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 This paper reports the results of an empirical, 3D full wave inversion (FWI) numerical 

analysis which provides an estimation of the performance of multi-static handheld ground 

penetrating radar (GPR,) compared to a bi-static system, for landmine detection using FWI 

imaging. The experiments are based on simulated data and provide a more realistic 

evaluation of the performance of multi-static handheld GPR for the landmine problem 

based on FWI, than previous studies based on a 2D analysis.. Furthermore, a novel method 

of estimating a parameter set that is closer to the global minimum for an iterative FWI 

optimization is introduced. 
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1. Introduction  

This paper provides an extension of the work presented in [1], 

which is based on a sensitivity analysis of handheld GPR 

measurements, comparing bi-static and multi-static system 

performance using singular value decomposition (SVD). The 

results obtained confirmed the conclusions of a previous study 

conducted by Watson [2], which states that multi-static systems 

achieve greater subsurface information, for a landmine detection 

application using full wave inversion (FWI). The study in [2] also 

conducted a 2D FWI to verify the superior performance of multi-

static arrays over a bi-static configuration, for handheld GPR. It 

concludes that the size of the multi-static array, or number of 

antenna elements, is insignificant. Furthermore, the acquisition 

system under test was simplistic and radio propagation properties 

such as the antenna cross-coupling, radiation pattern and geometry 

are neglected. Additionally, only a flat, homogenous domain was 

simulated for the 2D FWI analysis.  

Nevertheless, a 2D FWI study is insufficient, as the landmine 

detection domain is a 3D, heterogeneous domain and a 3D analysis 

is required to produce a more realistic evaluation of the 

performance of bi-static and multi-static handheld GPR systems 

for the demining challenge. Here, an empirical FWI numerical 

analysis is reported for a 3D domain, which considers a 

homogenous as well as a heterogeneous or cluttered domain, using 

a derivative-free optimization algorithm. The bi-static and multi-

static system performance are evaluated by comparing the 

estimated subsurface parameters obtained in each case with 

synthetic GPR data parameters. All the radio propagation effects 

are included with simulated experiments conducted in the CST 

STUDIO SUITE 3D electromagnetic (EM) environment. Finally, 

a novel method to determine an improved initial parameter set for 

the GPR FWI optimization, that is closer to the global minimum, 

is proposed. This is achieved by generating a database of prior 

forward problem solutions. The database is used with each 

measured GPR data to determine the least L2 norm objective 

function, whose parameters are considered as the initial parameter 

set for the actual FWI optimization. 

2. FWI for Multi-static Handheld GPR 

2.1. Gradient Based Method  

 The GPR FWI problem for landmine detection may be posed 

as a regularised least squares (LSQ) non-linear optimisation 

problem given by [2] 

                          (1) 

where  is a vector of geometric and electrical parameters 

describing the ground, d is the GPR measured data,  is 

a forward model that returns the GPR measurement that would be 

made for a subsurface with parameter vector . The GPR inverse 

problem is ill-posed as arbitrarily large changes in  can have 

negligible effect on the error .  The regularisation term 
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is required to control the size of components of  with little or no 

effects on GPR data.  The function  introduces a penalty based 

on the size of these components and is a way to introduce prior 

information.  For Tikhonov regularisation  and often  

is chosen to be the identity matrix.  The regularisation or Tikhonov 

factor  is often adjusted dynamically during the iterative 

optimisation process to control convergence.  Optimisation is 

posed as a LSQ problem as the error functional uses the L2 norm. 

The GPR forward model is non-linear and so (1) is often solved 

by iterative linearization.  Watson used an iterative, quasi Newton 

method called the limited memory Broyden-Fletcher-Goldfarb-

Shannon (L-BFGS) nonlinear optimisation algorithm [3]. The 

solution requires a calculation of the gradients of the LSQ error 

function .  Due to the special form of the LSQ error 

function, these derivatives can be directly related to the derivatives 

of the forward model.    

