

www.astesj.com 225

Velocity obstacles for car-like mobile robots: Determination of colliding velocity and curvature pairs

Emese Gincsainé Szádeczky-Kardoss*,1, Zoltán Gyenes2

1Associate professor at Department of Control Engineering and Information Technology, Budapest University of Technology and
Economics, H-1117, Hungary

2Student at Department of Control Engineering and Information Technology, Budapest University of Technology and Economics,
H-1117, Hungary

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 29 November, 2017
Accepted: 15 January, 2018
Online: 30 January, 2018

 This paper addresses the motion planning problem of Reeds-Shepp-type car-like mobile
robots moving among static and dynamic obstacles. If the positions and the velocity vectors
of the obstacles are known or well estimated, the Velocity Obstacles (VO) method and its
non-linear version (NLVO) can be used to plan a collision-free trajectory for a robot in the
dynamic environment. VO and NLVO algorithms determine a velocity vector for the robot
which corresponds not necessarily to the orientation of the robot, hence a nonholonomic
car-like mobile robot cannot apply it exactly. Previously, the NLVO method was adopted
for Dubins-like mobile robots, which are able to move forward only. In this paper, a method
similar to NLVO is presented, but it results motions feasible for Reeds-Shepp-type robots,
which are able to drive both forward and backward. Longitudinal velocities and curvatures
of turning circles are calculated, which ensure collision-free motion if the arbitrary
movement of the obstacles are known for some time-horizon.

Keywords:
Mobile robots
Motion planning
Velocity obstacles

1. Introduction

This paper is an extension of work originally presented in the
25th Mediterranean Conference on Control and Automation [1].

One of the main tasks of autonomous mobile robots is to
execute a safe motion in their workspace from the actual position
to a desired goal configuration. In some applications, the
environment is fix, i.e. the positions and velocities of the obstacles
are known. Otherwise the robot has to use some sensors to be able
to estimate this information. Robots should be able to plan their
motions such that they will not collide with static or moving
obstacles. The literature presents several path planning methods
for the avoidance of static obstacles (see e.g. [2,3]).

There are two possibilities for motion planning among moving
obstacles: 1, The planning can be done in two steps: geometric path
planning and then velocity planning. 2, The geometry of the path
and the velocity profile along it are determined simultaneously.

In the first case, the geometry of the path and its time
distribution are calculated separately (e.g. [4,5]). At the path
planning phase, the moving obstacles are disregarded. The planner
calculates a path which ensures collision-free motion to the goal
among the static obstacles. The motions of the obstacles influence
only the velocity profile of the path.

The second possibility is to calculate both the path geometry
and the velocity profile in one step (e.g. [6]). In this second case
the shape of the path depends also on the positions and movements
of the dynamic obstacles.

If the information about the obstacles (positions, velocities) are
known, a global path planner can be applied. If the environment is
unknown, a local reactive obstacle avoidance algorithm has to be
used based on the sensory information (e.g. [7]).

Several motion planning methods in static environment can be
extended to solve the dynamic problem as well. Some methods use
the configuration space of the robot to find a feasible path among
static obstacles (e.g. [3]). If the workspace of the robot contains
moving obstacles as well, the configuration space should be

ASTESJ

ISSN: 2415-6698

*Corresponding Author: Emese Gincsainé Szádeczky-Kardoss,
 Email: szadeczky@iit.bme.hu

Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 225-233 (2018)

www.astesj.com

Special Issue on Recent Advances in Engineering Systems

https://dx.doi.org/10.25046/aj030127

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj030127

E.G.S. Kardoss et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 225-233 (2018)

www.astesj.com 226

extended by a temporal dimension, and the motion should be
searched in this extended space. Using this solution, one has to
modify the distance metric to deal with the temporal dimension [5].

The Artificial Potential Field (APF) algorithm is a quite simple
method which can be used for path planning in static environment
[8]. Applying special potential force functions, one can solve the
motion planning problem in case of moving target and obstacles
using APF [9,10].

The Dynamic Window (DW) method is a local obstacle
avoidance algorithm used in static environment [11]. The planning
is done in the velocity space of the robot. Reachable and admissible
velocity values are selected. Reachable values satisfy the
kinematic and dynamic constraints of the robot and admissible
values guarantee that the robot can stop before hitting an obstacle.
An adaptation of DW can be used with moving obstacles as well
[7].

The inevitable collision states (ICS) for robots are presented in
[12]. If the robot is in an IC state, it surely collides with an obstacle
independently from the future trajectory of the robot. If a state is
non-ICS, there exists at least one motion possibility for the robot
to avoid collision. Using the ICS concept, the motion planning
problem in dynamic environment can also be solved [13].

The concept of velocity obstacles (VO) was introduced in [6]
for such environments where the velocity vectors of the obstacles
are supposed to be unchanged for some time-interval. Using VOs,
an avoidance maneuver can be determined in the velocity space of
the robot, based on the current positions and velocities of the robot
and obstacles. Velocity obstacles represent the set of robot
velocities that would result in a collision with a static or moving
obstacle. The basic VO method was extended for obstacles moving
along arbitrary trajectories (non-linear velocity obstacles – NLVO
[14]).

The inverse version of NLVO (INLVO) can be used to plan the
velocity profile for a robot along a path with fix geometry [15]. A
modified VO method can be used to plan autonomous navigation
for unmanned surface vehicles as well [16]. The hybrid reciprocal
VO (HRVO) is a method to plan the motion of multiple mobile
robots without central coordination [17].

Our conference paper [1] presented a modified version of VO
to plan the motion for Dubins-like mobile robots (VOD - Velocity
Obstacles for Dubins-like robots). These robots go only forward.
VOD defined pairs of colliding velocity and turning radius.

In this paper, the goal is to define velocity obstacles for Reeds-
Shepp-type car-like mobile robots, which are able to drive both
forward and backward. The determination of colliding velocity and
curvature pairs is discussed. In this paper, the curvature is used
instead of turning radius, hence the graphical representation of the
colliding pairs is easier. The method and the equations of [1] were
modified to deal with negative velocities and to use curvature
instead of turning radius.

The paper is organized as follows. Section 2 gives a short
review of velocity obstacle methods. Section 3 presents the
properties of Reeds-Shepp-type mobile robots. Section 4 describes
how the 'velocity' of a car-like robot is represented in this work. In
Section 5, the velocity obstacles for car-like mobile robots

(VOCL) are presented. Some simulation results are given in
Section 6. Finally, a short section concludes the paper.

2. A Short Review of Velocity Obstacles

VO method can be used to find a feasible velocity vector for
the robot such that the robot is able to avoid static and moving
obstacles. It is assumed that the position and velocities of the
obstacles are known, and the obstacles follow a straight-line path
for some time-horizon. The VO method uses circular
representation of the robot and the obstacles with known radii.

