
Advances in Science, Technology and Engineering Systems Journal
Vol. 3, No. 1, 49-65 (2018)

www.astesj.com
Special issue on Advancement in Engineering Technology

ASTES Journal
ISSN: 2415-6698

Improving System Reliability Assessment of Safety-Critical
Systems using Machine Learning Optimization Techniques

Ibrahim Alagöz*1, Thomas Hoiss2, Reinhard German1

1Department of Computer Science 7, FAU Erlangen-Nuremberg, 91058, Germany
2Automotive Safety Technologies GmbH, 85080, Gaimersheim, Germany

A R T I C L E I N F O A B S T R A C T

Article history:
Received: 14 November, 2017
Accepted: 10 January, 2018
Online: 30 January, 2018

Keywords:
Safety-Critical System
Black Box Regression Testing
Linear Classifier
Selection
Prioritization

Quality assurance of modern-day safety-critical systems is continually
facing new challenges with the increase in both the level of functionality
they provide and their degree of interaction with their environment. We
propose a novel selection method for black-box regression testing on the
basis of machine learning techniques for increasing testing efficiency.
Risk-aware selection decisions are performed on the basis of reliabil-
ity estimations calculated during an online training session. In this
way, significant reductions in testing time can be achieved in industrial
projects without uncontrolled reduction in the quality of the regression
test for assessing the actual system reliability.

1 Introduction

Reliability assessment of safety-critical systems is be-
coming an almost insurmountable challenge. In the
near future, the engineering of new applications for
vehicles such as driving assistance functions or even
autonomous driving systems will inevitably incur sig-
nificantly increased engineering sophistication and
longer test cycles. Thus, in the automotive domain,
functional safety continues to be ensured on the ba-
sis of the international ISO 26262 standard. As both
the levels of functionality such systems provide and
their degree of interaction with their environment in-
creases, an adequate increase in system safety assess-
ment capabilities is required.

This paper is an extension of work originally pre-
sented at the 10th IEEE International Conference on
Software Testing, Verification and Validation (ICST
2017) [1] and describes a methodology for efficiently
assessing system safety. The focus of the paper is on
regression testing of safety-critical systems consisting
of black-box components. This scenario is common
for automotive electronic systems, where testing time
is expensive and should be reduced without an uncon-
trolled reduction in reliability.

The work reported here correspondingly seeks to
increase testing efficiency by reducing the number of
selected test cases in a regression test cycle. When a

selection decision is made, the following two types of
errors are possible:

• a test case is selected but would pass (type-I-
error, false-positive case) and

• a test case is not selected but would fail (type-II-
error, false-negative case).

Accordingly, we model a classifier Ĥ for solving the
following optimization problem.

min pFP = P (Ĥ =H1|H0)

subject to pFN = P (Ĥ =H0|H1) ≤ pFN,MAX
(1)

A good standard of test efficiency calls for the
avoidance of false-positives. This requires minimiza-
tion of the probability of mistakenly assuming the ri-
val hypothesis (H1 : test case fails) even though the
null hypothesis (H0 : test case passes) is correct. Con-
versely, false-negatives mean that system failures re-
main undetected; the occurrence of this type of error
must therefore be avoided with very stringent require-
ments. Thus, a predefined limit pFN,MAX for the prob-
ability of a false-negative is defined.

[1] proposed a concept for the selection of test
cases based on a stochastic model. However, this pa-
per proposes a holistic optimization framework for
the safety assessment of safety-critical systems based
on machine learning optimization techniques. We

*Corresponding Author: Ibrahim Alagöz, Hornstr. 1 85051 Ingolstadt, ibrahim.alagoez@gmail.com

www.astesj.com 49

https://dx.doi.org/10.25046/aj030107

http://www.astesj.com
http://www.astesj.com

I. Alagöz et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 49-65 (2018)

suggest an incrementally and actively learning linear
classifier whose parameters are estimated on the ba-
sis of Bayesian inference rules. As a result, our novel
approach for modeling a linear classifier outperforms
other machine learning approaches in terms of sensi-
tivity.

Furthermore, this paper deals with the following
fundamentally important research question: The ma-
chine learning approach is trained with data (test
evaluations) obtained during a concurrently running
regression test. How much training data is enough?
When does regression test selection actually start?