2.2. Derivative-free Method 

 The derivative-free method for solving the FWI problem is 

used because it is computationally expensive to estimate the 

derivatives required for derivative based methods.  Derivative-free 

methods require less computation per iteration and are suitable for 

a limited number of variables, but may require more iterations. A 

range of non-derivative nonlinear optimization algorithms may be 

used to solve the FWI optimisation problem when gradients do not 

exist or are expensive to compute. Local direct search methods 

may be used when there are a small number of variables and the 

objective function is computationally cheap to evaluate. The 

Nelder-Mead simplex algorithm [4] is the most cited, robust and 

efficient of local direct search methods. The algorithm 

fundamentally relies on an initial number of points that create a 

simplex i.e. a set of points spanning a volume in the variable 

dimensionality considered. The objective function is evaluated at 

the vertices of the simplex during each iteration to determine the 

highest objective value, which is used to redefine another vertex 

that produces a new simplex. Additional new points are produced 

by moving the vertex with the highest objective value through a 

series of transformations using the centroid of the associated 

simplex that include reflection, expansion, internal and external 

contractions [5]. These steps are iterated until convergence is 

achieved. Convergence can occur for non-smooth objective 

functions even when the second derivative of the function is 

unobtainable [6]. The Nelder Mead simplex algorithm may be 

applied to the FWI optimisation problem, to estimate the 

uncertainty in parameter sensitivity of the handheld GPR bi-static 

and multi-static systems. The Nelder Mead Simplex algorithm is 

embedded in the CST STUDIO SUITE environment and so the 3D 

GPR forward model may be integrated with the optimization 

process on the same platform. 

3. Modelling and Simulation 

3.1. The GPR System Models and Experiments 

The GPR system models are developed with linear antenna arrays 

positioned with dipoles at a fixed distance above the ground 

surface. The configurations are for a bi-static system, and multi-

static system with two and four receive elements, driven in a single 

input multiple output (SIMO) sequence. The antennas are end-fed 

(coaxial) dipole antennas designed and optimised using the 

Antenna Magus software for a centre frequency of 2.5 GHz and 

frequency range of 1.75-3.25 GHz.  Assuming the same offset of 

20 cm used by Watson, an antenna element spacing of 5 cm was 

used in all configurations. Antenna cross-coupling losses are 

significant, given this spacing which is less than a wavelength. The 

antennas are placed initially at a height of approximately 3.76 cm 

above the ground surface. The transmitting element is at the 

extreme left end of the array and the time series measured at each 

receive antenna are concatenated into a single data vector d.  The 

target object is placed under the centre of the array, based on the 

assumption that a metal detector (MD) has located a conducting 

part of the device.   

 To reduce the computational cost, the ground size for this study 

is reduced to a 31 cm by 29 cm box with a depth of 9cm. The 

subsurface parameters are the relative permittivity and 

loss tangent . The target is a single AP mine which 

is modelled as a typical plastic cylinder with relative permittivity 

(typical US M14 mine).  The diameter and height are 

7cm and 6cm respectively, closer to a Colombian military MN-

MAP-1 mine [7].  The mine also contains a tetryl charge (US M14) 

with relative permittivity  and an air void of 

free space relative permittivity of one. Instead of ABC boundary 

conditions (used by Watson), perfectly matched layer (PML) 

boundary conditions are applied on all faces of the box (ground) 

for all models in this study with added space above the antennas 

on the top of box to simulate the antenna to antenna and antenna 

to ground propagation. ABC boundary conditions have been 

studied longer and are generally easier to implement, but the PML 

region achieves less boundary reflections [8]. 

For a heterogeneous ground (cluttered domain), we introduce 

a rough surface to the flat ground (box) surface. The ground 

surface roughness height is modelled in the form of a Gaussian 

distribution [9]. Therefore, the box planar surface is modelled with 

depressions and protrusions to simulate a ground surface with a 

random height, assuming a Gaussian distribution, normally 

distributed white noise and a mean value of zero [10]. 