Given are a robot 𝐴𝐴 and some moving obstacles 𝐵𝐵𝑖𝑖 (𝑖𝑖 =
1 … 𝑛𝑛 < ∞), where 𝑛𝑛 denotes the number of obstacles. (According
to this concept, a static obstacle is a moving obstacle with zero
velocity.) The velocity obstacle 𝑉𝑉𝑂𝑂𝑖𝑖 contains all the robot velocity
vectors 𝐯𝐯 which would result a collision with obstacle 𝐵𝐵𝑖𝑖:

 𝑉𝑉𝑂𝑂𝑖𝑖 = {𝐯𝐯|∃𝑡𝑡:𝐴𝐴(𝑡𝑡, 𝐯𝐯) ∩ 𝐵𝐵𝑖𝑖(𝑡𝑡) ≠ ∅} (1)

where 𝐴𝐴(𝑡𝑡, 𝐯𝐯) denotes the robot at time 𝑡𝑡 if velocity 𝐯𝐯 was applied.
The shape of 𝑉𝑉𝑂𝑂𝑖𝑖 is a cone (see Figure 1). The union of the
individual 𝑉𝑉𝑂𝑂𝑖𝑖 reads

 𝑉𝑉𝑂𝑂 = ⋃ 𝑉𝑉𝑂𝑂𝑖𝑖𝑛𝑛
𝑖𝑖=1 . (2)

Selecting a velocity vector outside 𝑉𝑉𝑂𝑂 guarantees that no
collision will occur between the robot and the obstacles.

An example for a point robot 𝐴𝐴 and two moving (𝐵𝐵1,𝐵𝐵2) and a
static obstacle (𝐵𝐵3) is presented in Figure 1.

Figure 1. Velocity obstacles for a point robot 𝐴𝐴 with two moving (𝐵𝐵1,𝐵𝐵2) and a
static obstacle (𝐵𝐵3). 𝒗𝒗𝐵𝐵1,𝒗𝒗𝐵𝐵2 are the velocities of the obstacles. 𝑉𝑉𝑂𝑂𝑖𝑖 denotes the
velocity obstacle corresponding to obstacle 𝐵𝐵𝑖𝑖 . A collision-free example is
depicted for robot velocity: 𝒗𝒗 ∉ 𝑉𝑉𝑂𝑂 = ⋃ 𝑉𝑉𝑂𝑂𝑖𝑖3

𝑖𝑖=1 .

2.1. Non-Linear Velocity Obstacles

The non-linear velocity obstacle (NLVO) defines the set of all
linear robot velocities that would result a collision with obstacle
𝐵𝐵𝑖𝑖 (𝑡𝑡) moving along arbitrary known trajectory. At time instant 𝑡𝑡,

http://www.astesj.com/

E.G.S. Kardoss et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 225-233 (2018)

www.astesj.com 227

one can define robot velocity vectors which move the robot to a
position during time 𝑡𝑡 − 𝑡𝑡0 such that a collision occurs with 𝐵𝐵𝑖𝑖:

 𝑁𝑁𝑁𝑁𝑉𝑉𝑂𝑂𝑖𝑖(𝑡𝑡) = 𝑐𝑐𝑖𝑖(𝑡𝑡)+𝐵𝐵𝑖𝑖
𝑡𝑡−𝑡𝑡0

 (3)

where 𝑐𝑐𝑖𝑖(𝑡𝑡) denotes the trajectory of the obstacle 𝐵𝐵𝑖𝑖 . Considering
all 𝑡𝑡 > 𝑡𝑡0, one gets

 𝑁𝑁𝑁𝑁𝑉𝑉𝑂𝑂𝑖𝑖 = ⋃ 𝑐𝑐𝑖𝑖(𝑡𝑡)+𝐵𝐵𝑖𝑖
𝑡𝑡−𝑡𝑡0𝑡𝑡>𝑡𝑡0 . (4)

The shape of the non-linear velocity obstacle 𝑁𝑁𝑁𝑁𝑉𝑉𝑂𝑂𝑖𝑖 is a
warped cone with apex at 𝐴𝐴 (see Figure 2). Similar to (2), the union
of the individual 𝑁𝑁𝑁𝑁𝑉𝑉𝑂𝑂𝑖𝑖 defines the set of all robot velocity
vectors which result a collision for some 𝑡𝑡 > 𝑡𝑡0.

Figure 2. 𝑁𝑁𝑁𝑁𝑉𝑉𝑂𝑂 for a point robot 𝐴𝐴 with obstacle 𝐵𝐵𝑖𝑖 moving along a circular

path.

2.2. Generalized Velocity Obstacles

The concept of velocity obstacles was generalized to apply it
for car-like robots [18]. The obstacle is defined in the control space
of the robot:

 𝐺𝐺𝑉𝑉𝑂𝑂 = {𝑢𝑢|∃𝑡𝑡: ‖𝐴𝐴(𝑡𝑡,𝑢𝑢) − 𝐵𝐵(𝑡𝑡)‖ < 𝑟𝑟𝐴𝐴 + 𝑟𝑟𝐵𝐵} (5)

where 𝑢𝑢 is the control input of the robot, 𝐴𝐴(𝑡𝑡,𝑢𝑢) is the position of
𝐴𝐴 if control 𝑢𝑢 was applied up to 𝑡𝑡. 𝑟𝑟𝐴𝐴 and 𝑟𝑟𝐵𝐵 denote the radii of the
circular robot and obstacle.

The controls are sampled, and for each control 𝑢𝑢, the minimum
distance between 𝐴𝐴 and 𝐵𝐵 is determined numerically, if control 𝑢𝑢
was applied to the robot. If the minimum distance is smaller than
the sum of the radii, 𝑢𝑢 ∈ 𝐺𝐺𝑉𝑉𝑂𝑂 and it means that a collision will
occur between 𝐵𝐵 and 𝐴𝐴 for the control 𝑢𝑢.

2.3. Idea for Extension

In this paper, the velocity obstacles are applied to similar robots
as presented in Subsection 2.2. This solution will not be restricted
to sampled control inputs, as suggested by [18]. The presented
method represents the velocity obstacles for car-like robots as a
subset of a two-dimensional plane similar to the methods of VO
and NLVO. In this work, this plane is determined by the velocity
of the robot and the curvature of its path.

3. Reeds-Shepp-Type Car-Like Mobile Robots

A car-like mobile robot (see Figure 3) can move in a two-
dimensional workspace. The state of the robot is defined by its
position and orientation. The position is given by the (𝑥𝑥,𝑦𝑦)
coordinates of the midpoint of its rear axle. The orientation of the
robot is denoted by 𝜃𝜃, and it is defined by the angle of the positive
𝑥𝑥 axis of the coordinate system and the longitudinal axis of the
robot. Ackermann-steering is supposed (see [19]), and the
movement of the robot is described by the motion of a bicycle
putting on the longitudinal axis of the robot. The inputs of the robot
are the longitudinal velocity 𝑣𝑣 and the angle of the front turning
wheel (𝛿𝛿). Notice, that 𝑣𝑣 is a scalar.

Figure 3. Car-like mobile robot.

The kinematics of the robot reads:

 �
�̇�𝑥
�̇�𝑦
�̇�𝜃
� = �

cos 𝜃𝜃
sin𝜃𝜃
tan 𝛿𝛿
𝑏𝑏

� 𝑣𝑣, (6)

where 𝑏𝑏 is distance between the front and the rear wheels. The
turning angle 𝛿𝛿 of the front wheel determines the radius 𝑅𝑅 of the
turning circle of the robot: 𝑅𝑅 = 𝑏𝑏

tan 𝛿𝛿
. The reciprocal of the turning

radius is called curvature: 𝜅𝜅 = 1
𝑅𝑅

= tan 𝛿𝛿
𝑏𝑏

.

The turning radius 𝑅𝑅 cannot be arbitrary small, since the
turning angle 𝛿𝛿 of the front wheels is also limited. Depending on
the limit of 𝛿𝛿 and the geometrical 𝑏𝑏 parameter of the robot, a
minimal turning radius can be determined: 𝑅𝑅𝑚𝑚𝑖𝑖𝑛𝑛 ≤ |𝑅𝑅|. Similarly,
the curvature is also limited: |𝜅𝜅| ≤ 𝜅𝜅𝑚𝑚𝑚𝑚𝑚𝑚.

