main contribution of this paper consists in de-
veloping some conditions allowing the synthesis of
decentralized control laws that will ensure the stabil-
ity of the overall interconnected system. In this way,
we propose in this work a new decentralized stabiliz-
ing control approach for the interconnected systems.
Indeed, the outcomes of this development are formu-
lated in terms of linear matrix inequalities (LMIs).

The presented methods in our paper are applied
to the physical system of two inverted pendulums in-
terconnected by a spring. For the design of the de-
centralized control scheme, each pendulum should be
seen as a subsystem. Many works used the typical sys-
tem easily isolated into two subsystems to approve the
validity of their proposed decentralized control ap-
proaches [19–22].

The rest of the manuscript is structured accord-
ing to the following outline : The second section is
reserved to formulate the problem and present the
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studied interconnected system formed by two paral-
lel inverted pendulums coupled by a spring. In sec-
tion 3, decentralized control approaches for the inter-
connected systems are presented, which are the de-
centralized quadratic optimal control and the decen-
tralized pole-placement control. The last part of this
section focuses on the development of a new decen-
tralized stabilization control approach by using the
Linear Matrix Inequalities Formulation. Section 4 is
devoted to the implementation of the decentralized
control approaches presented and developed in the
previous section on the studied system. A compar-
ative study between the three control approaches is
presented to prove the validity of the new proposed
approach. Finally, conclusions and some perspectives
are given in the fifth section.

2 Problem Formulation and De-
scription of the Studied Dy-
namic System

2.1 Problem Formulation

Large-scale interconnected systems are represented as
follows:

ẋi = Aixi +Biui +
n∑
j=1
j,i

Hijxj , i = 1,2, ..,n (1)

where xi ∈ IRni and ui ∈ IRni denote the state vector
and the control vector of ith subsystem, respectively.
Ai ∈ IRni×ni is the state matrix and Bi ∈ IRni×mi is the
control matrix of each subsystem.
Hij represents the term of interconnection between
the ith subsystem and the other subsystems.

The global interconnected system composed of N
subsystems can be rewritten in a compact form as fol-
lows:

ẋ = Ax+Bu +Hx (2)

where:

• xT = [xT1 ,x
T
2 , ..,x

T
n ] is the state vector of the global

system ;

• uT = [uT1 ,u
T
2 , ..,u

T
n ] is the control vector of the

global system ;

• A = diag[Ai],B = diag[Bi];

• H is the matrix formed by the terms of intercon-
nection having the following form

H =


0 H12 · · · H1n
H21 0 H2n
...

...
. . .

Hn1 · · · · · · 0



2.2 Description of the Studied System :
Double Inverted Pendulums Coupled
by a Spring

We present in this section the description of the stud-
ied system formed by two interconnected inverted
pendulum and its dynamic modeling.
In this system, two identical inverted pendulums of
mass m directly mounted on the motor shafts in par-
allel where τ1 and τ2 are the input torques of each
motor. These pendulums are connected to each other
by an elastic spring of constant k which is mounted at
the height a.
θ1 and θ2 are the angular displacements and of the
pendulums from vertical.
New particular movements appear compared to the
single movement of the individual pendulum. The
interconnected inverted pendulums system is shown
in figure 1 [23].

Figure 1: Modeling of the parallel inverted pendulum

The Lagrangian is defined as the difference be-
tween the kinetic energies and the potential energies
of the system.

The kinetic energy for each pendulum is described
by the following form:

Ti =
1
2
Ji θ̇

2
i (3)

where Ji is the moment of inertia of the ith pendulum
and θ̇i is the angular velocity of ith pendulum.

The total kinetic energy of the global system is then:

T =
1
2
J1θ̇

2
1 −

1
2
J2θ̇

2
2 = −1

2
ml2θ̇2

1 −
1
2
ml2θ̇2

2 (4)

The potential energy for each mass is represented as
follows:

Vi =mgl(1− cosθi) (5)
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The potential energy of the spring is calculated using
Hooke’s law:

Vspring =
1
2
kx2 =

1
2
k(−a sinθ1 + a sinθ2)2 (6)

The total potential energy of the system is given by:

V =mgl(1− cosθ1) +mgl(1− cosθ2)
+ 1

2k(−a sinθ1 + a sinθ2)2 (7)