Additionally, subsurface clutter sources are modelled as several 

3D rectangular blocks, grouped into two clusters, with each set 

having a different relative permittivity. One has a relative 

permittivity, and the other with a relative permittivity, 

. An example bi-static dipole system and target subspace 

is shown in Figure 1. A LSQ FWI regularised optimisation 

problem, as in (1), is the test problem. The goal value to be 

evaluated is the sum squared difference of the total simulated GPR 

data (time-series) and the total forward model data (time-series), 

which is given by ( )
2

XGPRGPRmeas − .  Watson 

performed a similar study for dipole antennas in a simplified 2D, 

homogenous domain only. Here both 3D homogenous and 

heterogeneous domains are investigated for the FWI analysis. 

The optimization is set to a maximum of 20 iterations, due to 

computational constraints. The hexahedral mesh used to produce  
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Figure 1: Bi-static dipole system for a heterogeneous ground 

synthetic GPR measurements is different from the mesh used in 

the forward model within the FWI objective function. This avoids 

the spuriously good results that can be the inverse crime artefact 

[11] due to using the same mesh for both operations.  

The parameter vector for the synthetic GPR data for the 

homogenous ground is given by 

       
]53.2,8.2,1,0036.0,163.2[

],,,tan,[ 0

=

= s

r

m

r

T

initialGPR                                       (2) 

where = relative permittivity of tetryl charge 

= loss tangent 

= relative permittivity of free space 

= relative permittivity of plastic mine 

= relative permittivity of dry sandy soil 

Whereas the parameter vector for the synthetic GPR data for the 

heterogeneous ground is given by 

            
]53.2,8.2,1,0036.0,6,75.3,163.2[

],,,tan,,,[ 021

=

= s

r

m

r

CCT

initialGPR                      (3) 

where = relative permittivity of first clutter source  

= relative permittivity of second clutter source  

= relative permittivity of free space 

= relative permittivity of plastic mine 

= relative permittivity of dry sandy soil 

The initial subsurface parameter vector for the homogenous 

ground FWI is given by 

        
]23.2,01.3,2.1,0046.0,363.2[

],,,tan,[ 0

=

= s

r

m

r

T

initialGPR                              (4)    

Whereas the initial vector for the heterogeneous ground FWI is 

given by 
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3.2. FWI Numerical Analysis Results     

To estimate the performance of the different antenna systems, 

we compare and consider the estimated parameter values 

approached by the FWI solutions for both models with their 

respective synthetic GPR data true parameter values. The error in 

the subsurface parameters for each system in the different ground 

conditions is estimated by determining the total sum squared 

difference between the GPR data vector parameters and the FWI 

solution vector parameters. The total estimated parameter errors 

are indicated in Tables 1 and 2 for the homogenous ground and 

heterogeneous ground respectively.  

The 3D FWI data shows that for both ground domains, the 

conclusion that multi-static systems can achieve more subsurface 

information is achieved as the smallest subsurface error in both 

cases is recorded with a multi-static system. At this stage, we can 

confirm that the multi-static system performs better than the bi-

static system in general. However, the subsurface parameter error 

is not monotonic for the number of antenna elements whereas it 

was found to be linear for a 2D FWI analysis. These results based 

on a 3D analysis are more realistic as the scattering on the soil 

surface and cylindrical mine introduce more degrees of freedom 

and complexity than a 2D numerical analysis.  