The car-like mobile robot is a nonholonomic system since the
direction of its velocity vector is constrained by the following
equation:

 �̇�𝑥 sin𝜃𝜃 − �̇�𝑦 cos𝜃𝜃 = 0. (7)

There are different types of car-like mobile robots: Dubins-
robots can only move forward (i.e. 𝑣𝑣 > 0). It was proved that for
given start and goal states the path with the minimal length consists
of three segments: two or three circular segments with maximal

http://www.astesj.com/

E.G.S. Kardoss et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 225-233 (2018)

www.astesj.com 228

curvature (i.e. with minimal turning radius) and, if needed, a
straight-line between two circles if no obstacles are presented in
the workspace [20]. The Reeds-Shepp-type mobile robots are able
to travel both forward and backward. It was also shown that the
path with minimal length between given start and goal states
contains (like Dubins-robots) circular segments with maximal
curvature, and it may contain straight-lines and cusp points where
the driving direction changes [21].

4. Velocity Representation for Car-Like Mobile Robots

A Reeds-Shepp-type mobile robot can move forward or
backward on a circular path segment with constant curvature (𝜅𝜅),
i.e. with constant radius (𝑅𝑅 = 1

𝜅𝜅
), or on a straight-line. The

curvature may have negative values, which shows that the robot
turns in the negative direction (i.e. clockwise). The straight-line
motion can also be described by a zero curvature. The time-
distribution along the path depends on the longitudinal velocity 𝑣𝑣
of the robot. The sign of 𝑣𝑣 shows the direction of motion. These
imply that the actual motion of the robot can be described by the
pair (𝑣𝑣, 𝜅𝜅).

If (𝑣𝑣, 𝜅𝜅) is constant for a time period Δ𝑡𝑡, one can calculate the
displacement in position and in orientation for Δ𝑡𝑡, if the motion
starts at 𝑡𝑡0 = 0 from [𝑥𝑥0,𝑦𝑦0,𝜃𝜃0] = [0,0,0] by integrating (6):

 �
𝑥𝑥(Δ𝑡𝑡)
𝑦𝑦(Δ𝑡𝑡)
𝜃𝜃(Δ𝑡𝑡)

� = �

2
𝜅𝜅

sin 𝜅𝜅𝜅𝜅Δ𝑡𝑡
2

cos 𝜅𝜅𝜅𝜅Δ𝑡𝑡
2

2
𝜅𝜅

sin2 𝜅𝜅𝜅𝜅Δ𝑡𝑡
2

𝜅𝜅𝑣𝑣Δ𝑡𝑡

�. (8)

This works in the reverse direction as well: if a point (𝑥𝑥,𝑦𝑦) is
given in the workspace of the robot, one can determine the constant
curvature 𝜅𝜅 and the constant forward longitudinal velocity 𝑣𝑣𝑓𝑓 ≥ 0
and backward velocity 𝑣𝑣𝑏𝑏 < 0, which can move the robot from
𝑡𝑡0 = 0 and [𝑥𝑥0,𝑦𝑦0,𝜃𝜃0] = [0,0,0] to this point during time Δ𝑡𝑡:

 𝜅𝜅 = 2𝑦𝑦
𝑚𝑚2+𝑦𝑦2

, (9)

 𝑣𝑣𝑓𝑓 = 𝑚𝑚2+𝑦𝑦2

𝑦𝑦Δ𝑡𝑡
atan 𝑦𝑦

𝑚𝑚
, (10)

 𝑣𝑣𝑏𝑏 = 𝑚𝑚2+𝑦𝑦2

𝑦𝑦Δ𝑡𝑡
�atan 𝑦𝑦

𝑚𝑚
− 𝑠𝑠𝑠𝑠𝑛𝑛 �atan 𝑦𝑦

𝑚𝑚
� 𝜋𝜋�. (11)

Notice, that (10) (and (11)) has several solutions for given 𝑥𝑥
and 𝑦𝑦. If the robot does not go more than ones around in a circle,
(10) (or (11)) will have a single solution for 𝑣𝑣𝑓𝑓 (or for 𝑣𝑣𝑏𝑏) with
−𝜋𝜋 < atan 𝑦𝑦

𝑚𝑚
≤ 𝜋𝜋.

If the robot goes straight, its motion is described by: 𝑥𝑥 =
𝑣𝑣 Δ𝑡𝑡, 𝑦𝑦 = 0, 𝜅𝜅 = 0,𝑅𝑅 = ∞, 𝑣𝑣 = 𝑚𝑚

Δ𝑡𝑡
. In the sequel, the goal is to

determine the (𝑣𝑣, 𝜅𝜅) (i.e. (𝑣𝑣𝑓𝑓 , 𝜅𝜅) and (𝑣𝑣𝑏𝑏 , 𝜅𝜅)) pairs which result a
collision-free motion for the robot.

5. Velocity Obstacles for Car-Like Robots

Let the robot be at the [𝑥𝑥0,𝑦𝑦0 ,𝜃𝜃0] = [0,0,0] initial state. First,
such (𝑣𝑣, 𝜅𝜅) pairs are determined which result a collision with static

obstacles. Then the collision with moving obstacles is also
considered.

5.1. Collision with Static Obstacles

Suppose that a static obstacle is presented in the workspace of
the robot. Let a circle represent the obstacle. Its position is given
by the coordinates of its center: (𝑥𝑥𝑜𝑜 ,𝑦𝑦𝑜𝑜) and its radius is 𝑟𝑟𝑜𝑜. For the
sake of simplicity, the robot is also represented by a circle with
radius 𝑟𝑟𝑟𝑟 . (A non-circular robot or obstacle can be approximated
by one or more circles.) To examine the collision for a point-like
robot, the radius of the obstacle should be enlarged by the radius
of the robot: 𝑟𝑟𝑜𝑜′ = 𝑟𝑟𝑜𝑜 + 𝑟𝑟𝑟𝑟 similar to the method proposed in [6].

First, such circular motions (i.e. curvatures 𝜅𝜅𝑔𝑔) are considered,
where the robot grazes (touches) the obstacle. Geometrically, the
problem is the following: given a point (position of the robot), a
straight-line going through this point (line of the robot's
orientation) and a circle (obstacle with enlarged radius 𝑟𝑟𝑜𝑜′), such a
circle has to be found, which is tangential to the circle of the
obstacle and grazes the line of orientation at the given point
(robot's position).

Figure 4. Grazing a static obstacle.

