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To avoid biopsies, doctors use non invasive medical techniques such as
the computed tomography. Even that, the detection of the liver remains
a big challenge because of the gray level and shape variations which de-
pend on patients and acquisition modalites. In this work, we propose to
create a 3D liver model in the training phase of 3D active shape model
algorithm. This training model will be deformed according to any given
3D data for liver segmentation. The contribution of our work is the use
of the Non-rigid registration with a B-spline registration on the train-
ing phase. We tested our method on an open access database (”3D-
IRCADD”) and on our database obtained from the radiology department
of the National Oncology Institute of Tunis. Both data-sets showed the
reliability of the method with an accuracy equal to 69.98% and 71.18%

respectively for our database and ”3D-IRCADDb”.

1 Introduction

Computed Tomography (CT) is a non invasive tech-
nique with a large field of view. It helps doctors to
detect some hepatic disease. First, they identify the
liver from the abdominal CT slice using two phases
of enhancement: portal and arterial. In each time
of enhancement, the gray level of the liver changes.
In this work, we propose a 3D method to extract the
liver from the CT slice according to its shape. We
use different 3D CT exam with different phases of en-
hancement containing normal and pathological cases.
The aim of our work is to use an advanced technique
of segmentation to extract liver from images of any
type of modality. For that reason, we propose to use
the Active Shape Model (ASM). The ASM have been
recognized as robust solution for a supervised tech-
nique of segmentation. Our contribution is to im-
prove the performance of the 3D ASM algorithm with
a pre-processing phase using a non rigid registration
based on B-Spline transformation. The following pa-
per is an extension of work originally presented in
the 7th International Conference on Sciences of Elec-
tronics, Technologies of Information Telecommunica-
tion” [1]. In this work, we improve the evaluation

of results using the ROC-Curve analysis and we en-
sure the reliability of our method using our database
in addition to the ”3D-IRCADb”. Also, we compare
the results not only with the Isosurfaces also with the
Marching Cubes 3D reconstruction. The paper is or-
ganized as follow: Section 2 presents some literature
related works. In section 3, we explain the 3D-ASM
method and its different steps for 3D-model construc-
tion. the proposed method is applied on the open ac-
cess database “3D-IRCADb” and our database. In sec-
tion 4, we use the ROC-Curve analysis to evaluate the
3D liver modeling. First, we compare our 3D model
with the Isosurfaces 3D reconstruction, then, with the
Marching Cubes technique. Finally, we resume our
proposed method and the obtained results on the con-
clusion.

2 Related works

The major point of interest of the Computed-aided
diagnostic system is to solve difficulties of the med-
ical field. The segmentation technique is the most
important step in those system. It allows the physi-
cians to extract the region of interest and to analyze
it for more helpful medical information. In this con-
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text, many techniques of segmentation have been de-
veloped such as morphological operations exposed on
the work of Pham The Bao et al.[2]to extract the liver
from the volumetric CT images. In [3]], they improved
morphological operator algorithm by using the wa-
tershed technique to segment the micro-tomographic
trabecular bone. The watershed algorithm is widely
used to identify the region of interest. In [4],P. Ro-
drigues et al. used it with an open software "Mevis-
lab” to extract the liver from the CT exam with a 87%
of accuracy. In [5], the author used the Fisher al-
gorithm to improve the watershed algorithm for the
radar images segmentation. Moreover, there are some
intensity based techniques which detect the object ac-
cording to the intensity repartition. In [6]], the author
constructed a model of the intensity distribution for
the surface of the liver, cysts and lesions. Then, they
calculated the probability of pixel belonging to each
classification of different regions. In [7], Alom et al.
used the "SGM growing slice method”, an algorithm
for 3D segmentation of the liver. Also, we note that
algorithms of classification are used to segment the
liver. For example, in the work [8]], authors made a
new texture feature extraction to improve liver clas-
sification using K-mean algorithm. While, in [9], the
author used the "Support Vector Machine” algorithm
and the surface distance maps for 3D-liver segmen-
tation from CT-scans. Previously exposed works are
based on the intensity of the liver and its gray level.
In order to improve the segmentation technique, we
propose a 3D-supervised-method for liver segmenta-
tion to overcome problems of gray level variation.