For the homogeneous soil, the 4 receiver (RX) system FWI 

achieves a better performance than the two other systems though 

the difference between the bi-static system and 2 RX multi-static 

system is marginal. However, in the more realistic heterogeneous 

domain the 4 RX multi-static system yields the largest parameter 

uncertainty. The scattering and clutter signals are observed to be 

larger in the heterogeneous domain than the homogenous domain 

based on the larger subsurface parameter error and uncertainty 

figures that are estimated in the former. This is due to greater air-

ground reflections from the rough ground surface and scattering 

from the buried clutter sources. In this case the clutter signal is 

much larger than the mine signal. Nevertheless, for both soils, 

particularly the heterogeneous soil, the parameterisation does not 

sufficiently describe the clutter and so the optimisation easily 

converges to the wrong solution.  Some method is required to 

reduce the effects of the clutter signal.  Therefore, better imaging 

with multi-static systems for a real GPR system and demining 

operation based on FWI is predicated on an optimised antenna 

design as well as clutter reduction.   

Conversely, this analysis also shows that the multi-static 

system achieves only a small improvement over the bi-static 

system. A FWI optimization with actual GPR measurements or 

field evaluation data is expected to exhibit greater complexity and 

hence the improvement may only be marginal. This study has been 

limited to synthetic data and future studies may include further 
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validation of the results obtained with the use of measured GPR 

data. 

Table 1: Summary of GPR and FWI solution parameter values for homogenous 

ground 

 

Subsurface 

Parameters 

GPR Data 

Parameter 

Values 

FWI Solution Estimated Parameter 

Values 

Bi-static Multi-

static 

(2RXs) 

Multi-

static 

(4RXs) 

Charge relative 

permittivity 

2.163 2.292 2.268 2.3 

Loss tangent 0.0036 0.0026 0.0034 0.0069 

Air void relative 

permittivity 

1.0 1.49 1.5 1.45 

Mine relative 

permittivity 

2.8 3.069 3.185 3.032 

Soil relative 

permittivity 

2.53 2.2 2.2 2.6 

Estimated 

parameter error 

- 1.219 1.320 0.892 

 

Table 2: Summary of GPR and FWI solution parameter values for heterogeneous 

ground 

 

Subsurface 

Parameters 

GPR Data 

Parameter 

Values 

FWI Solution Estimated Parameter 

Values 

Bi-static Multi-

static 

(2RXs) 

Multi-

static 

(4RXs) 

Charge relative 
permittivity 

2.163 2.4 2.388 2.314 

Clutter1 relative 

permittivity 

3.75 2.25 2.25 2.25 

Clutter2 relative 
permittivity 

6.0 7.28 6.67 8.0 

Loss tangent 0.0036 0.0058 0.0066 0.0068 

 

Air void relative 
permittivity 

1.0 1.35 1.29 1.39 

Mine relative 

permittivity 

2.8 3.04 2.96 3.16 

Soil relative 
permittivity 

2.53 2.27 2.33 2.2 

Estimated 

parameter error 

- 3.869 3.048 4.734 

 

4. Improvement of the FWI Initial Parameter Set 

The steepest descent and direct search methods for iterative 

nonlinear optimisation all require an initial parameter set which is 

updated iteratively according to the chosen method. The GPR 

FWI problem is also a local minimisation problem that is 

nonlinear as well as ill-posed. A good initial parameter set that is 

as close as possible to the true solution is desirable to ensure 

convergence to the global minimum and less computational 

expense. A more general approach would be to employ global 

optimization techniques prior to the local optimization. However, 

for the GPR problem this would be computationally prohibitive. 

We propose a compromise approach that involves solving the 

forward problem for several parameter sets within the bounded 

local domain or search space and using an L2 norm objective with 

the true solution or measured data, as the goal value. The forward 

model meshing or grid would be set to the lowest tolerance level 

as only a coarse analysis is required to avoid a high computational 

expense. A higher tolerance is set for the forward model grid for 

the actual optimization.  