There are two possibilities (see Figure 4). In both cases the center
of the turning circle lies on the 𝑦𝑦-axis (i.e. the 𝑥𝑥 coordinate of the
center of the turning circle is 0). The 𝑦𝑦 coordinate of the center of
the turning circle defines the radius of the circle. The two possible
values for the curvatures (or for reciprocals of y coordinates of the
center) are:

 𝜅𝜅𝑔𝑔1 = 1
𝑌𝑌1

= 2�𝑦𝑦𝑜𝑜−𝑟𝑟𝑜𝑜′�
𝑚𝑚𝑜𝑜2+𝑦𝑦𝑜𝑜2−𝑟𝑟𝑜𝑜′2

, (12)

 𝜅𝜅𝑔𝑔2 = 1
𝑌𝑌2

= 2�𝑦𝑦𝑜𝑜+𝑟𝑟𝑜𝑜′�
𝑚𝑚𝑜𝑜2+𝑦𝑦𝑜𝑜2−𝑟𝑟𝑜𝑜′2

. (13)

All curvatures between 𝜅𝜅𝑔𝑔1 and 𝜅𝜅𝑔𝑔2 will result in a collision
with the static obstacle. More precisely, moving on a circle with
curvature 𝜅𝜅𝑖𝑖 ≠ 0 will cause a collision if

 min�𝜅𝜅𝑔𝑔1, 𝜅𝜅𝑔𝑔2� < 𝜅𝜅𝑖𝑖 < max(𝜅𝜅𝑔𝑔1, 𝜅𝜅𝑔𝑔2) . (14)

𝜅𝜅𝑖𝑖 = 0 can only cause a collision if

 𝑠𝑠𝑠𝑠𝑛𝑛 �𝜅𝜅𝑔𝑔1� ≠ 𝑠𝑠𝑠𝑠𝑛𝑛�𝜅𝜅𝑔𝑔2� ∧ 𝑠𝑠𝑠𝑠𝑛𝑛(𝑥𝑥𝑜𝑜) = 𝑠𝑠𝑠𝑠𝑛𝑛(𝑣𝑣). (15)

http://www.astesj.com/

E.G.S. Kardoss et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 225-233 (2018)

www.astesj.com 229

The coordinates of the grazing points ((𝑥𝑥1,𝑦𝑦1) resp. (𝑥𝑥2,𝑦𝑦2))
can be calculated as well:

 𝑥𝑥1 = 𝑚𝑚𝑜𝑜(𝑚𝑚𝑜𝑜2+𝑦𝑦𝑜𝑜2−𝑟𝑟𝑜𝑜′2)

𝑚𝑚𝑜𝑜2+�𝑦𝑦𝑜𝑜−𝑟𝑟𝑜𝑜′�
2 , (16)

 𝑦𝑦1 = (𝑚𝑚𝑜𝑜2+𝑦𝑦𝑜𝑜2−𝑟𝑟𝑜𝑜′2)(𝑦𝑦𝑜𝑜−𝑟𝑟𝑜𝑜′)

𝑚𝑚𝑜𝑜2+�𝑦𝑦𝑜𝑜−𝑟𝑟𝑜𝑜′�
2 , (17)

 𝑥𝑥2 = 𝑚𝑚𝑜𝑜(𝑚𝑚𝑜𝑜2+𝑦𝑦𝑜𝑜2−𝑟𝑟𝑜𝑜′2)

𝑚𝑚𝑜𝑜2+�𝑦𝑦𝑜𝑜+𝑟𝑟𝑜𝑜′�
2 , (18)

 𝑦𝑦2 = (𝑚𝑚𝑜𝑜2+𝑦𝑦𝑜𝑜2−𝑟𝑟𝑜𝑜′2)(𝑦𝑦𝑜𝑜+𝑟𝑟𝑜𝑜′)

𝑚𝑚𝑜𝑜2+�𝑦𝑦𝑜𝑜+𝑟𝑟𝑜𝑜′�
2 . (19)

Consider now the time instant 𝑡𝑡. The (𝑣𝑣, 𝜅𝜅) input pairs can be
determined, which cause collision with the static obstacle 𝐵𝐵𝑖𝑖 at 𝑡𝑡.
The velocity obstacle for a car-like robot (VOCL) is the union of
these points (see Figure 5):

 𝑉𝑉𝑂𝑂𝑉𝑉𝑁𝑁𝑖𝑖(𝑡𝑡) = { (𝑣𝑣, 𝜅𝜅)|𝐴𝐴(𝑡𝑡, 𝑣𝑣, 𝜅𝜅) ∩ 𝐵𝐵𝑖𝑖 ≠ ∅}, (20)

where 𝐴𝐴(𝑡𝑡, 𝑣𝑣, 𝜅𝜅) represents the robot at time-moment 𝑡𝑡 moving
from 𝑡𝑡0 = 0 and from the origin on a circular path with radius 1

𝜅𝜅

with velocity 𝑣𝑣 . 𝜅𝜅 and 𝑣𝑣 can be calculated from (𝑥𝑥, 𝑦𝑦) position
using (9)-(11).

Figure 5. a. Robot and obstacle at a grazing case. b. Velocity obstacle

𝑉𝑉𝑂𝑂𝑉𝑉𝑁𝑁(𝑡𝑡) and feasible VO 𝐹𝐹𝑉𝑉𝑂𝑂𝑉𝑉𝑁𝑁(𝑡𝑡) for time instant 𝑡𝑡

From the grazing points (𝑥𝑥1,𝑦𝑦1) and (𝑥𝑥2,𝑦𝑦2) , one can
determine the corresponding points in 𝑉𝑉𝑂𝑂𝑉𝑉𝑁𝑁𝑖𝑖(𝑡𝑡). The curvatures
𝜅𝜅𝑔𝑔1 and 𝜅𝜅𝑔𝑔2 are used and the forward velocities 𝑣𝑣𝑔𝑔1

𝑓𝑓 ,𝑣𝑣𝑔𝑔2
𝑓𝑓 and

backward velocities 𝑣𝑣𝑔𝑔1𝑏𝑏 , 𝑣𝑣𝑔𝑔2𝑏𝑏 can also be calculated if (𝑥𝑥1,𝑦𝑦1) or
(𝑥𝑥2,𝑦𝑦2) should be reached on a circular path during time 𝑡𝑡.

(𝑣𝑣𝑔𝑔1, 𝜅𝜅𝑔𝑔1) and (𝑣𝑣𝑔𝑔2, 𝜅𝜅𝑔𝑔2) lie on the boundary of 𝑉𝑉𝑂𝑂𝑉𝑉𝑁𝑁𝑖𝑖(𝑡𝑡). All
other points on the boundary of 𝑉𝑉𝑂𝑂𝑉𝑉𝑁𝑁𝑖𝑖(𝑡𝑡) correspond to a motion
(i.e. (𝑣𝑣, 𝜅𝜅) values) which moves the robot during time 𝑡𝑡 to a
boundary point of the obstacle, but before or after the time instant
𝑡𝑡 a collision occurs.

𝑉𝑉𝑂𝑂𝑉𝑉𝑁𝑁𝑖𝑖(𝑡𝑡) according to (20) may contain (𝑣𝑣𝑗𝑗 , 𝜅𝜅𝑗𝑗) pairs, such
that |𝜅𝜅𝑗𝑗| > 𝜅𝜅𝑚𝑚𝑚𝑚𝑚𝑚 or |𝑣𝑣𝑗𝑗| > 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 . These 𝜅𝜅𝑗𝑗 or 𝑣𝑣𝑗𝑗 values are not
feasible. Feasible VO (𝐹𝐹𝑉𝑉𝑂𝑂𝑉𝑉𝑁𝑁𝑖𝑖(𝑡𝑡) ⊆ 𝑉𝑉𝑂𝑂𝑉𝑉𝑁𝑁𝑖𝑖(𝑡𝑡)) contains only
feasible curvature and velocity values:

𝐹𝐹𝑉𝑉𝑂𝑂𝑉𝑉𝑁𝑁𝑖𝑖(𝑡𝑡) = {(𝑣𝑣, 𝜅𝜅)|𝐴𝐴(𝑡𝑡, 𝑣𝑣, 𝜅𝜅) ∩ 𝐵𝐵𝑖𝑖 ≠ ∅ ∧

 |𝑣𝑣| ≤ 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 ∧ |𝜅𝜅| ≤ 𝜅𝜅𝑚𝑚𝑚𝑚𝑚𝑚}. (21)

In Figure 5 𝑉𝑉𝑂𝑂𝑉𝑉𝑁𝑁𝑖𝑖(𝑡𝑡) is delimited by dotted line and
𝐹𝐹𝑉𝑉𝑂𝑂𝑉𝑉𝑁𝑁𝑖𝑖(𝑡𝑡) is bounded by solid line.

