

www.astesj.com 244

Measuring modifiability in model driven development using object oriented metrics
Nwe Nwe*,1, Ei Thu2
1Computer University, Monywa, Myanmar
2University of Computer Studies Mandalay, Myanmar

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 31 October, 2017
Accepted: 02 January, 2018
Online: 30 January, 2018

 Model driven development is an important role in software engineering. It consists of
multiple transformation functions. This development is a paradigm for writing and
implementing computer program quickly, effectively, at minimum cost and reducing
development efforts because it transforms design model to object-oriented code. Our
approach is rule-based model driven development in which textual Umple model is used as
primary artifact and transformed to mobile applications. In this model driven development,
evaluation of quality of transformation is critical. This paper has presented a set of metrics
to assess the quality attribute of modifiability and evaluated using these object-oriented
metrics. Results represent our approach achieves high efficiency in quality of modifiability.

Keywords :
Model transformation
Drools rule-based
Modifiability

1. Introduction

Changing with technology, mobile devices and mobile
applications are necessary thing for every person and every sector.
The burst on the availability of mobile devices is powering a
growing mobile application. According to this fact, mobile
applications, which are used in these devices, are critical in an
industrial development. To fulfill the demand of these things,
mobile application development preferably uses model-driven
engineering than traditional software development process widely
and effectively. It focuses on model for the development of
software. There is lower the overall cost of building large internal
applications, there is lower the risk of large application, speed
time to build large applications and expand the pool of resources
that can work on large application are main strategic objectives to
use model driven development. Reduction of both direct and
indirect development efforts, which enables scripters to contribute
to enterprise development and enables task-oriented management
of development are benefit of model driven development. It is a
superset of model driven development because it goes beyond the
traditional development.

In this case, the rule based model driven development of
mobile application using Drool Knowledge-based Rule was
presented in [1]. They also measured assessment of

transformability using object oriented metrics. Drools
Knowledge-based is a business rule management system with a
forward and backward chaining inference based rules engines [2].

Moreover, this model-driven development is a development
paradigm that uses model as the primary artifacts of the
development process. It transforms source model to target
model/code according to changing requirement and software
reused more rapidly than traditional software development. A
model transformation consists of multiple transformation
functions. These transformation functions transform target
language elements from the source language. Most of researchers
concentrate on model to model transformation using intermediate
meta-model or model to code transformation [3-6]. There is no
quality, there is no efficiency in everything. Quality issue also
change scale and become more important. The process transforms
to new model or code related to quality of final software product
and the quality of the model used to generate it. The consistency
of source and target model and the assessment of quality of
transformation is the critical issue in model transformation
domains.

There are many attributes to evaluate quality in software
engineering. Among them, most of these quality attributes can be
applied to software artifacts in general. However, in [7] authors
describe two quality criteria important in model transformation.
They are transformability and modifiability. According to their

ASTESJ

ISSN: 2415-6698

*Corresponding Author: Nwe Nwe, Email: nwenwemdy08@gmail.com

Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 244-251 (2018)

www.astesj.com

Special issue on Advancement in Engineering Technology

https://dx.doi.org/10.25046/aj030130

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj030130

N. Nwe et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 244-251 (2018)

www.astesj.com 245

work, it is necessary to extend the assessment to other quality
attribute of modifiability, maintainability and reusability using
object-oriented metrics. Modifiability is the extent to which a
model transformation can be adapted to provide different or
additional functionality. The main reason for modifying a model
transformation is changing requirements. Another reason is that
the (domain specific) language in which the source and/ or target
model are described which may be subject to changes.
Modifiability captures the amount of effort needed to modify a
model transformation. It is the combination of the modularity and
reusability, an essential aspect of software engineering that
promotes software maintainability. Moreover, it enables
transform without affecting other parts of a program that are not
directly connected to the changes. This paper is organized as
follows: Section II explains the basic concepts of related work.
Section III presents the contribution of rule based model
transformation and quality attributes of modifiability. Section IV
describes our experimental results and comparison results. Finally,
section V concludes our approach and evaluation of modifiability
using object oriented metrics.

2. Related work

There is increasing attention towards the generation of source
code from modeling languages. Several researchers propose
model driven approach for the different aspects of mobile
applications. The model driven development of mobile
applications using Drools knowledge-based Rule was describes in
[1]. They developed mobile application by applying Drool rule
based. Their work is closely related with JUSE4 android
application [8,9]. Moreover, they attempted to address the
consistency of source and target model and the assessment of
transformability by measuring the accuracy of consistency
between source and target model and assessing the
transformability using object oriented metrics. According to their
work, it is necessary to extend the assessment to other quality
attributes of model driven development using object-oriented
metrics. Authors performed a comparative study on C++, C# and
Java programs using object-oriented metrics in [10]. It consists of
class size, complexity, coupling cohersion, inheritance,
encapsulation, polymorphism and reusability.