3 Methods and materials

In this section, we will explain the use of the shape
context based on non-rigid surface registration with a
B-Spline transformation in order to adapt the Active
Shape Model for 3D CT liver segmentation. We start
by a global description of the proposed method. Then,
we detail each step. Figure 1 describes the different
steps of our work to segment 3D CT liver. First, we
note that the cases of the two databases are acquired
with different parameters. So each exam has different
number of slices, resolution and voxel size. To create
the 3D model of the liver using the 3D ASM, we must
uniform the volumetric data in the pre-processing
phase. Several works combine different registration
algorithm with a 3D segmentation method to extract
a volumetric data such as to segment the left ventri-
cle in [10] and the mandibular canal in [11]. In our
work we propose to use a non-rigid registration with
a B-Spline transformation. After the pre-processing
phase, the 3D CT-scan has the same size of the matrix
of vertices and the matrix of faces. Those two matrix
will be used on the training phase of the 3D-ASM. Fi-
nally, we create the 3D liver model in the testing phase
of the 3D-ASM.
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Figure 1: Diagram of the main work for 3D-ASM Liver
segmentation

3.1 3D pre-processing CT-data

The CT-Scan measure the attenuation of the X-ray
crossing the organ. These measurements are taken
from different angles to produce a cross-sectional im-
age called also slice separate with a thickness value.
The total number of slices makes a volume informa-
tion of the explored organ. However, doing the CT-
Scan exam allows doctor to see details of the scanned
organ in multi-planes (Coronal, axial and transverse).
The obtained CT image is a matrix composed in pix-
els. Considering the the thickness between slices, each
pixel represents a small volume element called also
voxel. Its size depends on the matrix size, the thick-
ness and the field of view. The CT images will be
next stored as a numeric image. We note that the CT-
images are coded according to thee Hounsfield units
(UH) expressed by equation 1:

HU = HKtissu — Pwatter (1)

Kwatter

In our work,we first change the UH to a gray level scal-
ing using the DICOM header. We can define the gray
value of a pixel as follow in equation (2):

H + Rescalelntercept

U
Graylevel = RescaleSlope 2

where: The rescale intercept is equal to 0 for the
IRCADD database and —1024 for our database; The
rescale slope is equal to 1 for the both databases.

After changing the UH to the gray level scale, we uni-
form the slice number of the training data so all the
training exams will have the same number of slices.
We add a black slice at the end of the CT exam to
reach the desired number. Then, we start the pre-
processing step to achieve the same matrix size of

367


http://www.astesj.com

N. Trabelsi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 366-372 (2018)

faces and vertices to all the training 3D data using
the Shape Context Correspondence Point Model al-
gorithm. It is based on a registration method. We
can classify the registration into two classes: rigid
and non-rigid transformation [12HI14]. In our work,
we employ a diffeomorphic B-Spline cubic transfor-
mation for no-rigid registration. We note : "C;” a
contour of an object 1 and ”p;” the number of points
selected to define the contour; "C,” a contour of an
object 2 and ”q;” the number of points selected to de-
fine this contour. Then, we measure the cost function
”C”between the two objects. It is defined in (3) as fol-
low:

1o (A
p“qf_EZh +h ]

With: h; and h; respectively histograms of the two
shapes. After calculating the cost function, we min-
imize it to increase the degree of the similarity and
the matching between the two shapes. To minimize
the cost function, we choose a type of transformation
in the registration phase. The type of transformation
depends on the feature to be extracted from the object
[15] [16], such as the match point algorithm[17], the
3D coordinate[I8]land the intensity transformation
using an iterative closet point algorithm [19}20]. Fig-
ure 2 shows the different steps of the pre-processing
phase. The first step of the registration phase using
the Shape Context algorithm is to define the type of
the transformation. In this work, we use the B-Spline
cubic transformation. Then, we choose the mastery
data which have the biggest number of slice and a
floating data. This transformation is based on the sur-
face matching with a spatial alignment of the two vol-
umetric CT data. As an output of this phase, the CT
exam will have the same size of vertices and faces ma-
trix in order to be used on the next stage which is the
3D-ASM.

Static Volume
Iflastery 3D

Mowing Wolume
3D segmented

CT liver segmented CT liver
T T
¥
Manual Landmarks
extraction
¥

“hape Contesxt
Correspondence Point Model
with a B-Zpline interpolation

v
Eegistration results
Equal size of vertices matrix
Equal size of faces matriz

Figure 2: Pre-processing phase using Shape Corre-
spondence Point Model
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3.2 3D Active Shape Model

The 3D-ASM is an iterative supervised segmentation
algorithm firstly proposed in [21]] in 2002. It contains
two phases: training and testing. Thanks to this al-
gorithm based on the distribution point model (PDM)
[22], we train our system to learn different liver shape
variations. The input data in the training phase are
3D surface matrix containing the faces, the vertices of
the 3D mesh and the binary volume of the extracted
liver from the CT slice. At the beginning, we define
for an object ”0” a set of target point called land-
mark ”“n”. The “n” points reform a vector of shape
noted X = (X,X2, ., X1, V1, V2, s Uy 21, 22, r Zy) L. After
the identification of vector shape, we calculate from
the 3D input data the covariance matrix. Then, we use
the principal analyze components (PCA)[23]to iden-
tify the eigen-vectors”’x; and their eigen-values. The
PCA allows us to calculate the mean shape and its
variations. Finally, we apply the PDM algorithm to
create our training shape model noted X in (4).