The Lagrangian of the interconnected studied system
is written as follow:

L = T −V
= −1

2ml
2θ̇2

1 −
1
2ml

2θ̇2
2 −mgl(1− cosθ1)

−mgl(1− cosθ2) + 1
2k(a sinθ1 − a sinθ2)2

(8)

The Euler-Lagrange equations are given by:
d
dt [

∂L
∂θ̇1

]− ∂L
∂θ1

= τ1

d
dt [

∂L
∂θ̇2

]− ∂L
∂θ2

= τ2

(9)

Using Lagrange equations (9), we can easily show that
the nonlinear equations of motion of the parallel in-
verted pendulum system are:{
−ml2θ̈1 +mgl sinθ1 − ka2[cosθ1(sinθ1 − sinθ2] = τ1
−ml2θ̈2 +mgl sinθ2 − ka2[cosθ1(sinθ2 − sinθ1] = τ2

(10)
Assuming a small angular displacement, the nonlin-
ear equations of motion (10) can be replaced by the
following linear model around the equilibrium point
θ1 = θ2 = 0:{

−ml2θ̈1 +mgl θ1 − ka2(θ1 −θ2) = τ1
−ml2θ̈2 +mgl θ2 − ka2(θ2 −θ1) = τ2

(11)

So, the dynamics of the studied system composed of
the two interconnected inverted pendulums are de-
scribed by the following equations:{

−ml2θ̈1 =mglθ1 − ka2(θ1 −θ2)− τ1
−ml2θ̈2 =mglθ2 − ka2(θ2 −θ1)− τ2

(12)

For the design of the decentralized control scheme,
each pendulum should be seen as a subsystem. Equa-
tions (12) can be writen into state equations with a
standard choice of state variable for the ith pendulum:

xi(t) =
[
θi(t)
θ̇i(t)

]
The system consisted of two interconnected inverted
pendulums is then described by the following state
equations: {

ẋ1 = A1x1 +B1u1 +H1x2
ẋ2 = A2x2 +B2u2 +H2x1

(13)

with

• x1,x2 the state vectors of the subsystems ;

• u1,u2 the control vectors of the subsystem such
as the input torque of each motor ;

The matrices and interconnection terms of the ith sub-
system are given by:

Ai =
[

0 1
g
l −

ka2

ml2
0

]
, Bi =

[
0
−1
ml2

]
Hi =

[
0 0
ka2

ml2
0

]
, i = 1,2

The global system formed by two identical in-
verted pendulums coupled by a spring can be ex-
pressed by the following global state representation:

ẋ = Ax+Bu +Hx (14)

where

• xT = [xT1 ,x
T
2 ] is the state vector,

• uT = [uT1 ,u
T
2 ] is the control vector.

• A = diag(A1,A2) is the characteristic matrix:

A =


0 1 0 0

g
l −

ka2

ml2
0 0 0

0 0 0 1
0 0 g

l −
ka2

ml2
0


• B = diag(B1,B2) is the control matrix:

B =


0 0
−1
ml2

0
0 0
0 −1

ml2


• H is the term of interconnection:

H =


0 0 0 0
0 0 ka2

ml2
0

0 0 0 0
ka2

ml2
0 0 0


with

m The mass of each pendulum, in Kg
l The rod length, in m
a The connecting position of the spring, in m
k The stiffness of spring, in N/m
g The acceleration of gravity, in m.s−2

θi The angular displacement of the ith pendulum,
in Rad
τi The input torque of ith motor, in N.m
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3 Decentralized Control Ap-
proaches of Interconnected Sys-
tems

Possible control strategies for large-scale intercon-
nected systems are generally based on a decentralized
solution. A decentralized control structure applied to
a process of n interconnected subsystems is shown in
Fig 2.
The decentralized control partitions the measurement
information and elaborates a local and independent
control law for each subsystem.
It is necessary to check the stability of the intercon-
nected system by examining two main aspects:
- Local stability: at each subsystem.
- Overall stability: taking into account the intercon-
nections.