We extend the proposed selection method [1] by
introducing suitable test case features that are used in
the machine learning approach for increasing perfor-
mance (see [2]). Therefore, each feature introduced
increases the complexity of the optimization problem
(cf. Eq. 1) as a new dimension for optimization is
introduced. Thus [3] and [4] suggest that high dimen-
sional optimization problems can be solved in reason-
able timeframes by using evolutionary algorithms in-
stead of a (grid)search-based approach as given in [1].
Accordingly, we propose an evolutionary optimiza-
tion approach for increasing testing efficiency.

Further extensions, such as the introduction of a
prioritization strategy for test cases in order to se-
lect higher-priority test cases, will also be presented
within this paper. In our novel approach, a linear clas-
sifier is trained in an online session; the ordering of
the training data on the basis of a prioritization strat-
egy therefore has the potential to improve our classi-
fiers’ performance.

We also provide an industrial case study to show
the advantages of the suggested selection method.
The study uses data from several regression test cycles
of an ECU of a German car manufacturer, showing
how test effort can be reduced significantly whereas
the rates of both false-negatives and false-positives
can be kept at very low values. In this example, we
can quadruple test efficiency by keeping the false-
negative probability at 1%.

We first discuss related work in Sec. 2 and explain
basic definitions in Sec. 3. Accordingly, we motivate
our research topic in Sec. 4 by giving some back-
ground information on regression tests and referring
to the challenges. In Sec. 5, we give a brief overview
of known machine learning methods’ performance in
solving safety-critical binary classification tasks. The
concept of our novel machine learning approach is
presented in Sec. 6. Sec. 7 discusses optimization
strategies, and Sec. 8 focuses on the importance of the
learning phase for the success of our approach. An in-
dustrial case study with real data is then given in Sec.
9. Finally, Sec. 10 presents the paper’s conclusions.

2 Related Work

The automotive industry is currently engaged in a la-
borious quality assessment process around new engi-
neered driver assistance and active and passive safety

functions, while functional safety is ensured accord-
ing to the international ISO 26262 standard [5]. Re-
liability assessment of systems is therefore, possible
through both model-checking and testing.

Model-checking is used for verifying conditions on
system properties. Thus [6] states that system require-
ments can also be validated by model-checking tech-
niques. The idea is to check the degree to which sys-
tem properties are met and to deduce logical conclu-
sions on the basis of the satisfaction of system require-
ments. Model-checking has therefore gained wide ac-
ceptance in the field of hardware and protocol veri-
fication communities [7]. Motivated by the fact that
numerical model-checking approaches cannot be di-
rectly applied to black-box components as a usable
formal model is not available, we focus on model-
checking driven black-box testing [6] and statistical
model-checking techniques [8]. However, there ex-
ist some approaches for interactively learning finite
state systems of black-box components (see [9] and
[10]), which are proposed as black box checking in [11].
Learning a model is an expensive task, as the interac-
tively learned model has to be adapted due to inaccu-
racy reasons. Nevertheless, some assumptions about
the system to be checked, such as the number of inter-
nal states, are necessary; furthermore, conformance
testing for ensuring the accuracy of the learned model
has to be iteratively performed [9].

Therefore, [8] outlines the advantages of statisti-
cal model-checking as being simple, efficient and uni-
formly applicable to white- and even to black-box sys-
tems. [6] motivates on-the-fly generation of test cases
for checking system properties; here, a test case is gen-
erated for simulating a system for a finite number of
executions. All these executions are used as individ-
ual attempts to discharge a statistical hypothesis test
and finally for checking the satisfaction of a dedicated
system property.

Model-checking driven testing, or even simply
testing a system in order to validate its requirements,
is an expensive task, especially where safety-critical
systems are concerned. However, the focus is on re-
gression testing, which means that the entire system
under test has already been tested once but has to
be tested again due to system modifications that have
been carried out. The purpose of regression testing
is to provide confidence that unchanged parts within
the system are not affected by these modifications
[12]. White-box selection techniques have been com-
prehensively researched [13, 14]. However, we are
here considering black-box components, and hence
selecting test cases that only check modified system
blocks gets difficult.