An evaluation of the quality of model transformation was
defined in [11]. They made the quality of model transformation
measurable. They presented the quality attributes and a set of
metrics to assess these quality attributes. A calculation of metrics
values using the same set of standard metrics for three software
system of different sizes was described in [12].

In [5], authors presented quality goal in MDE and states that
the quality of models is affected by the quality of modeling
languages, tools, modeling processes, the knowledge and
experience of modelers and the quality assurance techniques
applied. In [3, 4], authors defined the meta-model and model
transformation rule for model driven android application
development. In [13], authors also defined ATLAS
transformation rules for UML sequence diagram to generate

enterprise java bean code (EJB). In [6], authors presented enhance
code generation tool for android source code based on UML class
and sequence diagram. In [14], authors specified meta-model with
Ecore and transformation rules with Xpand templates for entity
relationship diagram to generate android SQLite database model.

In model driven transformation, the approaches are quite
different in their respective use of input model. Most of these
approaches are based on graphical modeling or textual modeling
languages. In contrast to our approach, the previous approaches
applied pre-defined meta-modeling while our approach
automatically parses and extracts syntax form input model of
Umple [15]. Moreover, our approach has specified transformation
rules in object pattern matching approach. JUSE4Android is also
based on textual modeling languages. Unlike our approach, it is
adding annotation into JUSE model and transform into android
source according to the predefined meaning of annotation.
Therefore, they generated source code contains some more files
in their project. The authors [16, 17] have proposed the approach
for empirical evaluation of model driven engineering in multiple
dimensions. Their case studies include qualitative (expert
judgements) and quantitative data (metrics) evaluations. They
suppose that the productivity and defect detection rate are the
popular metrics for measuring automation degree of MDD
processes. Some quality goals such as well-establishment and
precision are especially important in MDE [18 -20]. In [21],
authors also developed open source tool aims to address quality
measurement and prediction process to achieve automatically. In
[22], authors presented the most recent challenges faced in the
process to make model transformation more sophisticated.
According to the literature, it is necessary to extend the
assessment to other quality attribute of modifiability using object-
oriented metrics. We conducted the comparative study for
measuring the modifiability of MDD generated source code using
object-oriented metrics. Therefore, we obtain more reliable
findings.

3. Rule based model transformation framework

Model transformations become essential with the
evolution of model driven development. It is a mechanism of
automating the manipulation of models. A transformation is the
automatic generation of a target model from source model using
transformation definition. These transformations definition is a
set of transformation rules that define how a model in the source
language can transform into target language. These rules are
descriptions of how one or more constructs in the source language
can be transformed into one or more constructs in the target
language.

In this section, we provide an overview of the framework and
their underlying architecture. The proposed architecture is divided
into three major parts corresponding to the main capabilities of
the proposed framework. These components are parser,
transformer and code generator. The parser receives an input
model, written in Umple language, tokenizes it and passes it to the
next component transformer. The transformer is a knowledge

http://www.astesj.com/

N. Nwe et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 244-251 (2018)

www.astesj.com 246

based rule engines. It has received the tokens previously obtained
and transforms them into internal representation consistent with
target source code model using predefined set of Drools mapping
rules. It is more correctly classified as a production rule system.
It is a kind of Rule engine and also an Expert system, the
validation and expression evaluation Rule Engines. It is
declarative programming and allows to present what to do. The
key advantage of rule engine is that using rules can make it easy
to express solution to difficult problems and consequently have
those solutions verified. The code generator translates the internal
representation into target artifacts: source code as Java, XML and
android activity class. Each component is tested independently to
ensure that the input is processed correctly and the resulted output
is validated [1]. Figure 1 describes the overall architecture of the
proposed system. We have used Umple as input and transformed
to mobile application. In this case of model transformation, we
have applied Drool Rule based transformation.