Figure 2: Decentralized control structure

The synthesis of the decentralized controller con-
sists in determining the local gains Ki which ensure
the stability of the overall closed-loop system.
To respect the decentralized information structure
constraint, each subsystem is controlled by the local
control law:

ui(x) = −Kixi i = 1, ..,n (15)

which leads to the following global control law of the
overall system (2):

u(x) = −Kx (16)

where K = diag(K1,K2, ..,Kn) is the block diagonal
control gain matrix. Using global state-feedbacks, we
get the closed loop system dynamics as following:

ẋ = Af x (17)

where:

Af =


A1 −B1K1 H12 · · · H1n

H21 A2 −B2K2
...

...
...

. . .
...

Hn1 · · · · · · An −BnKn


To calculate the gains Ki , different approaches can be
considered.

3.1 Decentralized Quadratic Optimal
Control

The decentralized control synthesis consists in con-
sidering the decoupled subsystems defined by the fol-
lowing state equations:

ẋi = Aixi +Biui (18)

and minimizing the modified quadratic criteria [24]:

Ji =
1
2

∫ ∞
0
e2αt(xTi Qixi +uTi Riui)dt (19)

Let Qi(ni × ni), i = 1, ..,n semi positive definite matri-
ces, Ri(mi×mi), i = 1, ..,n positive definite matrices and
α a positive real.
The decentralized optimal control laws for each iso-
lated subsystem can be expressed as a linear state
feedback:

ui = −Kixi , i = 1,2, ..,n (20)

where
Ki = R−1

i B
T
i Pi (21)

and Pi is the symmetric positive definite matrix solu-
tion of the following algebraic Riccati equation:

ATi Pi + PiAi − Pi(BiR−1
i B

T
i )Pi + 2αPi +Qi = 0 (22)

These decentralized state feedbacks applied to the in-
terconnected system lead to the following global state
representation:

ẋ = (A−BR−1BT P )x+Hx (23)

where R−1 = diag[R−1
i ] and P = diag[Pi].

A sufficient condition to guarantee the stability of the
overall system taking into account the interconnec-
tions, is given by the following theorem which proof
is detailed in Appendix A.

Theorem 1 [24]:
The decentralized control law (16) is globally and
asymptotically stabilizable for system (17) if the ma-
trix F, given by(24), is positive definite.

F = 2αP +W − (PH +HT P )
W =Q+ P BR−1BT P , Q = diag[Qi]

(24)

3.2 Decentralized Pole-Placement Con-
trol

Pole-placement technique is a controller design
method in which we determine the places of the
closed loop system poles on the complex plane by
setting a controller gain.
In this work we will apply this method for intercon-
nected systems composed of n different subsystems
that can be easily isolated. Firstly, it is necessary to
verify the local stability.

For each subsystem, Ackermann’s formula is used
to find the control gain matrices.
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Theorem 2: Ackermann’s formula [25]
The controllability matrix C can be formed from:

C = [B AB...An−1B]

The feedback matrix K can be found as:

K = [0 0...1]C−1Pd(A)

where Pd is the desired characteristic polynomial.

Using the local gain matrices obtained by Aker-
mann’s formula for each subsystem, the matrix in
closed loop Af of the global system taking into ac-
count the interconnection is given by:

Af =


A1 −B1K1 H12 · · · H1n

H21 A2 −B2K2
...

...
...

. . .
...

Hn1 · · · · · · An −BnKn


Stability condition:
In order to be stable, the eigenvalues of the system
ẋ = Af x must all lie strictly in the left half of the com-
plex s-plane. That means, the eigenvalues must all
have strictly negative real parts.

3.3 Synthesis of a Decentralized Stabi-
lization Control

This section deals with the global asymptotic stabi-
lization of linear interconnected systems within the
framework of Linear Matrix Inequalities (LMIs). We
present the development of a new decentralized con-
trol approach.
To compute the gain matrix K , so that the closed loop
system (17) is asymptotically stable, let consider the
quadratic Lyapunov function represented by the fol-
lowing form:

V (x) = xT P x (25)

where P is a positive definite symmetric matrix of the
following form:

A =


P1 0 · · · 0
0 P2 · · · 0
... 0

. . .
...

0 0 · · · Pn


The time derivative of V (x) is developped as :

V̇ (x) = ẋT P x+ xT P ẋ
= xTATf P x+ xT PAf x
= xT (ATf P + PAf )x

(26)

The global asymptotic stability of system (17)pro-
vided with the decentralized control law (16) is en-
sured when the time derivative V̇ (x) is negative defi-
nite which is equivalent to:

ATf P + PAf < 0 (27)

We note this expression by Ă = ATf P + PAf with

Af =



A1 −B1K1 H12 · · · H1n

H21 A2 −B2K2
...