Since the implementation of black-box systems
and moreover, the information on performed system
modifications is not available [12], reasonably con-
ducting a regression test becomes impossible.

Accordingly, regression testing of safety-critical
black-box systems ends up in simply executing all ex-
isting test cases; this is a retest-all approach [12].

This is also motivated by the fact that in the au-

www.astesj.com 50

http://www.astesj.com

I. Alagöz et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 49-65 (2018)

tomotive industry, up to 80% of system failures [1]
that are detected during a regression test have not oc-
curred previously. The reason behind this fact is that
often many unintended bugs are introduced during a
bug-fixing process. So between two system releases
many new unknown errors are often introduced.

For reducing the overall test effort, we apply a test
case selection method [1] based on hypothesis tests.
Those test cases that are assumed to fail on their exe-
cutions are accordingly selected. However, type errors
while performing hypothesis tests are possible, as, for
instance, in statistical model-checking.

We extend the proposed selection method into a
holistic machine learning-driven optimization frame-
work that utilizes suitable test case features for in-
creasing testing efficiency (see [2]). Machine learning
methods are often trained in so-called batch modes.
Nevertheless, many applications in the field of au-
tonomous robotics or driving are trained on the ba-
sis of continuously arriving training data [15]. Thus,
incremental learning facilitates learning from stream-
ing data and hence is exposed to continuous model
adaptation [15]. Especially handling non-stationary
data assumes key importance in applications like
voice and face recognition due to dynamically evolv-
ing patterns. Accordingly, many adaptive clustering
models have been proposed, including incremental
K-means and evolutionary spectral clustering tech-
niques [16].

Furthermore, labeling input data is often awkward
and expensive [17] and hence accurately training
models can be difficult. Therefore, semi-supervised
learning techniques are developed for learning from
both labeled and unlabeled data [17]. Motivated by
these techniques, we propose a similar approach for
effectively learning from labeled data. Hence, we clus-
ter binary labeled data in more than two clusters for
improving a classifier’s learning capability due to the
optimization of an objective function. Our optimiza-
tion framework thus utilizes evolutionary optimiza-
tion algorithms for handling the optimization com-
plexity. Minimization of labeling cost on the basis
of active learning strategies [18, 19] will also be dealt
with in this paper.

3 Basic Definitions

We define the test suite T = {ti | 1 ≤ i ≤M} consisting
of a total of M test cases. TExec ∈ T and TExec ∈ T are
subsets of T that contain test cases that are executed
and deselected in a current regression test respec-
tively. Based on the test case executions (∀ti ∈ TExec),
a system’s reliability is actually learned, and thus the
machine learning algorithm is trained.

The focus in supervised learning is on understand-
ing the relationship between feature and data (here
test case evaluation) [4]. Therefore, a test case needs
to code a feature vector so that the indication of the
coded features for a system failure can be learned in
a supervised fashion. Such an indication is not just

a highly probable forecast of an expected system fail-
ure, it is rather a particular risk-associated recogni-
tion.

First of all, a feature can be any individual measur-
able property of a test case. The data type of a feature
is mostly numeric, but strings are also possible. How-
ever, such features need to be informative, discrimi-
native and independent of one another if they are to
be relevant and non-redundant The definition of suit-
able features increases the classifier performance [20].
In our application, a feature can be varied, such as a

• subjective ranking of a test case based on expert
knowledge. Such rankings can hint at the error
susceptibility of verified parts of the system;

• verified function’s safety integrity level, known
as the ASIL in automotive applications [5];

• name of a function whose reliability is assured;

• reference to any hardware component of a cir-
cuit board that is being tested in a hardware-in-
the-loop (HiL) test environment;

• number of totally involved electronic control
units during the testing of a networked func-
tionality; Such a number can hint at the com-
plexity of the networked functionality and
hence at its error susceptibility.

We define the entire set of features Φ = {φf | 1 ≤
f ≤ F} of test cases that might be relevant for un-
derstanding the behavior of test cases. Thus, features
may be e.g. φ1 = {′QM ′ ,′A′ ,′ B′ ,′C′ ,′D ′} (ASIL) or φ2
= {f1, f2, f3} (function name). Hence, a test case can
verify a function f3 that has an ASIL A.