Figure 1 Overall Architecture of model transformation

3.1. Rule-based Inference System

In this system, we present a rule-based model driven
approach to generate android application from text-based
modeling language. Rule languages and inference engines
incorporate reasoning capabilities are used in mobile application
development system. A rule is made up of a collection of
conditions associated with a sequence of actions to be applied to
each collection of facts matching the rule condition. The proposed
model transformation rules are based on Drools rule inference
engine [2]. It is improved to reach the generation of mobile
applications source code and introducing new concern in model
driven mobile engineering. The core of the Drool suites and
advanced Inference Engine using are improved Rete algorithm for
object pattern matching. Rules are stored in the production
memory, while facts are maintained in the working memory. The
production memory remains the same during an analysis session,
i. e, rules cannot be added or removed or changed. The contents
of the working memory on the other hand can change. Facts may
be modified, removed or added by executing rules or from
external sources. After changing in the working memory, the
inference engine is triggered and it works out which rules become
“true” for the given facts. If there are multiple selected rules, their
execution order will be managed via the Agenda, using a conflict
resolution strategy.

3.2. Drools Transformation Rule

Drools rules are defined using Java-like language. It is a
Business Logic integration Platform (BLiP). With the runtime, we
create a working memory. The syntax of rule is shown as follows:

Rule
Rule <Rule Name>
When <Condition>
then <Action>

Rule: A rule is nothing but the logic that will be applied
to incoming data. It has two main parts; when and then.

When: works out the condition on which Rule will be
fired.

Then: the action; if the rules met the condition, they
define what work this rule performs.

Step 1: Create a.drl (droolRule.drl)file where we will
define the rules.

Step 2: Create Person POJO class.

The proposed rule engine consists three parts: umple2model,
umple2view and umple2controller according to android model,
view and controller perspective. Table 1 shows the sample form
of Drools transformation rule for simple variable declaration for
Account Title. Umple2Model.drl transforms incoming abstract
syntax model (ASM) into plain java object (POJO).
Umple2View.drl transforms ASM into android user interface
XML file and Umple2Controller.drl transforms ASM into android
activity class. The code generator receives the POJO model for
model layer, XML model for view layer and android model for
controller layer. The generator use the java development tool
(JDT-core) to generate POJO class and android class source code.
It is also used the JDOM to generate XML user interface file.

Table 1: Transformation Rule Sample

Umple String AccountTitle;

Rule "VariableDeclaration"

Dialect "java"

when

$st : SyntaxTree(status==SyntaxTree.VAR_DECLARE)

then

TypeDeclaration type=AST2Android.Variable_Decl($st.getType());

CompilationUnit cu=$st.getCu();

$st.setStatus(SyntaxTree.ACTIVITY_CREATE);

$st.setType(type);

$st.setCu(cu);

update($st);

end

Mobile
Apps Umple

Transformation

Drool Rule

http://www.astesj.com/

N. Nwe et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 244-251 (2018)

www.astesj.com 247

POJO (Model Layer) String AccountTitle;

PublicvoidsetAccountTitle(String at){

accountTitle=at;}

public String getAccountTitle(){

return accountTitle;}

}

XML (View Layer)

<EditText android:id=

"@+id/ txtaccountTitle"

android:layout_height=

"wrap_content"

android:layout_width=

"wrap_content"/>

Android (Controller Layer)

private EditText txtaccountTitle;

private String accountTitle;

txtaccount-

Title=(EditText)findViewById(R.id.accountTitle);

4. Experimental results and comparison

In model driven development, there are two important
criteria to evaluate the quality of model transformation. They are
transformability and modifiability. The consistency of source and
target model and the assessment of transformability are evaluated
in [1]. According to these results, we extend to evaluate the
assessment of quality of modifiability in this model driven
transformation.

4.1. Modifiability

Changes made for the requirements are rendered quality of
the code in the models the code. This fact becomes challenges in
quality of model driven development [quality]. To address these
issues, this paper has proposed the evaluation of modifiability of
model driven transformation using object oriented metrics. This
modifiability is decomposed into traceability of model elements
and well-designated or not being too complex. Moreover, the
extent to which a model transformation can be adapted to provide
different or additional functionality. The main reason for
modifying a model transformation is changing requirements.
Another reason is that the (domain specific) language in which the
source and/ or target model is described which may be subject to
changes. Modifiability captures the amount of effort need to
modify a model transformation. It controls the visibility of system
development. Such controls contribute to modularity, an essential

aspect of software engineering that promotes software
maintainability. In object-oriented programming, we note that
these classes form the modules of programs. From the modularity
perspective, modules should be as independent as possible with
minimal coupling.

We have also performed a comparative study using both our
proposed system and JUSE4 Android [8, 9] based on object
oriented metrics. These metrics indicate quality of source code
directly. We evaluate the quality of model driven for model
transformation of generated source code quality and prior
approach’s generated source code quality. The results are used to
evaluate a model is complete or suitable for automation or a
modeling technique is appropriate for a target transformation.
Therefore we have identified metrics to examine in this process.