...
...

. . .
...

Hn1 · · · · · · An −BnKn


Ă can be written as:

Ă =



(A1 −B1K1)T HT12 · · · HT1n

HT21 (A2 −B2K2)T
.
.
.

.

.

.
.
.
.

. . .
.
.
.

HTn1 · · · · · · (An −BnKn)T



P1 0 · · · 0
0 P2 · · · 0
.
.
. 0

. . .
.
.
.

0 0 · · · Pn

+


P1 0 · · · 0
0 P2 · · · 0
.
.
. 0

. . .
.
.
.

0 0 · · · Pn




A1 −B1K1 H12 · · · H1n

H21 A2 −B2K2

.

.

.
.
.
.

.

.

.
. . .

.

.

.
Hn1 · · · · · · An −BnKn


So,

Ă =



AT1 P1 + P1A1 −KT1 B
T
1 P1 − P1B1K1 P1H12 +HT21P2

P2H21 +HT12P1
. . .

.

.

.
.
.
.

PnHn1 +HT1nP1 PnHn2 +HT2nP2

· · · P1H1n +HTn1Pn
. . .

.

.

.

. . .
.
.
.

· · · ATn Pn + PnAn −KTn BTn Pn − PnBnKn


< 0 (28)

Multiplying (28) on the right and then on the left by
P −1 where P −1 is also symmetric positive definite ma-
trix, inequality (28) becomes:



P −1
1 AT1 +A1P

−1
1 − P −1

1 KT1 B
T
1 −B1K1P

−1
1 H12P

−1
2 + P −1

1 HT21

H21P
−1
1 + P −1

2 HT12

. . .

.

.

.
.
.
.

Hn1P
−1
1 + P −1

n HT1n · · ·

· · · H1nP
−1
n + P −1

n HTn1
. . .

.

.

.

. . .
.
.
.

· · · P −1
n ATn +AnP

−1
n − P −1

n KTn B
T
n −BnKnP −1

n


< 0 (29)

It should be noted that the inequality matrix (29) has
nonlinearities that are difficult to solve. We then use
the changes of variables (30) and (31).

Si = P −1
i (30)

Li = KiP
−1
i (31)
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Thus, the problem (29) can be rewritten to the form of
linear matrix inequalities :

ă11 ă12 · · · ă1n

ă21 ă22
...

...
...

. . .
...

ăn1 ăn2 · · · ănn

 < 0 (32)

where:
ă11 = S1A

T
1 +A1S1 −B1L1 −LT1 B

T
1

ă12 =H12S2 + S1H
T
21

ă1n =H1nSn + S1H
T
n1

ă21 =H21S1 + S2H
T
12

ă22 = S2A
T
2 +A2S2 −B2L2 −LT2 B

T
2

ăn1 =Hn1S1 + SnH
T
1n

ăn2 =Hn2S2 + SnH
T
2n

ănn = SnATn +AnSn −BnLn −LTnBTn

In order to find the gain matrices K of the decen-
tralized control law, we have to solve the following
LMI problem: {

Si > 0 i = 1, ..,n
(32) (33)

The following result is proved::
The interconnected system (17) provided with the de-
centralized control law (16) is asymptotically stable if
LMI problem (33) is feasible.

4 Simulation results

This section is devoted to the implementation of the
three decentralized control approaches exposed and
developed in the previous section.
It consists in studying the stability by decentral-
ized quadratic optimal control, decentralized pole-
placement control and decentralized stabilization
control based on LMI applied to the interconnected
inverted pendulums system (Figure1), presented in
Section2. The parameters of the studied system are
summarized in Table 1.
In last party of this section, we carry out a compara-
tive study between these three studied decentralized
approaches to confirm the validity and the efficiency
of the proposed approach.

Parameter Value Unit
m 0.4489 Kg
l 0.325 m
a 0.21 m
k 340.22 N/m

Table 1: The studied system parameters

Using the numerical parameters, model (14) of
interconnected system composed of two parallel in-

verted pendulums is given by:

ẋ =


0 1 0 0

−286.2486 0 316.4332 0
0 0 0 1

316.4332 0 −286.2486 0

x

+


0 0

−21.0903 0
0 0
0 −21.0903

u (34)

To improve the performance of the studied system, we
will apply the different studied approaches to guaran-
tee an adequate stabilization.