The following passages discuss the selection of
suitable features, which is an important strategy for
improving a classifier’s performance.

• Sometimes less is more - If the defined set Φ is
too large it can cause huge training effort, high
dimensionality of the optimization problem and
overfitting. Thus we define a selection mask
bs =

[
1 0 0 · · ·1

]
of length F for selecting rel-

evant features Φs. If the f − th matrix entry of
bs is greater than or equal to 1, then the corre-
sponding feature φf ∈ Φ is selected and added
to Φs, otherwise not.

• The set of main features Φm ⊆ Φs is coded as fol-
lows: If the f − th matrix entry of bs is equal to
2, then the corresponding feature φf ∈ Φs is at
the same time a main feature φf ∈ Φm, other-
wise not. The main features are used to estab-
lish the overall training data set: The training
data is adapted to each test case, and thus it is

Tti = {tj | tj ∈ TExec ∧ ti
Φm≡ tj }. Hence, we define

that two test cases ti and tj are equivalent ti
Φ≡ tj

if their features ∀φf ∈ Φ have identical values.

Additionally, a cross-product transformation of
features ∀φf ∈ Φs \ Φm is performed. Thus we de-
fine Ψ = φf1 × φf2 × ... × φfh × ... × φfH with φfh ∈

www.astesj.com 51

http://www.astesj.com

I. Alagöz et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 49-65 (2018)

Φs \ Φm,1 ≤ h ≤ H = |Φs \ Φm| consisting of fea-
tures ψl that represent individual combinational set-
tings for features φf ∈ Φs \ Φm. In simple terms,
the cross-product of our sample features is φ1 ×φ2 =
{(′QM ′ , f1), (′QM ′ , f2), (′QM ′ , f3), (′A′ , f1), ...} Finally, a
Boolean function check : T ×Ψ →B with check(ti ,ψl) ={

0, if ti ’s features are given by ψl
1, otherwise

}
is defined.

In addition, the function state : T × R → S is de-
fined; it returns the state of a dedicated test case in
a concrete regression test. The state has to be either
’Pass’ or ’Fail’, except for cases where the test case has
not been executed so that its state is undefined. There-
fore, S = {’Pass’, ’Fail’, ’Undefined’} defines the set of
possible states. Furthermore, the set R = {rk | 0 ≤ k ≤
K} includes r0 which is the current regression test and
older regression tests starting from the last regression
r1 to the first considered regression rK . Lastly, we de-
fine the tuple history(ti) = {state(ti , r1), ..., state(ti , rK)}
containing ti ’s previous test results.

4 Motivation

In practice, finding suitable features is a difficult task.
Since we focus here on black-box systems, system-
internal information is not available that might be
useful for understanding the system behavior. As a
reason, we can only define the above listed features,
which might be too high-level for classifying system
failures. To illustrate this fact, Fig. 1 a) shows a typical
situation: The behavior of test cases in relation to arbi-
trarily defined features φ1 and φ2 is given. Passed and
failed test cases are presented by green squares and
red diamonds respectively, and white circles stand for
test cases yet to be executed.

I II III

IV V VI

t1t2
t3 t4

φ1

φ2

φ1

φ2 φ2

φ1 φ1

I II III

IV V VI

I II III

IV V VI

(a)

(b) (c)

Figure 1: An artificial regression test with test cases.

We can see that the green squares and the red di-
amonds are widely scattered. Thus, defining a hyper-
plane in order to set two acceptance regions for pass-
ing and failing test cases is no easy matter. In order to
solve this complex task, we develop a novel approach

that is basically motivated by the following thought
experiment: All test cases that are represented in Fig.
1 a) are now either assigned to 1 b) or 1 c) accord-
ing to a certain mapping. The individual mappings of
test cases will be discussed later, in Sec. 6. In the next
step, a cross-product transformation is performed in
order to group test cases into sub-regions (we refer
these later as sub-clusters). In our example, we cre-
ate six sub-regions. Table 1 lists the empirical failure
probabilities of each sub-region.