4.2. Metrics

We describe the metrics for assessing the quality attributes
for model transformation. Those metrics are applicable to
language definition and characteristics of languages. For
modifiability, we determine encapsulation, polymorphism and
reusability as the quality criteria. These are described in table 2.

Table 2: Object oriented quality criteria

Quality of Criteria for Comparative Study

No Quality
Criteria Metrics Acrony

ms
Desired
Results

1 Encaps
ulation

Methods of hiding
factor

MHF High

Attribute hiding
factor

AHF High

2 Polymo
rphism

Number of method
overridden by a
subclass

NMO High

Polymorphism
factor

PF High

3 Reusab
ility

Reuse ratio RP High

Specialization ratio SR High

A. Data Collection

To evaluate the modifiability of transformation, we have
collected the metric values by using Eclipse metrics Plug-in [23].
It is an open source metrics calculation tools which measures
various metrics and detects cycle in package and type
dependencies. At first, we have generated the android application
from different approaches of proposed and prior approach
respectively. In the next step, we enable Eclipse Metrics Plug-in
on each generate source code that give common solution. Finally,
we extracted the mean, standard deviation and maximum metric
values for each generate source code. In our comparative study,
we have collected the average metric values from the proposed

http://www.astesj.com/

N. Nwe et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 244-251 (2018)

www.astesj.com 248

and prior generated source code with respect to the quality criteria.
Table 3 shows extracted metric values.

4.3. Encapsulation

It is the bringing together of a set of fields and methods into
an object definition and hiding their internal working from the
users of the object. By encapsulation, the way an object or its
fields and methods are structured which is not visible to the users
of the object. It is also facilitated by bundling and information
hiding. It enhances the software maintainability. Encapsulation
increases the cohesiveness of data and methods through bundling
and reduces the strength of coupling between software
components through information hiding. For encapsulation, we
have measured method hiding factor (MHF) and attribute hiding
factors (AHF) using the following equation 1 and 2. MHF and
AHF are indicators to show how well methods and attributes are
hidden inside classes. The results are presented in table 3. The
comparisons of MHF values and AHF values of proposed system
and prior systems are shown in the following figure 2 and 3
respectively. These metrics are measured at system level and high
metric values are expected. The results are compared with prior
approach and our proposed approach. This result means that we
achieve the higher method hiding factor and attribute hiding
factors.

Let V (M)= number of classes where the method M is visible,
then

MHF= 1-∑𝑉𝑉(𝑀𝑀)/(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑇𝑇𝑜𝑜 𝑐𝑐𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛−1)
𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑇𝑇𝑜𝑜 𝑛𝑛𝑛𝑛𝑇𝑇ℎ𝑇𝑇𝑜𝑜𝑛𝑛 𝑖𝑖𝑛𝑛 𝑇𝑇𝑇𝑇𝑇𝑇 𝑐𝑐𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

 (1)

 Let V (A) = number of classes where the attribute A is visible,
then

AHF= 1-∑𝑉𝑉(𝐴𝐴)/(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑇𝑇𝑜𝑜 𝑐𝑐𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛−1)
𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑇𝑇𝑜𝑜 𝑇𝑇𝑇𝑇𝑇𝑇𝑛𝑛𝑖𝑖𝑛𝑛𝑛𝑛𝑇𝑇𝑛𝑛𝑜𝑜 𝑖𝑖𝑛𝑛 𝑇𝑇𝑇𝑇𝑇𝑇 𝑐𝑐𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

 (2)

By using the equation 1, we have calculated the MHF value.
The result described that the ratio of number of classes where the
visible method M is higher, the MHF value is lower.

By using the equation 2, we have calculated the AHF value.
The result described that the ratio of number of classes where the
visible attribute A is higher, the AHF value is lower.

Figure 2 Comparison results of method of hiding factors

Figure 3 Comparison results of attribute hiding factors

4.4. Polymorphism

It is the ability of objects to respond to the same message but
with the appropriate method based on their class definitions. For
polymorphism, we have measured the number of method
overridden by a sub class (NMO) and polymorphism factors (PF).
Results are described in figure 4 and 5 respectively.

For NMO, we have determined the number of methods in a
subclass overridden from its base class by using equation 3.
Moreover, we determine the PF by using following equation 4.
By using this equation 4, we present the PF value in table 3. To
be specific, NMO is a class-level metric, which refers to the
number of methods overridden by a single subclass, while PF is a
system level metric, which measures the degree of method
overriding in the whole type tree. These values are desired to be
high. The results are compared with prior approach and our
proposed approach. This result means that we achieve the higher
number of methods overridden by a subclass and polymorphism
factor.