4.1 Application of the decentralized opti-
mal control approach

For this decentralized control, we focus on minimiz-
ing the modified quadratic criteria (19) for each sepa-
rate pendulum.
The weighting factors are selected as follows:

α = 0.2,
R1 = R2 = 0.0043

Q1 =Q2 =
[

1 0
0 0

]
The positive definite solution Pi of the Ricatti equation
for each inverted pendulum is obtained by solving the
equations (22):

P1 =
[

0.0724 0.0014
0.0014 0.0002

]
P2 =

[
0.0725 0.0014
0.0014 0.0002

]
(35)

Using (20) and (21) we obtain the decentralized con-
trol gain matrices:

K1 = [−7.0068 − 0.8247]

K2 = [−7.0068 − 0.8247]

To guarante the stability of the overall interconnected
double-inverted pendulum, we should verify the the-
orem(24) when calculating the matrix F:

F =


0.3360 −0.0278 0 0
−0.0278 0.0030 0 0

0 0 0.3360 −0.0278
0 0 −0.0278 0.0030


The eigenvalues of the matrix F are given by:

0.3383
0.0007
0.3388
0.0007


We can easily verify that matrix F is positive definite,
so the decentralized control law stabilizes asymptoti-
cally the overall interconnected system (17).

The performances of the controlled system are
shown in Figure3. The curves present the evolution of
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the system state variables with decentralized optimal
control, when some perturbations occur on θ1 and θ2.
From the simulation results shown in these curves, it
can be seen that the decentralized optimal control is
able to enhance stability of the studied system in ap-
proximately 0.6 seconds.

Figure 3: Evolution of the system state variables and
corresponding decentralized optimal control signals

4.2 Application of the decentralized pole-
placement control approach

In order to apply the decentralized pole-placement
for the studied interconnected system, we shall firstly
decompose the system into two decoupled inverted
pendulums.
Thus, the dynamical model of the isolated subsystems
is given by:

ẋ1 =
[

0 1
−286.24 0

]
x1 +

[
0

−21.09

]
u1 (36)

ẋ2 =
[

0 1
−286.24 0

]
x2 +

[
0

−21.09

]
u2 (37)

Since both (A1,B1) and (A2,B2) are controllable, we
can move their poles to any desired locations, we
choose the following desired eigenvalues:

λ1
1 = −24;λ1

2 = −18;λ2
1 = −24;λ2

2 = −12

In this case we calculate the local gains using the Ack-
ermann’s formula [25] :

K1 = [−6.9108 − 1.9914]

K2 = [−0.0830 − 1.7096]

Figures 4 and 5 present the evolution of the state vari-
ables and their corresponding pole-placement control

signals for each isolated pendulum. From the simula-
tion results shown in these curves, we can verify the
local stability at each decoupled pendulum.

Figure 4: Evolution of the state variables and corre-
sponding pole-placement control signals for the first
decoupled pendulum

Figure 5: Evolution of the state variables and corre-
sponding pole-placement control signals for the sec-
ond isolated pendulum

After having applied the formula of Ackermann
for each isolated decoupled pendulum, we obtain the
closed loop matrix Af of the overall interconnected
system.

ẋ = Af x =


0 1 0 0
−432 −42 316.4332 0

0 0 0 1
316.4332 0 −288 −36

x
(38)
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The eigenvalues of the system (38) have strictly nega-
tive real parts:

λ1 = −0.9487
λ2,3 = −19.5639± 17.0966i
λ4 = −37.9236

Thus, the overall interconnected system provided
with such a decentralized control law is asymptoti-
cally stable.
The curves in Figure6 illustrate the evolution of the
system state variables and the corresponding decen-
tralized pole placement control signals of the double
inverted pendulum coupled by a spring, subjected to
the same perturbations on the variable θ1 and θ2.
From the simulation results shown in these curves, it
can be seen that the decentralized control is able to
enhance stability of studied system in approximately
4 seconds.