A database of the forward model solutions for a specific 

operation is generated and can be evaluated with data from each 

GPR measurement. The initial parameter vector for the FWI 

solution is chosen by interpolation from the database of parameter 

vectors and measured time-series. Hence a single database is 

generated during a single campaign but can be used repeatedly for 

GPR data from the same source environment or location. The 

database campaign could be done during the training phase of a 

demining operation prior to the actual clearance operation. The 

database can be generated for any chosen number of parameter 

combinations and sample space or bounded conditions. More 

forward model solutions would be expected to increase the 

probability of a better initial estimate of the parameter set.  For 

this experiment, the 4 RX dipole system GPR model for a 

heterogeneous domain is utilised. Eleven forward model solutions 

are generated by arbitrarily choosing eleven different parameter 

sets for values between a minimum and maximum bound. This 

yields a database of eleven sets of A-scan data and the L2 norm 

objective value of each of these data for any measured GPR is 

determined. The parameter set for the time-series (A-scan) that 

achieves the lowest objective function value would be considered 

as the closest to the true solution or global minimum and selected 

as the initial optimization parameter set. Figure 2 presents the 

objective function value for all eleven forward problem solutions.   

      It can be determined from Figure 2 that the lowest objective 

function value is obtained at simulation run eight which 

corresponds to a value of 0.001708. The parameter set for this 

forward model measurement, FGPR  is given by 

   2.55] 3.05, 1.35, 0.0061, 6.50, 5.75, [2.25,=

] ,,tan,, [= 021  ,εε,GPR s

r

m

r

CCT

F            (6) 

Therefore, this parameter set given in (6) is selected as the initial 

parameter set for the iterative FWI solution, for the heterogeneous 

domain under test. The FWI optimization solution for this 

parameter set is then obtained for 20 iterations, due to 

computational constraints, and compared directly with the FWI 

solution for the initial parameter set in (3). The result is shown in 

Figure 3. 

     The comparison of the FWI solution for the original initial 

parameter set and the one derived from the database generation 

(Figure 3) shows that the latter does not achieve an improvement 

in the accuracy of convergence as the absolute error is marginally 

less than the original solution. However, the result does show that 

the database generated initial parameter FWI solution is closer to 

the true solution. This could potentially lead to a more efficient 

optimization using a more powerful algorithm. Derivative based 

methods would benefit from this improvement and achieve 

convergence with less computational expense and fewer iterations 

as a local minimum would be realised more efficiently. The 

procedure achieves the primary goal of improving the initial 

parameter estimation or guess.  The CST integrated Nelder-Mead 

optimisation does not allow the user to specify the entire simplex 

and objective function values.  If this had been the case, the initial 

10 iterations exploring the simplex could have been entirely 
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avoided by selecting all the simplex points from the database. The 

performance of gradient based algorithms are expected to benefit 

from the database generated improved initial parameter set. 

 

Figure 2: Objective function values for eleven forward problem solutions 

 

Figure 3: FWI solution result for 4 RX dipole a. original initial parameter set 

(GREEN) versus database selected parameter set (RED) 

5. Conclusion 

An empirical study has been undertaken to compare 3D FWI 

imaging using multi-static and bi-static systems in homogeneous 

and heterogeneous media. The results verify the possibility of 

multi-static systems to achieve greater subsurface parameter 

sensitivity and hence reliability of target detection than bi-static 

systems. In 2D, all multi-static systems outperformed the bi-static 

systems. However, a more realistic 3D analysis shows that the 

improvement in performance with increasing numbers of 

antennas is not simple or monotonic due to cross-coupling and 

antenna patterns.  This underlines the need for optimisation of the 

antenna system configuration and size (number of elements), to 

achieve better performance than a bi-static system. Additionally, 

the effect of clutter significantly limits the accuracy of parameter 

estimation. Finally, a novel procedure has been proposed to 

determine the initial parameter vector for the FWI solution which 

yields an initial forward problem solution that is closer to the true 

GPR data solution. The procedure requires numerous forward 

problem solutions stored prior to a deeming campaign but has the 

potential to significantly reduce the computational expense of the 

FWI as well as the accuracy for an ideal local minimisation. 
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