X =X + ¢sbs (4)

With: X: aligned training shape; b;:shape parameter
vector of the shape. It is equal to by=+m +;; m < 3;
¢s: eigenvectors corresponding to the eigenvalue of
the covariance matrix. The next step in the 3D-ASM
algorithm is to update the training model using the
Mahalanobis distance[24]. Then, we apply the train-
ing deformed model to create our 3D liver model ac-
cording to a given CT-data without doing a registra-
tion step.

4 Results and discussion

In this section, we start by a description of the
databases used in this work and we present the ob-
tained results. In order to evaluate the accuracy of our
3D liver modeling, we use the ROC-Curve analysis.

4.1 Description of databases

The proposed method was tested on two databases:
our database (15 CT-exams) and the ”3D-IRCADDb”
one (20 CT-exams). In [25]), twenty radiologists expert
describe the different parameters of the 3D IRCADb
database. We found that the voxel size is various from
one case to another from 0.57c¢m3 to 1.6cm>. Also in
our database acquired at the radiology department of
National oncology Institute "Salah AZAIEZ” of Tunis,
the voxel size varies from 1.25cm*1.25cm*1.25¢m to
1.4cm*1.4cm*1.4cm. For more efficiency, we use for
the training phase, the 3D CT-scans with the same
voxel size. In this work,for each database, we use the
80% of the CT-scan data having the same slice thick-
ness for the training phase and 20% of 3D CT-scan for
the testing phase.
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4.2 Experiments

This study presents the use of the 3D-ASM for CT
liver segmentation. For the beginning, we make a reg-
istration phase to recover some parameters such as ro-
tation, scaling and translation in order to minimize
the dissimilarity between two 3D CT-data. Figure 3
shows 3D mesh of the diffeomorphic B-Spline cubic
registration. After the Shape Context registration, the
output of this stage is used as input of the training
phase of 3D-ASM algorithm. Different results of the
3D training shape are exposed in Figure 4.

Figure 3: 3D liver mesh of the B-Spline registration

Figure 4: Training 3D model:a.Case from our
database; b.Case from 3D-IRCADb database

To establish the proposed work, we use for the
training phase of the 3D-ASM the cases which have
the same thickness between slices and total number of
slice. Then, we handle the corresponding Shape Con-
text Points Model with a B-Spline transformation to
create the same size of a 3D Liver grid. After the pre-
processing step, we apply the 3D-ASM algorithm. To
evaluate, in this work, the obtained results, we make
a 3D reconstruction of the liver using the Isosurfaces
and the Marching Cubes method.Then we compare
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them with the 3D-ASM of the liver. Figure 5 and fig-
ure 6 show different views of the 3D liver shape ob-
tained from our database and the "3D-IRCADb” open
access database.

see

P> e e

Figure 5: 3D liver segmentation of cases from ”3D-
IRCADD” database using respectively from the left to
the right: the Isosurfaces, the Marching Cubes and the
proposed method: a. XY view; b.XZ view; c.YZ view

ab‘ cb
e G

Figure 6: 3D liver segmentation of cases from our
database using respectively from the left to the right:
the isosurfaces, the Marching Cubes and the proposed
method: a.XY view; b.XZ view; c.YZ view

After visual comparison, we use five parameters
essentially used on ROC-curves analysis widely used
in evaluation on the medical field [26]. These param-
eters are: sensitivity (SN), specificity (SP), accuracy
(ACCQ), positive predicted value (PPV), negative pre-
dicted value (NPV) and area under the curve (AUC).
We note the V; is the segmented volume and V7 the
ground truth one. We define the True Positive(TP) as
the degree of matching between the 3D mesh of V;
and the V1 expressed in(5).

TP=V,NVgr (5)

Its complement called False Negative (FN) is defined
in (6).

FN =Vgr - TP (6)

Moreover, we define the True Negative (TN) when we
found a similarity on the false information. It is given
in (7).

TN =1-(V;UVgr) (7)

The False Positive (FP) is when our system detect a
falsse mesh similiarity when there is no resemblance.
It is given in (8).

FP=V,-TP (8)
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According to those parameters, we calculate the sen-
sitivity given in (9), the specificity given in (10) and
the accuracy given in (11).