In order to keep our thought experiment very sim-
ple, we will neglect statistical computations for now
and focus only on the main idea of our novel ap-
proach. The introduction of Bayesian networks and
hence the derivation of weights for linear classifiers
will be discussed later, in Sec. 6. We assume for now
that the calculated failure probabilities of test cases
in Fig. 1 b) and Fig. 1 c) are correlated. So our ex-
ample remains very simple, we also require that the
failure probabilities of the corresponding sub-regions
are equal. This assumption reduces the complexity of
the following classification task enormously. We will
classify the following test cases t1, t2, t3 and t4 in ac-
cordance with whether a selection is necessary or not.

Table 1: Failure probability of each sub-region.

P (H1) I II III IV V VI
Fig. 1 a) 0 0.5 1 1 1/3 3/5
Fig. 1 b) 0 0.5 1 1 0 2/3
Fig. 1 c) 0 0.5 1 1 0.5 0.5

Only if t1 passes will the failure probability of sub-
region VI in Fig. 1 b) be equal to the failure probabil-
ity of sub-region VI in Fig. 1 c). According to this
fact, t1 is assumed to pass, and hence it is deselected.
Furthermore, t2 will be selected as a fail of a test case
inside sub-region V is expected. However, t2 passes,
and, based on the same consideration, t3 is also se-
lected and finally fails. Since now a failure probabil-
ity of 1/3 is expected in sub-region V, t4 is assumed
to pass, and therefore it does not need to be selected.
Table 2 summarizes all decisions executed.

Table 2: Test case states and algorithm decisions.

Test Case State Decision Type of Decision

t1 Pass Deselected True-Negative
t2 Pass Selected False-Positive
t3 Fail Selected True-Positive
t4 Pass Deselected True-Negative

So our novel approach for solving binary classifi-
cation tasks is based on calculated empirical proba-
bilities and empirically evaluated correlations among
those probabilities. The behavior of test cases can be

www.astesj.com 52

http://www.astesj.com

I. Alagöz et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 49-65 (2018)

precisely estimated on the basis of the calculated cor-
relations. In practice, the failure probabilities of same
sub-regions in Fig. 1 b) and Fig. 1 c) is often not
exactly equal, but these failure probabilities are cor-
related. So the main task is to find good sub-regions
for maximizing the empirically evaluated correlations
and thus for precisely estimating the behavior of test
cases. A more detailed explanation of our novel ap-
proach will follow in Sec. 6.

5 Performance of Known Machine
Learning Methods

We have already indicated, by showing the example
regression test in Sec. 4 (see Fig. 1), that accord-
ing to the distribution of the input data, many ma-
chine learning methods cannot be reasonably applied
for solving the constrained optimization problem (cf.
Eq. 1). We will now demonstrate briefly that train-
ing linear classifiers in the classical sense by minimiz-
ing a loss function cannot perform well for solving
safety-critical binary classification tasks. The situa-
tion is that only a small percentage of the data is ac-
tually labeled with one (’Fail’). Furthermore, failed
and passed test cases are widely scattered in the fea-
ture space, which means detecting failing test cases
becomes impossible. Additionally, the performance of
deep neuronal networks is validated in the following.

The evaluation results (precision/recall) of these
machine learning methods are given in Table 3. Each
machine learning method is trained in the batch mode.
The training data consists of all obtained test eval-
uations of a special regression test that will also be
analyzed in our industrial case study in Sec. 9. For
evaluating the machine learning methods, we used
the training data first for training and later for test-
ing (training data = test data). Even so, the sensitivity
of both machine learning methods is zero, and thus
we propose a novel approach for determining a linear
classifier’s parameters in Sec. 6.

Table 3: Performance of known machine learning
methods in solving safety-critical binary classification
tasks.

Machine Learning Precision
Recall /

Sensitivity
Linear Classifier

(Trained by
Minimizing a

Loss-Function)

0 0

Deep Neuronal
Network

0 0

6 Concept

The concept of our novel approach is shown in Fig. 2.
We start with specifying a feature set Φ , and taking its
subset Φs and finally constitute a cross-product fea-
ture transformation to obtain the set Ψ . Based on Ψ

and by applying the check-function on TExec, test cases
can be grouped. If we look back to the example where
we grouped test cases in Fig. 1 a), then we will see that
there is a relationship between test cases’ features and
their assignments to sub-regions.