NMO= the number of methods in a subclass overridden from its
base class (3)

PF=
� M0(Ci𝑇𝑇𝑇𝑇

𝑖𝑖=0)

� [(Mn Ci)x DC (Ci)]𝑇𝑇𝑇𝑇
𝑖𝑖=0

 (4)

Where TC = the total number of classes

Mn (Ci)= Number of new methods of the class Ci

Mo (Ci)= Number of overriding methods of the class Ci

DC(Ci)= Number of Descendant of the class Ci

We have calculated the NMO value by using the number of
methods in a subclass overridden from its base class and applying
equation 3. They are presented in table 3.

We have calculated the PF value by using equation 4 and the
results are described in table 3. The results present that number of
overriding methods of the class is higher, the PF value is higher.

0

0.5

1

1.5

2

Pr
oj

ec
t_

1
Pr

oj
ec

t_
2

Pr
oj

ec
t_

3
Pr

oj
ec

t_
4

Pr
oj

ec
t_

5
Pr

oj
ec

t_
6

Pr
oj

ec
t_

7
Pr

oj
ec

t_
8

Pr
oj

ec
t_

9
Pr

oj
ec

t_
10

Pr
oj

ec
t_

11
Pr

oj
ec

t_
12

Pr
oj

ec
t_

13
Pr

oj
ec

t_
14

Pr
oj

ec
t_

15
Pr

oj
ec

t_
16

Pr
oj

ec
t_

17
Pr

oj
ec

t_
18

Pr
oj

ec
t_

19
Pr

oj
ec

t_
20

MHF Measurement

Proposed JUSE Android

0

0.5

1

1.5

2

2.5

Pr
oj

ec
t_

1
Pr

oj
ec

t_
2

Pr
oj

ec
t_

3
Pr

oj
ec

t_
4

Pr
oj

ec
t_

5
Pr

oj
ec

t_
6

Pr
oj

ec
t_

7
Pr

oj
ec

t_
8

Pr
oj

ec
t_

9
Pr

oj
ec

t_
10

Pr
oj

ec
t_

11
Pr

oj
ec

t_
12

Pr
oj

ec
t_

13
Pr

oj
ec

t_
14

Pr
oj

ec
t_

15
Pr

oj
ec

t_
16

Pr
oj

ec
t_

17
Pr

oj
ec

t_
18

Pr
oj

ec
t_

19
Pr

oj
ec

t_
20

AHF Measurement

Proposed JUSE Android

http://www.astesj.com/

N. Nwe et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 244-251 (2018)

www.astesj.com 249

Figure 4 Comparison results of number of methods overridden by a sub class

Figure 5 Comparison results of polymorphism factors

4.5. Reusability

Reusability is the extent to which a model transformation can
be reused by other model transformations. It refers to as-is reuse.
It is especially relevant for model transformations when a source
model has to be transformed into different target models or vice
versa. For reusability, we have measured reuse ratio (RR) and
specialization ratio (SR) and results are presented in figure 6 and
7.

We have determined the RR and SR by using the following
equation 5 and 6. RR and SR are both system level reusability
metrics. They are calculated as the ratios of subclass to all classes
and to super classes, respectively. The results are presented in
table 3. We have expected to be highly reused, large reusability
metrics values are desirable.

RR= (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑇𝑇𝑜𝑜 𝑆𝑆𝑛𝑛𝑆𝑆𝑛𝑛𝑛𝑛 𝑐𝑐𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)
(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑇𝑇𝑜𝑜 𝑐𝑐𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

 (5)

SR= (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑇𝑇𝑜𝑜 𝑆𝑆𝑛𝑛𝑛𝑛 𝑐𝑐𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)
(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑇𝑇𝑜𝑜 𝑛𝑛𝑛𝑛𝑆𝑆𝑛𝑛𝑛𝑛 𝑐𝑐𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

 (6)

We have calculated the RR and SR values by applying
equations 5 and 6 respectively. There are more subclasses, the
higher the RR and SR values.

Figure 6 Comparison results of reuse ratios

Figure 7 Comparison results of specialization ratios

5. Results and discussion

We have presented comparison results of our measurement.
Expected results for our evaluation are shown in table 2. The
larger a model transformation, the harder it is to understand and
modify. Moreover, the number of signature and equations per
function has a negative effect on consistency. If more similar
signatures or equations have to be written, it is more likely that a
different style is used.