Figure 6: Evolution of the system state variables and
corresponding decentralized pole-placement control
signals

4.3 Application of the decentralized sta-
bilization control approach

We consider the application of the proposed decen-
tralized stabilizing control developed in section 3.3.
on the studied system formed by two inverted pendu-
lums coupled by a spring.
In this part, we solve the proposed LMI formulation
in order to find the decentralized gains of the double
inverted pendulum.
So we obtain: 

S1 > 0
S2 > 0[
ă11 ă12
ă21 ă22

]
< 0

(39)

where :
ă11 = S1A

T
1 +A1S1 −B1L1 −LT1 B

T
1

ă12 =H12S2 + S1H
T
21

ă21 =H21S1 + S2H
T
12

ă22 = S2A
T
2 +A2S2 −B2L2 −LT2 B

T
2

By solving problem LMI (39) we obtain the decen-
tralized control gain matrices:

K1 = [−8.4386 − 1.0841]

K2 = [−31.6377 − 2.4752]

The evolution of the state variables of the dynamic
system composed of two interconnected inverted pen-
dulums with decentralized control by LMI is depicted
in Figure 7.
It is clearly seen, from these curves, that the pro-
posed decentralized stabilization control approach is
efficient, it allows the best stabilization of the studied
system despite the strong disturbances affecting the
interconnection between its subsystems.

Figure 7: Evolution of the system state variables and
corresponding decentralized stabilizing control sig-
nals

4.4 Comparative study of the three ap-
proaches

We present in this section a comparative study be-
tween the three decentralized control approaches
studied in section 3.
The visualization of the curves in figure 3, 6 and 7
presenting the evolution of the system state variables
and the corresponding control signals, submitted to
the same perturbations, shows that the three stud-
ied decentralized control approaches can improve the
stability of the interconnected system with double in-
verted pendulums coupled by a spring.

However, we find some disadvantages when ap-
plying the decentralized quadratic optimal and de-
centralized pole-placement on interconnected system.
We were obliged to decompose the overall system into
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a number of isolated subsystems and then to deter-
mine gain matrices that verify local stability for each
subsystem. Then we present some sufficient condi-
tions on the obtained gains to guarantee the global
stability of the overall system taking into account the
interconncetion terms. Indeed, we note an advan-
tage for the proposed new stabilization decentralized
approach using LMI problem which calculation of
the local gains takes account of the interconnections
terms.
On the other hand, when we compare the stabilization
times of the three presented approaches, we note that
our proposed approach is able to stabilize the system
more quickly than other approaches.

5 Conclusion

This extended paper is devoted to the decentralized
control techniques of large-scale interconnected sys-
tems. In this context, we have presented and stud-
ied some decentralized control approaches which ob-
jective is to synthesize the gains matrices in order to
guarantee the stability of the global system. Our con-
tribution focuses on the development of a new decen-
tralized stabilization control approach based on linear
matrix inequalities LMI.

The different approaches studied and formulated
in this paper have been applied and validated on
a double-parallel inverted pendulum coupled by a
spring.
The simulation results have shown that it is possible
to ensure the stability and improve the performance
of the studied system controlled by each of the decen-
tralized control laws relating to the proposed methods
when some sufficient conditions are verified.
Comparative study presented in the fourth section has
confirmed the validity and the efficiency of the pro-
posed approach based on LMI which succeeded to en-
sure quickly the stability of the system and calculated
the local gains taking account of the interconnections
terms.

Many interesting directions for future research re-
main. One of the possible perspectives is to develop
decentralized control nonlinear approaches for multi-
robot cooperative system manipulating a common
object.

Appendix A

The proof of the Theorem 1 is based on Lyapunov di-
rect method. Let V be the Lyapunov function defined
by the following quadratic form:

V (x) = xT P x (40)

Using (23), The time derivative of V (x) is developped
as :

V̇ = xT (AT P − P BR−1BT P )x+ xTHT P x
+xT (PA− P BR−1BT )x+ xT PHx

(41)

So (41) becomes

V̇ = xT (AT P + PA− 2P BR−1BT P )x
+xTHT P x+ xT PHx

(42)

Then, using the expression (22) in (42), we obtain:

V̇ = −xT [2αP +W − (PH +HT P )]x (43)

To ensure the asymptotic stability of system (23) , V̇
should be negative definite, then which is equivalent
to the matrix F:

F = 2αP +W − (PH +HT P )
W =Q+ P BR−1BT P , Q = diag[Qi]

(44)

should be positive definite.
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