TP

Sensitivity = m (9)

P TN
Speczftczty——TN+FP (10)
TN +TP
Accuracey = m o TP T FN + FP (1)

We expose in tables 1 and 2 the different obtained
values of the previously defined parameters. In this
work, for each database, the liver was segmented by
experts. So, we make a 3D reconstruction of these
segmented volume using Isosurfaces and Marching
Cubes techniques. Then, we apply the ROC-Curve
independently. In the first hand, we apply it be-
tween our 3D results and 3D isosurfaces. On the
second hand, we extract the different measure of the
ROC-Curve between our 3D results and the Marching
Cubes reconstruction.

Our database | 3D-IRCADb
Sensitivity (%) 68.38 63.8
Specificity (%) 71.57 59.36
PPV (%) 69.88 60.23
NPV (%) 70.85 59.52
Accuracy (%) 69.98 59.51
AUC 0.74 0.63

Table 1: Performances of the 3D-ASM with a B-spline
registration versus the Isosurfaces reconstruction

Our database | 3D-IRCADbD
Sensitivity (%) 75.16 50.06
Specificity (%) 65.93 49.94
PPV (%) 69.16 50.07
NPV (%) 72.33 50.76
Accuracy (%) 70.44 50.07
AUC 0.74 0.49

Table 2: Performances of the 3D-ASM with a B-spline
registration versus the Marching Cubes reconstruc-
tion

Comparaing to the Isosurfaces and Marching
Cubes methods, the 3D-ASM based on the Shape Con-
text registration with a B-Spline registration achieve
about 70% of accuracy and 71,57% of specificity.
Those promising results, ensure the efficiency of the
proposed method based on a non-rigid registration for
the pre-processing phase. We found that we achieve
better results with our database.
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Figure 7: The area under the curve for cases from
our database: a.versus Isosurfaces; b.versus Marching
Cubes
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Figure 8: The area under the curve for cases from
”3D-IRCADb”database: a.versus Isosurfaces; b.versus
Marching Cubes
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Our database contains pathological and normal
cases. We used the normal cases for the training phase
and we test the proposed method on pathological and
normal cases. In fact, the 3D Active Shape Model is
an advanced technique of 3D segmentation based on
the shape. In this study, we prefer to use normals
case with shape variation in order to create an efficient
3D learning model which will be deformed accord-
ing to a given 3D CT-Scan exam. The inconvenient of
the use of the pathological cases in the training phase
is the no accurate liver shape since we can found
one or several parts of the liver have been removed.
The ”3D-IRCADb” contains pathological cases with-
out ablation which can be convincing for our study. To
evaluate the efficiency of our proposed method using
the ”3D-IRCADD” database, we compare the 3D liver
mesh obtained using our proposed method , the Iso-
surfaces and the Marching Cubes 3D reconstruction
with the VTK files. The different results are exposed
in the table 3. We found almost the same measure
off the Area under the curve, presented in figure 9,
but we achieve a slight improvement in terms of accu-
racy using the 3D Active Shape Model with a B-spline
registration comparing to the Isosurfaces (Iso) and the
Marching Cubes (MC).

MC Iso |Proposed Method
Sensitivity (%)|65.782| 65.758 65.765
Specificity (%)|75.392| 75.492 75.494
Accuracy (%) |70.629| 70.648 71.182
PPV (%) |72.973| 73.052 73.053
NPV (%) |68.775| 68.744 68.736
AUC 0.757 | 0.756 0.751

Table 3: Comparison of the 3D liver mesh between the
VTK files of “3D-IRCADDb”, the Isosurfaces, Marching
Cubes and our proposed method using ASM with a
B-spline registration.

IRCAD database

100

:=h)

80

WAUC

Sensitivity (%)

1- Specificity

Figure 9: The Area under the curve: Comparison be-
tween our propose method and the VTK files of ”3D-
IRCADDb” database

5 Conclusion

In this work, we used the Active shape Modeling for
3D CT-liver segmentation. In order to well create
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our model, we used in the pre-processing phase the
Shape Context Corresponding Point Model with a B-
Spline cubic interpolation. Evaluation of the pro-
posed method has been performed by using 20 CT-
exams from the 3D IRCADb”’database and 15 CT-
exams from our database. We acheive a good re-
sults for 3D liver segmentation with a 70% of accu-
racy. Results obtained using our database are better
than those obtained with the open access database
”3D-IRCADb”. This is due to the fact that the ”3D-
IRCADb” database is composed only by pathologi-
cal cases contrariwise to our database which is com-
posed by normal and pathological cases. As a conclu-
sion, it would be better to use only normal cases or
a much bigger number of normal cases than patho-
logical cases to build a good training model. The
proposed method brings to the doctors and the re-
searchers, an approximate 3D model for normal liver
cases. As a perspective, we attend to extract some fea-
ture from this 3D model for normal liver i order to de-
tect liver pathologies according to the liver 3D mesh.

Conflict of Interest The authors declare no conflict
of interest.
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