Correspondingly, we introduce the definitions of
clusters and sub-clusters of test cases. In the first step,
test cases ∀tk ∈ Tti are assigned to clusters based on
their history-tuples. A cluster is basically a partition
of Tti and consists of test cases that have the same
history-tuples. Accordingly, the number of distinct
history-tuples N determines the total number of clus-
ters. This is the step that has already been shown in
Sec. 4, where test cases inside Fig. 1 a) were individ-
ually mapped into Figs. 1 b) and 1 c). In this way,
already executed test cases depicted in Fig. 1 b) be-
long to one cluster and, analogously, those executed
test cases that are depicted in Fig. 1 c) belong to an-
other cluster.

In the next step, each cluster Cn is subdivided into
L sub-clusters. A test case tk ∈ Cn is an element of the
l-th sub-cluster Cn,l if check(tk ,ψl) is true. We orig-
inally introduced the terminology of sub-regions in
Sec. 4. However, we focus in what follows on dis-
crete valued features, which means that grouping test
cases into sub-clusters is more appropriate. By intro-
ducing the function eval : TExec→ {0,1} that is defined
as follows

eval(ti) =
{

0, for state{ti ,r0} = ’Pass’ (2)

1, for state{ti ,r0} = ’Fail’ (3)

the calculation of failure probabilities can be given in
Eq. 4.

pn,l =
1
|Cn,l |

∑
∀ti∈Cn,l

eval(ti) (4)

The given selection decisions in our example in
Sec. 4 (cf. Fig. 1) were taken based on calculated fail-
ure probabilities. Additionally, the correlations be-
tween the failure probabilities were considered. Ac-
cordingly, we need a stochastic model for estimating
the classifier’s sensitivity and specificity. We propose
a univariate and also a multivariate stochastic model.
The short-comings of the univariate stochastic model
for solving the optimization problem (cf. Eq. 1) will
be discussed later to motivate the introduction of a
multivariate stochastic model. First of all, the next
step introduces a multidimensional Gaussian distri-
bution that constitutes a distribution for the failure
probabilities of test cases. Based on this distribu-
tion, two distinct Bayesian Belief networks for both
stochastic models will be introduced.

In the following, we interpret pn,l ,1 ≤ l ≤ L as
realizations of a random variable Xn. Xn is Gaus-
sian distributed based on the following assumption:

www.astesj.com 53

http://www.astesj.com

I. Alagöz et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 49-65 (2018)

Ψ

Feature Space

Bayesian Belief Network

System
Evaluations

Bayesian
Network

S
p

e
c

if
ic

it
y

O
p

ti
m

iz
a

ti
o

n

Linear Classifier

y(x) = wT(x-μ)+w0

xTest
Case

Model
ParameterClassifier

w
 w0

Sensitivity

≥ 0
TEXEC

true

false
SUT

Selection Cross-Product

Transformation

Training

Clustering

„Online Learning“

Φ Φs

Figure 2: Determining the weights of a linear classifier for maximizing its specificity under the constraint of a
specific sensitivity.

Since each test case evaluation is a binary experi-
ment with two possible outcomes (’0’ or ’1’), it can
be regarded as a realization of a binary random vari-
able. As the sum of independent random variables
results into a Gaussian random variable according to
the central-limit theorem [21], considering test case
evaluations as independent random experiments jus-
tifies Xn’s assumed distribution. However, test cases
are executed on the same system and there may be
some dependencies between test case evaluations that
cannot be directly validated by such means as per-
forming code inspections. As a result, we assume
a mix of dependent and independent test case eval-
uations, and hence the Gaussian assumption is still
valid. The moments of Xn are E[Xn] = µn = 1

L

∑L
l=1pn,l

and E[(Xn−E[Xn])2] = σ2
n = 1

L−1
∑L
l=1(pn,l −E[Xn])2. As

we introduced in total N Gaussian random variables,
the moments of the multidimensional Gaussian dis-
tribution are µ = E[X] = [E[X1],E[X2], ...,E[XN]]T and
Σ = E[(X −µ)(X −µ)T].

Since the constraint of the optimization problem
(cf. Eq. 1) has to be fulfilled, an accurate sensitivity
estimation has to be iteratively performed.