The comparison results of our measurements are described in
table 3. We have employed the result from MHF and AHF metrics
for encapsulation, NMO and PF metrics for polymorphism and
RR and SR for reusability to compare our approach and prior
approach.

We have used private, protected and public keywords to
control the accessibility to the method and attributes inside a class.
According to these facts, we have planned quality attributes of our
system to achieve higher modifiability.

0

0.5

1

1.5

2

Pr
oj

ec
t_

1
Pr

oj
ec

t_
2

Pr
oj

ec
t_

3
Pr

oj
ec

t_
4

Pr
oj

ec
t_

5
Pr

oj
ec

t_
6

Pr
oj

ec
t_

7
Pr

oj
ec

t_
8

Pr
oj

ec
t_

9
Pr

oj
ec

t_
10

Pr
oj

ec
t_

11
Pr

oj
ec

t_
12

Pr
oj

ec
t_

13
Pr

oj
ec

t_
14

Pr
oj

ec
t_

15
Pr

oj
ec

t_
16

Pr
oj

ec
t_

17
Pr

oj
ec

t_
18

Pr
oj

ec
t_

19
Pr

oj
ec

t_
20

NMO Measurement

Proposed JUSE4 Android

0

0.5

1

1.5

2

Pr
oj

ec
t_

1
Pr

oj
ec

t_
2

Pr
oj

ec
t_

3
Pr

oj
ec

t_
4

Pr
oj

ec
t_

5
Pr

oj
ec

t_
6

Pr
oj

ec
t_

7
Pr

oj
ec

t_
8

Pr
oj

ec
t_

9
Pr

oj
ec

t_
10

Pr
oj

ec
t_

11
Pr

oj
ec

t_
12

Pr
oj

ec
t_

13
Pr

oj
ec

t_
14

Pr
oj

ec
t_

15
Pr

oj
ec

t_
16

Pr
oj

ec
t_

17
Pr

oj
ec

t_
18

Pr
oj

ec
t_

19
Pr

oj
ec

t_
20

PF Measurement

Proposed JUSE4 Android

0

0.5

1

1.5

2

2.5

Pr
oj

ec
t_

1
Pr

oj
ec

t_
2

Pr
oj

ec
t_

3
Pr

oj
ec

t_
4

Pr
oj

ec
t_

5
Pr

oj
ec

t_
6

Pr
oj

ec
t_

7
Pr

oj
ec

t_
8

Pr
oj

ec
t_

9
Pr

oj
ec

t_
10

Pr
oj

ec
t_

11
Pr

oj
ec

t_
12

Pr
oj

ec
t_

13
Pr

oj
ec

t_
14

Pr
oj

ec
t_

15
Pr

oj
ec

t_
16

Pr
oj

ec
t_

17
Pr

oj
ec

t_
18

Pr
oj

ec
t_

19
Pr

oj
ec

t_
20

RR Measurement

Proposed JUSE4 Android

0
0.5

1
1.5

2
2.5

Pr
oj

ec
t_

1
Pr

oj
ec

t_
2

Pr
oj

ec
t_

3
Pr

oj
ec

t_
4

Pr
oj

ec
t_

5
Pr

oj
ec

t_
6

Pr
oj

ec
t_

7
Pr

oj
ec

t_
8

Pr
oj

ec
t_

9
Pr

oj
ec

t_
10

Pr
oj

ec
t_

11
Pr

oj
ec

t_
12

Pr
oj

ec
t_

13
Pr

oj
ec

t_
14

Pr
oj

ec
t_

15
Pr

oj
ec

t_
16

Pr
oj

ec
t_

17
Pr

oj
ec

t_
18

Pr
oj

ec
t_

19
Pr

oj
ec

t_
20

SR Measurement

Proposed JUSE4 Android

http://www.astesj.com/

N. Nwe et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 244-251 (2018)

www.astesj.com 250

Table 3: Metric values collected by Eclipse Metrics Plug in

Project
MHF AHF NMO PF RR SR

Proposed Prior Proposed Prior Proposed Prior Proposed Prior Proposed Prior Proposed Prior

Project_1 1.817 1.52 1.341 1.017 1.418 1.324 1.118 1.024 1.391 1.117 1.441 1.305

Project_2 1.312 1.012 1.814 1.631 1.418 1.339 1.214 1.172 1.415 1.234 1.318 1.216

Project_3 1.418 1.01 1.218 1.141 1.516 1.418 1.516 1.418 1.681 1.519 1.515 1.341

Project_4 1.332 1.091 1.216 1.037 1.721 1.675 1.338 1.219 1.712 1.441 1.312 1.225