Taking time-moments in a time-interval 𝑡𝑡 ∈ [𝑡𝑡0, 𝑡𝑡ℎ] one can
get 𝐹𝐹𝑉𝑉𝑂𝑂𝑉𝑉𝑁𝑁𝑖𝑖 for a static obstacle 𝐵𝐵𝑖𝑖:

 𝐹𝐹𝑉𝑉𝑂𝑂𝑉𝑉𝑁𝑁𝑖𝑖 = ⋃ 𝐹𝐹𝑉𝑉𝑂𝑂𝑉𝑉𝑁𝑁𝑖𝑖(𝑡𝑡)𝑡𝑡∈[𝑡𝑡0,𝑡𝑡ℎ] . (22)

If the robot moves according to (𝑣𝑣, 𝜅𝜅) ∉ 𝐹𝐹𝑉𝑉𝑂𝑂𝑉𝑉𝑁𝑁𝑖𝑖, the robot
will not collide with the static obstacle 𝐵𝐵𝑖𝑖 in the given time interval
[𝑡𝑡0, 𝑡𝑡ℎ].

Notice, that the selection of 𝑡𝑡ℎ influences the effectiveness and
the computational demand of the method. If a small value was
selected for 𝑡𝑡ℎ, a mobile robot may collide with a moving obstacle.
On the other hand, a large time-horizon can result that VO includes
almost the complete velocity space [13].

5.2. Calculating VOCL for Moving Obstacles

For a moving obstacle 𝐵𝐵𝑖𝑖(𝑡𝑡) the definition of 𝑉𝑉𝑂𝑂𝑉𝑉𝑁𝑁𝑖𝑖(𝑡𝑡) for a
given time-moment 𝑡𝑡 is similar to (20):

 𝑉𝑉𝑂𝑂𝑉𝑉𝑁𝑁𝑖𝑖(𝑡𝑡) = { (𝑣𝑣, 𝜅𝜅)|𝐴𝐴(𝑡𝑡, 𝑣𝑣, 𝜅𝜅) ∩ 𝐵𝐵𝑖𝑖(𝑡𝑡) ≠ ∅}. (23)

𝐹𝐹𝑉𝑉𝑂𝑂𝑉𝑉𝑁𝑁𝑖𝑖(𝑡𝑡) and 𝐹𝐹𝑉𝑉𝑂𝑂𝑉𝑉𝑁𝑁𝑖𝑖 can be determined as well, according
to (21) and (22).

The main difference is the following: the grazing points in
𝑉𝑉𝑂𝑂𝑉𝑉𝑁𝑁𝑖𝑖(𝑡𝑡) ((𝑣𝑣𝑔𝑔1, 𝜅𝜅𝑔𝑔1) and (𝑣𝑣𝑔𝑔2, 𝜅𝜅𝑔𝑔2)) do not represent grazing
cases any more if the obstacle is moving since the position of the
grazing points depends on the motion of the obstacle.

To analyze VOCL and the grazing points, the following
notations are used (see Figure 6):

• A time instant 𝑡𝑡𝐴𝐴 is considered.

• The position of the moving obstacle at 𝑡𝑡𝐴𝐴 is denoted by
(𝑥𝑥𝑜𝑜(𝑡𝑡𝐴𝐴), 𝑦𝑦𝑜𝑜(𝑡𝑡𝐴𝐴)). The angle between the positive x-axis and

http://www.astesj.com/

E.G.S. Kardoss et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 225-233 (2018)

www.astesj.com 230

the velocity vector 𝐯𝐯𝑜𝑜(𝑡𝑡𝐴𝐴) of the obstacle is denoted by
𝜃𝜃𝑜𝑜(𝑡𝑡𝐴𝐴), the absolute value of the velocity is 𝑣𝑣𝑜𝑜(𝑡𝑡𝐴𝐴). 𝜔𝜔𝑜𝑜(𝑡𝑡𝐴𝐴)
denotes the turning rate of the obstacle. The vector 𝛚𝛚𝑜𝑜(𝑡𝑡𝐴𝐴)
is parallel to the positive z-axis, if the direction of the
rotation is positive, and to the negative z-axis in case of
clockwise rotation.

• An input pair (𝑣𝑣𝐴𝐴, 𝜅𝜅𝐴𝐴) is selected.

• If a robot is moving with a velocity 𝑣𝑣𝐴𝐴 on a circle with
curvature 𝜅𝜅𝐴𝐴 for time 𝑡𝑡𝐴𝐴, its position (𝑥𝑥𝑟𝑟(𝑡𝑡𝐴𝐴),𝑦𝑦𝑟𝑟(𝑡𝑡𝐴𝐴)) and
orientation 𝜃𝜃𝑟𝑟(𝑡𝑡𝐴𝐴) can be determined according to (8). The
absolute value of the robot's velocity 𝑣𝑣𝐴𝐴 remains
unchanged during the circular motion, but the vector of the
velocity 𝐯𝐯𝐴𝐴(𝑡𝑡𝐴𝐴) changes, since the orientation of the robot
is also modified. The turning rate of the robot is 𝜔𝜔𝐴𝐴 =
𝜅𝜅𝐴𝐴 𝑣𝑣𝐴𝐴. The direction of vector 𝛚𝛚𝐴𝐴 is parallel to the positive
z-axis, if 𝜔𝜔𝐴𝐴 > 0, and to the negative z-axis if 𝜔𝜔𝐴𝐴 < 0. The
vector 𝛚𝛚𝐴𝐴 is constant during the circular motion, since its
direction and length (i.e. 𝜔𝜔𝐴𝐴) are unchanged.

• The relative velocity of the robot and the obstacle at time
moment 𝑡𝑡𝐴𝐴 is denoted by

 𝐯𝐯𝑟𝑟|𝑜𝑜 (𝑡𝑡𝐴𝐴) = 𝐯𝐯𝐴𝐴(𝑡𝑡𝐴𝐴) − 𝐯𝐯𝑜𝑜(𝑡𝑡𝐴𝐴). (24)

• The angle between the velocity vector 𝐯𝐯𝐴𝐴(𝑡𝑡𝐴𝐴) of the robot
and the relative velocity 𝐯𝐯𝑟𝑟|𝑜𝑜(𝑡𝑡𝐴𝐴) is:

 𝛽𝛽(𝑡𝑡𝐴𝐴) = atan 𝜅𝜅𝑜𝑜(𝑡𝑡𝐴𝐴) sin(𝜃𝜃𝑟𝑟(𝑡𝑡𝐴𝐴)−𝜃𝜃𝑜𝑜(𝑡𝑡𝐴𝐴))
𝜅𝜅𝐴𝐴−𝜅𝜅𝑜𝑜(𝑡𝑡𝐴𝐴) cos(𝜃𝜃𝑟𝑟(𝑡𝑡𝐴𝐴)−𝜃𝜃𝑜𝑜(𝑡𝑡𝐴𝐴))

. (25)

• 𝐩𝐩𝑜𝑜𝑟𝑟 is a vector connecting the center of the obstacle to the
center of the robot.