Project_5 1.318 1.113 1.137 0.964 1.584 1.492 1.321 1.158 1.944 1.814 1.331 1.226

Project_6 1.218 1.108 1.512 1.314 1.714 1.654 1.62 1.578 1.651 1.315 1.461 1.306

Project_7 1.314 1.052 1.315 1.103 1.454 1.418 1.681 1.554 1.445 1.215 1.317 1.211

Project_8 1.386 1.216 1.189 1.003 1.512 1.5 1.551 1.418 1.512 1.335 1.312 1.041

Project_9 1.514 1.084 2.247 2.171 1.416 1.415 1.712 1.589 1.518 1.412 1.224 1.091

Project_10 1.317 1.117 1.351 1.056 1.551 1.491 1.512 1.438 1.441 1.337 1.516 1.338

Project_11 1.215 1.034 1.314 1.114 1.612 1.558 1.623 1.519 1.541 1.319 1.511 1.314

Project_12 1.188 1.127 1.618 1.306 1.416 1.371 1.412 1.237 1.721 1.512 1.317 1.227

Project_13 1.315 1.081 2.001 1.818 1.412 1.356 1.412 1.311 1.615 1.336 1.418 1.318

Project_14 1.523 1.034 1.258 1.084 1.411 1.336 1.681 1.518 1.771 1.512 1.446 1.215

Project_15 1.412 1.098 1.252 1.004 1.513 1.418 1.512 1.429 1.314 1.118 1.781 1.711

Project_16 1.278 1.161 1.541 1.331 1.417 1.387 1.441 1.337 1.512 1.217 1.412 1.219

Project_17 1.314 1.033 1.118 1.105 1.516 1.477 1.711 1.616 1.561 1.431 2.012 1.911

Project_18 1.521 1.102 2.132 2.034 1.554 1.486 1.417 1.327 1.318 1.201 1.316 1.138

Project_19 1.386 1.117 2.21 2.007 1.312 1.258 1.415 1.318 1.518 1.312 1.416 1.216

Project_20 1.517 1.305 2.124 1.823 1.416 1.387 1.612 1.559 1.512 1.416 1.418 1.213

By applying the experimental results, our approach has
higher value than prior approach in encapsulation, polymorphism
and reusability. Moreover, our expected result is that the high
metric values are preferable.

These experimental results show how well methods and
attributes are hidden inside classes. Therefore, our approach can
help system develop methods and attributes which are hidden
inside classes more efficiently. This means that our approach is
more efficient than others. However, these results describes that
they are a little bit higher than prior approach. By using these
results, we will enhance our approach to achieve more efficiently
and effectively model driven development process.

6. Conclusion

Model transformations become essential with the evolution
of model driven development. It is an automatic generation of a
target model from source model by using transformation
definition. Modifiability is key issues in quality of this

transformation. To address this issue, we have evaluated the
modifiability of quality of model transformation using object
oriented metric. This modifiability is decomposed into
traceability of model elements and well-designated or not being
too complex. Moreover, the extent to which a model
transformation can be adapted to provide different or additional
functionality. The main reason for modifiability of a model
transformation is changing requirements. In this paper, we have
performed the comparative study on our approach and prior
approach to determine modifiability to develop more efficient
mobile application system. We have determined the encapsulation,
polymorphism and reusability as quality metrics. These metrics
are measured at system level. We have used private, protected and
public keywords to control the accessibility to the method and
attributes inside a class. According to these facts, we have planned
quality attributes of our system to achieve higher modifiability.
The determination of experimental results represent that we
achieve high score from comparison of our approach and prior
approach. This means that our system is more traceability and

http://www.astesj.com/

N. Nwe et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 244-251 (2018)

www.astesj.com 251

well-designated. Using these findings, we will enhance our
approach to achieve higher efficiency and quality. In the future
work, we will investigate more quality attribute for high accuracy
of system development. Moreover, we will also evaluate the
impact of transformation rules.

References

[1] Thu, E. E, Nwe N, “Model Driven Development of Mobile Applications
Using Drools Knowledge-based rule” proceeding of SERA 2017, June 7-9,
2017, London, UK.

[2] De Lay, E, Jacobs D, “Rules-based Analysis with JBoss Drools: Adding
Intelligence to Automation”, ICALEPCS 2011, Proceeding of ICALEPCS
Genoble, France

[3] Son, H.S, Kim, W.Y and Chul, R.Y, “MOF based Code Generation Method
for Android Platform”, International Journal of Software Engineering and Its
application, Vol 7, No 3, Hongik University, Sehong Campus, Korea, 2013.

[4] Son, H. S, Kim, J.S, Chul, R. Y, SMTL Oriented Model Transformation
Mechanism for Heterogeneous Smart Mobile Models, International Journal
of Software Engineering and its Applications, Volume 7, No3, Sejong
Campus, Korea, 2013.

[5] Parada, A.G, Lisane, B, A Model Driven Approach for Android Application
Development, Brazilian, Symposium on Computing System Engineering
(SBESC), Pelotas, Brazil, 2012.

[6] Parada, A.G.; Milena, R.S.; Automating mobile application development:
UML-based code generation for Android and Window phone, Journal of
Theoretical and Applied Information (RITA), volume 22, Pelotas, Brazil,
2015.

[7] Solheim, L and Neple, T, Model Quality in the Context of Model-Driven
Development, Proceeding of 2nd International Workshop on Model- Driven
Enterprise Information Systems (MDEIS’06), pp. 27-35, 2006.

[8] Silva, L.P, Abreu,F.B.: A Model-Driven Approach for Mobile Business
Information Systems Applications, ACM/IEEE 17th International
Conference on Model Driven Engineering Languages and Systems,
MODELS 2014, QUASAR/ISTAR/ISCTE-IUL, Lisboa, Portugal.

[9] Silva, L.P, Abreu,F.B.: Model-Driven GUI Generation and Navigation for
Android BIS Apps, MODELSWARD 2014, Portugal.

[10] Baowen, X, Di.W.: A metrics-based Comparative Study on Object-Oriented
Programming Languages, 27th International Conference on Software
Engineering and Knowledge Engineering, SEKE’ 2015, USA.

[11] van Amstel, M.F; Lange, C.F.J.; van den Bran, M.G. J.: Metrics for
analyzing the quality of model transformations, Proceeding s 12th ECOOP
Workshop on Quantitative Approaches on Object Oriented Software
Engineering (QAOOSE 08, Paphos, Cyprus, July 8, 2008.

[12] Rudiger, L, Jonas, L.: Comparing Software Metrics Tools, International
Symposium on Software Testing and Analysis, ISSTA’2008, USA.

[13] Omar, E.B, Bragun, B, Automatic Code Generation by Model
Transformation from Sequence Diagram of System’s Internal Behavior
International Journal of Information Technology, Hassan 1st University,
Morocco, 2012.

[14] Steeg, C.C, Gotz, F, Model Driven, Data Management in Android with the
Android Content Provider, https:// code.goodle.com/archieve/p/mdsd-
android-content-provider/Bingen, Germany, 2011.

[15] https://github.com/umple/umple
[16] Mohagheghi, P, Aagedal, J, Evaluating Quality in Model-Driven

Engineering, Proceeding of 29th International Conference on Software
Engineering Workshops (ICSEW’07), 2007

[17] Mohagheghi,p.: An Approach for Empirical Evaluation of Model Driven
Engineering in Multiple Dimensions, MODELPLEX, Oslo, Norway, 2010.

[18] Chidamber, S.R, Kamerer, C.F.: A metrics suite for object-oriented design,
IEEE Transaction of Software Engineering, pp-(20)6, 1994: 476-493.

[19] Henderson-Sellers, B.: Object-oriented metrics: measures of complexity,
Prentice Hall, 1995.

[20] Badreddin, O, Lethbridge, T.C, Forward, A, A Novel Approach to
Versioning and Merging Model and Code Uniformaly, in MODELSWARD
2014, Proceeding of the 2nd International Conference on Model-Driven
Engineering and Software Development, 2014.

[21] Kocaguneli, Ekrem, et al.: Prest: An Intelligent Software Metrics Extraction,
Analysis and Defect Prediction Tool, 21th International Conference on
Software Engineering and Knowledge Engineering, SEKE’2009, USA.

[22] Pallavi, K, Suita, P.U: Model Transformation, Concept, Current Trends and
Challenges, International Journal of Computer Applications, Volume 119,
No 14, Nasik, Manarashtra, India, 2015.

[23] http://metrics.sourceforge.net

http://www.astesj.com/
https://github.com/umple/umple
http://metrics.sourceforge.net/

	1. Introduction
	2. Related work
	3. Rule based model transformation framework
	3.1. Rule-based Inference System
	3.2. Drools Transformation Rule

	4. Experimental results and comparison
	4.1. Modifiability
	4.2. Metrics
	A. Data Collection
	4.3. Encapsulation
	4.4. Polymorphism
	4.5. Reusability

	5. Results and discussion
	6. Conclusion
	References