• The angle between the positive x-axis and 𝐩𝐩𝑜𝑜𝑟𝑟 is:

 𝛾𝛾(𝑡𝑡𝐴𝐴) = atan 𝑦𝑦𝑟𝑟(𝑡𝑡𝐴𝐴)−𝑦𝑦𝑜𝑜(𝑡𝑡𝐴𝐴)
𝑚𝑚𝑟𝑟(𝑡𝑡𝐴𝐴)−𝑚𝑚𝑜𝑜(𝑡𝑡𝐴𝐴)

. (26)

The following two propositions follow directly from the
definition of 𝑉𝑉𝑂𝑂𝑉𝑉𝑁𝑁𝑖𝑖(𝑡𝑡).

Proposition 1:

��𝑥𝑥𝑟𝑟(𝑡𝑡𝐴𝐴) − 𝑥𝑥𝑜𝑜(𝑡𝑡𝐴𝐴)�2 + (𝑦𝑦𝑟𝑟(𝑡𝑡𝐴𝐴) − 𝑦𝑦𝑜𝑜(𝑡𝑡𝐴𝐴))2 ≤ 𝑟𝑟𝑜𝑜′ ⟺

 (𝑣𝑣𝐴𝐴, 𝜅𝜅𝐴𝐴) ∈ 𝑉𝑉𝑂𝑂𝑉𝑉𝑁𝑁𝑖𝑖(𝑡𝑡𝐴𝐴). (27)

If |𝜅𝜅𝐴𝐴| ≤ 𝜅𝜅𝑚𝑚𝑚𝑚𝑚𝑚 and |𝑣𝑣𝐴𝐴| ≤ 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 , then (𝑣𝑣𝐴𝐴, 𝜅𝜅𝐴𝐴) ∈
 𝐹𝐹𝑉𝑉𝑂𝑂𝑉𝑉𝑁𝑁𝑖𝑖(𝑡𝑡𝐴𝐴) is also true. Similar to [14], the boundary points of
the set 𝑉𝑉𝑂𝑂𝑉𝑉𝑁𝑁(𝑡𝑡) are denoted by 𝛿𝛿𝑉𝑉𝑂𝑂𝑉𝑉𝑁𝑁(𝑡𝑡).

Proposition 2:

��𝑥𝑥𝑟𝑟(𝑡𝑡𝐴𝐴) − 𝑥𝑥𝑜𝑜(𝑡𝑡𝐴𝐴)�2 + (𝑦𝑦𝑟𝑟(𝑡𝑡𝐴𝐴) − 𝑦𝑦𝑜𝑜(𝑡𝑡𝐴𝐴))2 = 𝑟𝑟𝑜𝑜′ ⟺

 (𝑣𝑣𝐴𝐴, 𝜅𝜅𝐴𝐴) ∈ δ𝑉𝑉𝑂𝑂𝑉𝑉𝑁𝑁𝑖𝑖(𝑡𝑡𝐴𝐴). (28)

For the grazing points (𝑣𝑣𝑔𝑔1, 𝜅𝜅𝑔𝑔1) and (𝑣𝑣𝑔𝑔2, 𝜅𝜅𝑔𝑔2) in case of a
static obstacle still holds true that �𝑣𝑣𝑔𝑔1, 𝜅𝜅𝑔𝑔1� ∈ 𝛿𝛿𝑉𝑉𝑂𝑂𝑉𝑉𝑁𝑁𝑖𝑖(𝑡𝑡𝐴𝐴) and
�𝑣𝑣𝑔𝑔2, 𝜅𝜅𝑔𝑔2� ∈ 𝛿𝛿𝑉𝑉𝑂𝑂𝑉𝑉𝑁𝑁𝑖𝑖(𝑡𝑡𝐴𝐴) where 𝛿𝛿 denotes the region boundary.
But these points are not grazing points any more, if the obstacle is
moving.

Theorem 3: (𝑣𝑣𝐴𝐴, 𝜅𝜅𝐴𝐴) is a grazing point in 𝑉𝑉𝑂𝑂𝑉𝑉𝑁𝑁𝑖𝑖(𝑡𝑡𝐴𝐴) if

 𝜃𝜃𝑟𝑟(𝑡𝑡𝐴𝐴) + 𝛽𝛽(𝑡𝑡𝐴𝐴) − 𝛾𝛾(𝑡𝑡𝐴𝐴) = (2𝑚𝑚−1)𝜋𝜋
2

, 𝑎𝑎 ∈ ℤ. (29)

Proof: 𝜃𝜃𝑟𝑟(𝑡𝑡𝐴𝐴) + 𝛽𝛽(𝑡𝑡𝐴𝐴) denotes the angle between the relative
velocity 𝐯𝐯𝑟𝑟|𝑜𝑜(𝑡𝑡𝐴𝐴) and the positive x-axis. 𝛾𝛾(𝑡𝑡𝐴𝐴) is the angle
between the positive x-axis and 𝐩𝐩𝑜𝑜𝑟𝑟 (the vector connecting the
center of the robot and the obstacle). The condition for the grazing
situation is that the relative velocity 𝐯𝐯𝑟𝑟|𝑜𝑜(𝑡𝑡𝐴𝐴) is perpendicular to
𝐩𝐩𝑜𝑜𝑟𝑟 which is equivalent to the case where the relative velocity
𝐯𝐯𝑟𝑟|𝑜𝑜(𝑡𝑡𝐴𝐴) is tangent to the circle of the enlarged obstacle with radius
𝑟𝑟𝑜𝑜′.

Similar to [14], it can be proven that if 𝐯𝐯𝑟𝑟|𝑜𝑜(𝑡𝑡𝐴𝐴) is
perpendicular to 𝐩𝐩𝑜𝑜𝑟𝑟 , the robot grazes the obstacle.

A point 𝑃𝑃 is selected on the boundary of the robot. 𝐩𝐩𝑃𝑃 is a
vector which goes from the center of the robot to 𝑃𝑃. The velocity
of the point 𝑃𝑃 is:

 𝐯𝐯𝑃𝑃(𝑡𝑡𝐴𝐴) = 𝐯𝐯𝐴𝐴(𝑡𝑡𝐴𝐴) + 𝛚𝛚𝐴𝐴 × 𝐩𝐩𝑃𝑃. (30)

Similarly, a point 𝑄𝑄 can be selected on the boundary of the
obstacle. 𝐩𝐩𝑄𝑄 is a vector which goes from the center of the obstacle
to 𝑄𝑄. The velocity of 𝑄𝑄 reads:

 𝐯𝐯𝑄𝑄(𝑡𝑡𝐴𝐴) = 𝐯𝐯𝑜𝑜(𝑡𝑡𝐴𝐴) + 𝛚𝛚𝑜𝑜(𝑡𝑡𝐴𝐴) × 𝐩𝐩𝑄𝑄. (31)

If the point 𝑃𝑃 of the robot grazes point 𝑄𝑄 on the obstacle,
vector 𝐩𝐩𝑜𝑜𝑟𝑟 has to be parallel to 𝐩𝐩𝑄𝑄 and −𝐩𝐩𝑃𝑃 . Moreover, grazing
case can only occur, if the relative velocity of point 𝑃𝑃 according to
point 𝑄𝑄 is tangent to the circle of the obstacle, i.e. if it is
perpendicular to 𝐩𝐩𝑜𝑜𝑟𝑟 (and accordingly to 𝐩𝐩𝑄𝑄 and 𝐩𝐩𝑃𝑃 as well). The
relative velocity of 𝑃𝑃 according to 𝑄𝑄 is:

𝐯𝐯𝑃𝑃|𝑄𝑄(𝑡𝑡𝐴𝐴) = 𝐯𝐯𝑃𝑃(𝑡𝑡𝐴𝐴) − 𝐯𝐯𝑄𝑄(𝑡𝑡𝐴𝐴) =

 = 𝐯𝐯𝐴𝐴(𝑡𝑡𝐴𝐴) + 𝛚𝛚𝐴𝐴 × 𝐩𝐩𝑃𝑃 − 𝐯𝐯𝑜𝑜(𝑡𝑡𝐴𝐴) −𝛚𝛚𝑜𝑜(𝑡𝑡𝐴𝐴) × 𝐩𝐩𝑄𝑄. (32)

𝐯𝐯𝑃𝑃|𝑄𝑄(𝑡𝑡𝐴𝐴) is perpendicular to 𝐩𝐩𝑜𝑜𝑟𝑟 , if:

𝐯𝐯𝑃𝑃|𝑄𝑄(𝑡𝑡𝐴𝐴) ⋅ 𝐩𝐩𝑜𝑜𝑟𝑟 = 0

 (𝐯𝐯𝐴𝐴 + 𝛚𝛚𝐴𝐴 × 𝐩𝐩𝑃𝑃) ⋅ 𝐩𝐩𝑜𝑜𝑟𝑟 − �𝐯𝐯𝑜𝑜 + 𝛚𝛚𝑜𝑜 × 𝐩𝐩𝑄𝑄� ⋅ 𝐩𝐩𝑜𝑜𝑟𝑟 =
 = 0. (33)

Both (𝛚𝛚𝐴𝐴 × 𝐩𝐩𝑃𝑃) ⋅ 𝐩𝐩𝑜𝑜𝑟𝑟 and �𝛚𝛚𝑜𝑜(𝑡𝑡𝐴𝐴) × 𝐩𝐩𝑄𝑄� ⋅ 𝐩𝐩𝑜𝑜𝑟𝑟 equal 0,
hence one gets

 �𝐯𝐯𝐴𝐴(𝑡𝑡𝐴𝐴) − 𝐯𝐯𝑜𝑜(𝑡𝑡𝐴𝐴)� ⋅ 𝐩𝐩𝑜𝑜𝑟𝑟 = 0, (34)

http://www.astesj.com/

E.G.S. Kardoss et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 225-233 (2018)

www.astesj.com 231

which is equivalent to that 𝐯𝐯𝑟𝑟|𝑜𝑜(𝑡𝑡𝐴𝐴) is perpendicular to 𝐩𝐩𝑜𝑜𝑟𝑟 .■

Notice, that the obstacles can move on arbitrary paths with
arbitrary velocity profiles. The algorithm only supposes that for
every time moment 𝑡𝑡𝐴𝐴 ∈ [𝑡𝑡0, 𝑡𝑡ℎ] the positions and the velocity
vectors of each obstacles are known.

5.3. Trajectories Avoiding Obstacles

If a goal position is given in the workspace of the robot, a
motion should be planned which arrives to this point. During the
motion, no collision should occur.

Fiorini and Shiller presented some heuristic search methods
using Velocity Obstacles [6]. Applying these, one can easily select
at each time moment a feasible velocity vector which moves the
robot to the direction of the goal such that it avoids collisions with
the obstacles. Using these heuristics alone does not guarantee to
find an optimal solution. They designed an off-line global search
method as well. A tree was generated for avoidance maneuvers
using VO.

Shiller et al. presented avoidance maneuvers using NLVO [14].
These avoidance maneuvers can be used in a local or global motion
planner as well.

The VOCL method can also be used in all above methods to
plan the motion for car-like mobile robots to a given goal avoiding
static and moving obstacles.

5.4. The Safest Solution

Another possibility for the selection of (𝑣𝑣, 𝜅𝜅) pair is to
determine the safest motion. This method is called as the Safety
Velocity Obstacles method (SVO).

The most important goal of the SVO method is to ensure the
safest path for the robot during the motion.

This method checks, how far a possible (𝑣𝑣, 𝜅𝜅) ∉ 𝐹𝐹𝑉𝑉𝑂𝑂𝑉𝑉𝑁𝑁 pair
is from the nearest 𝐹𝐹𝑉𝑉𝑂𝑂𝑉𝑉𝑁𝑁𝑖𝑖 (name this distance 𝑉𝑉𝑂𝑂𝑑𝑑𝑖𝑖𝑑𝑑𝑡𝑡). If the
distance is bigger than a predefined threshold 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 , then the value
of 𝑉𝑉𝑂𝑂𝑑𝑑𝑖𝑖𝑑𝑑𝑡𝑡 is set to this maximum distance.

Hence, a normalized distance can be defined:

 𝑉𝑉𝑂𝑂𝑛𝑛𝑜𝑜𝑟𝑟𝑚𝑚 = 𝑉𝑉𝑂𝑂𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑
𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚

 (35)

where 𝑉𝑉𝑂𝑂𝑛𝑛𝑜𝑜𝑟𝑟𝑚𝑚 ∈ [0,1]. After that the value of the cost can be
defined as

 𝑉𝑉𝑂𝑂𝑐𝑐𝑜𝑜𝑑𝑑𝑡𝑡 = 1 − 𝑉𝑉𝑂𝑂𝑛𝑛𝑜𝑜𝑟𝑟𝑚𝑚. (36)

If the selected (𝑣𝑣, 𝜅𝜅) pair is far from the nearest 𝐹𝐹𝑉𝑉𝑂𝑂𝑉𝑉𝑁𝑁𝑖𝑖, then
the value of 𝑉𝑉𝑂𝑂𝑛𝑛𝑜𝑜𝑟𝑟𝑚𝑚 will be a big number (near to 1). So, such
(𝑣𝑣, 𝜅𝜅) pair has to be chosen for the robot, where the value of
𝑉𝑉𝑂𝑂𝑐𝑐𝑜𝑜𝑑𝑑𝑡𝑡 is minimal.

So, with the SVO method one can plan the safest motion in
dynamic environment.

6. Simulation Results

An example for VOCL is presented here. A circular robot with
radius 𝑟𝑟𝑜𝑜 = 0.9m is given. Its minimal turning radius is 𝑅𝑅𝑚𝑚𝑖𝑖𝑛𝑛 =

3m (i.e. 𝜅𝜅𝑚𝑚𝑚𝑚𝑚𝑚 = 1
3

m−1) and its maximal velocity is 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 = 7 m
𝑑𝑑

.
Seven circular obstacles with different radii are presented in the
workspace (see Figure 7). Four obstacles move (𝐵𝐵1 ,𝐵𝐵2,𝐵𝐵3,𝐵𝐵4) and
there are three static obstacles (𝐵𝐵5,𝐵𝐵6,𝐵𝐵7). The velocity vectors
and the paths of the dynamic obstacles are also depicted in
Figure 7. The VOCL and FVOCL for 𝑡𝑡ℎ = 10s is given in
Figure 8. White areas represent (𝑣𝑣, 𝜅𝜅) pairs which correspond to
collision-free motion for 𝑡𝑡ℎ.

Figure 7. An example with seven obstacles at 𝑡𝑡0 = 0s. The velocity vectors of
dynamic obstacles are depicted by solid lines, the paths of the obstacles are
denoted by dotted lines (with 𝑡𝑡ℎ = 10𝑠𝑠).

A collision-free example is also presented here. 𝜅𝜅 = 0.15m−1
(𝑅𝑅 = 6. 6̇m) and 𝑣𝑣 = −5 m

𝑑𝑑
 was selected. The corresponding

(𝑣𝑣, 𝜅𝜅) point is depicted by a red star in Figure 8. The motion of the
robot and the movement of the obstacles are depicted in Figure 9.

7. Conclusion

Velocity obstacles (VO) and non-linear velocity obstacles
(NLVO) methods can be used to plan a collision-free motion for a
planar robot moving among static and moving obstacles. VO
supposes that the obstacles move on straight-lines with constant
velocities. If the path of the obstacle is not a straight-line, NLVO
can be applied. These methods determine a velocity vector for the
robot, which results in a collision-free motion in a time-interval.
Applying this velocity, the robot will move on a straight-line
according to the direction of the selected velocity vector. Both
methods assume that the position and the motion of the obstacles
are known.

http://www.astesj.com/

E.G.S. Kardoss et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 225-233 (2018)

www.astesj.com 232

Figure 9. Motion of robot and obstacles in the example (𝑣𝑣 = −5 𝑚𝑚

𝑑𝑑
, 𝜅𝜅 = 0.15𝑚𝑚−1). The robot is depicted by a blue disc, and its path is shown by the thick black dotted

line.

The method, presented in this paper is similar to NLVO but in
this case the robot is a car-like mobile robot. This robot cannot
move to arbitrary direction. The direction of its velocity vector is
determined by its orientation. The robot can move on a straight-
line according to its orientation or on a circular path. Hence, the
presented VOCL method determines only the magnitude of the
velocity vector and, additionally, the curvature of the circular path
to follow to avoid collisions.

The next stage of this work is to implement the VOCL method
for a car-like mobile robot, such that the collision-free motion is
determined in real-time.

Our future goal is to take the non-circular shape of the robot
(e.g. car-like rectangle) also into consideration during the
construction of VOCL.

[22]. In this case a continuous curvature path could be
determined. The drawback is that the computational complexity
would be larger.

References

[1] E. Gincsainé Szádeczky-Kardoss, B. Kiss, “Velocity obstacles for Dubins-
like mobile robots” in 25th Mediterranean Conference on Control and
Automation (MED), Valletta, Malta, 2017.
https://doi.org/10.1109/MED.2017.7984142

[2] J. C. Latombe, Robot motion planning, Kluwer, Boston, 1991.
[3] S. M. LaValle, Planning algorithms, Cambridge University Press, 2006.

[4] K. Kant, S. W. Zucker, “Toward efficient trajectory planning: The path-
velocity decomposition” Int. J. Robot. Res., 5(3), 72–89, 1986.
https://doi.org/10.1177/027836498600500304

[5] E. Szádeczky-Kardoss, B. Kiss, “Motion planning in dynamic environments
with the rapidly exploring random tree method” Int. Rev. of Automatic
Control, 1(1), 109–117, 2008.

[6] P. Fiorini, Z. Shiller, “Motion planning in dynamic environments using
velocity obstacles” Int. J. of Robot. Res., 17(7), 760–772, 1998.
https://doi.org/10.1177/027836499801700706

[7] M. Seder, I. Petrovic, “Dynamic window based approach to mobile robot
motion control in the presence of moving obstacles” in International
Conference on Robotics and Automation, Roma, Italy, 1986–1991, 2007.
https://doi.org/10.1109/ROBOT.2007.363613

[8] O. Khatib, “Real-Time obstacle avoidance for manipulators and mobile
robots”. Int. J. Robot. Res., 5(1), 90–98, 1986.
https://doi.org/10.1177/027836498600500106

[9] C. Qixin, H. Yanwen, Z. Jingliang, “An evolutionary artificial potential field
algorithm for dynamic path planning of mobile robot” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, Beijing, China,
3331–3336, 2006. https://doi.org/10.1109/IROS.2006.282508

[10] P. Shi, J. N. Hua, “Mobile robot dynamic path planning based on artificial
potential field approach” Adv. Mat. Res., 490–495, 994–998, 2012.
https://doi.org/10.4028/www.scientific.net/AMR.490-495.994

[11] D. Fox, W. Burgard, S. Thrun, “The dynamic window approach to collision
avoidance” IEEE Robot. Autom. Mag., 4(1), 23–33, 1997.
https://doi.org/10.1109/100.580977

[12] T. Fraichard, H. Asama, “Inevitable collision states – a step towards safer
robots?” Adv. Robotics, 18(10), 1001–1024, 2004.
https://doi.org/10.1163/1568553042674662

[13] L. Martinez-Gomez, T. Fraichard, “Collision avoidance in dynamic
environments: an ICS-based solution and its comparative evaluation” in IEEE
International Conference on Robotics and Automation, Kobe, Japan, 100–
105, 2009. https://doi.org/10.1109/ROBOT.2009.5152536

[14] Z. Shiller, F. Large, S. Sekhavat, C. Laugier, “Motion planning in dynamic
environments: Obstacles moving along arbitrary trajectories”. in IEEE

http://www.astesj.com/

E.G.S. Kardoss et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 225-233 (2018)

www.astesj.com 233

International Conference on Robotics and Automation, Seoul, South Korea,
3716–3721, 2001. https://doi.org/10.1109/ROBOT.2001.933196

[15] C. Moon, W. Chung, “Trajectory time scaling of a mobile robot to avoid
dynamic obstacles on the basis of the INLVO” Adv. Robotics, 27(15), 1189–
1198, 2013. https://doi.org/10.1080/01691864.2013.819604

[16] Y. Kuwata, M. T. Wolf, D. Zarzhitsky, T. L. Huntsberger, “Safe maritime
autonomous navigation with COLREGS, using velocity obstacles” IEEE J.
Oceanic Eng., 39(1), 110–119, 2014.
https://doi.org/10.1109/JOE.2013.2254214

[17] J. Snape, J. v. d. Berg, S. J. Guy, D. Manocha, “The hybrid reciprocal velocity
obstacle”. IEEE T. Robot., 27(4), 696–706, 2011.
https://doi.org/10.1109/TRO.2011.2120810

[18] D. Wilkie, J. v. d. Berg, D. Manocha, “Generalized velocity obstacles”. in
IEEE/RSJ International Conference on Intelligent Robots and Systems, St.
Louis, MO, USA, 5573–5578, 2009.
https://doi.org/10.1109/IROS.2009.5354175

[19] W. A. Wolfe, “Analytical design of an Ackermann steering linkage” J. Eng.
Ind.- T. ASME, 11, 11–14, 1959.

[20] L. E. Dubins, “On curves of minimal length with a constraint on average
curvature, and with prescribed initial and terminal positions and tangents”
Am. J. Math., 79(3), 497–517, 1957. https://doi.org/10.2307/2372560

[21] J. A. Reeds, L. A. Shepp, “Optimal paths for a car that goes both forwards and
backwards”. Pac. J. Math., 145(2), 367–393, 1990

[22] T. Fraichard, A. Scheuer, R. Desvigne, “From Reeds and Shepp’s to
continuous-curvature paths” in International Conference on Advanced
Robotics, Tokyo, Japan, 585–590, 1999.

http://www.astesj.com/

	2.1. Non-Linear Velocity Obstacles
	2.2. Generalized Velocity Obstacles
	2.3. Idea for Extension
	5.1. Collision with Static Obstacles
	5.2. Calculating VOCL for Moving Obstacles
	5.3. Trajectories Avoiding Obstacles
	5.4. The Safest Solution
	6. Simulation Results
	7. Conclusion
	References