6.1 Sensitivity Estimation

The formula for calculating the classifier’s false-
negative selection probability is given in Eq. 5.

pFN =
NFN

NFN +NT P
≤ pFN,MAX (5)

However, p̂FN = N̂FN
N̂FN+NT P

has to be estimated, since

the number of mistakenly deselected failing test cases
NFN is unknown, and thus it is estimated by N̂FN . The
number of already detected failing test cases is given
by NT P . Before a decision can be taken on whether

a test case ti can be deselected, the currently allowed
risk of taking a wrong decision has to be estimated in
advance. The estimation of N̂FN has to be adjusted by
the term xP (Ĥ = H0|H1), where x is the failure prob-
ability of ti and P (Ĥ = H0|H1) is the estimated false-
negative probability if ti is deselected. Accordingly,
the recursive formulation N̂FN,new = N̂FN,old + xP (Ĥ =
H0|H1) is continuously updated whenever an arbi-
trary test case is deselected. As p̂FN ≤ pFN,MAX ⇔

N̂FN,new
N̂FN,new+NT P

≤ pFN,MAX is required, the maximum al-

lowed false-negative probability for deselecting the
next test case ti is given in Eq. 6.

P (Ĥ =H0|H1) ≤
NT P ·pFN,MAX
1−pFN,MAX − N̂FN,old

x

=: pFN,Limit =:
pFN,Bound

x

(6)

6.2 Univariate Stochastic Model

We model the Bayesian Network that consists of the
random variables X, H and Ĥ , in Fig. 3. In the uni-
variate stochastic model, the focus is on modeling of
only one failure probability distribution. Thus the
random variable X stands for the previously defined
X1 and its realization x is given by p1,l where l is the
index of that sub-cluster C1,l that fulfills ti ∈ C1,l .

X H Ĥ

Figure 3: Bayesian Network consisting of the random
variables X, H and Ĥ .

H and Ĥ are binary random variables for modeling

www.astesj.com 54

http://www.astesj.com

I. Alagöz et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 49-65 (2018)

test case states and classifier decisions. As the state of
a test case ti is a-priori unknown, it needs to be mod-
eled by a corresponding random variable. According
to the realization of X, a pass or a fail of the corre-
sponding test case ti , whose failure probability distri-
bution is modeled by X, is expected. Finally, Ĥ takes
a decision for ti based on its failure probability x:

Ĥ(x) =
{
H0, if x ∈ X0 = [0;pTH [(7)

H1, if x ∈ X1 = [pTH ;1] (8)

According to Ĥ ’s selection rule a very simple hyper-
plane y(x) = x − pTH is derived where in the case of
y(x) ≥ 0 a selection decision is taken. A particu-
larly important factor is the definition of the threshold
probability pTH , as its setting determines the classi-
fier’s sensitivity and specificity. The common ways of
estimating false-negative and false-positive probabil-
ities are given in equations 9 and 10, respectively.

p̂FN =
∫
X0

p(X |H1)dx (9)

However, we could only estimate the probability den-
sity function (pdf) p(X) in contrast to the conditional
probability density functions p(X |H0) and p(X |H1).
The reason for this is that pdf estimations are based
on mean calculations of test case evaluations. Hence
passing and failing test cases are both considered in
calculating average failure probabilities. Thus, p(X)
is a distribution over failure probabilities of passing
as well as failing test cases. Accordingly, p(X |H0) and
p(X |H1) cannot be estimated and in conclusion, p̂FN
and p̂FP cannot be estimated as in Eq. 9 and 10.

p̂FP =
∫
X1

p(X |H0)dx (10)

Fig. 4 shows the important probability distribution
functions that are used for estimating p̂FN and p̂FP .

p(X)

p(X|H
1
)p(X|H

0
)

p
TH

p*
TH

Figure 4: Considered probability distribution func-
tions in the univariate stochastic model.

The threshold probability pTH is calculated based
on the estimation of p̂FN as the following relation in
Eq. 11 holds.

p̂FN = P (X < p∗TH |H1) (11)

As Eq. 11 cannot be directly estimated, the follow-
ing relation in Eq. 12 is used for estimating p̂FN and
finally for pTH .

p̂FN = P (X < pTH |H1) ≤ P (X < pTH) ≤ pFN,Limit (12)

p̂FN is estimated in Eq. 12 according to the assump-
tion that the quantiles of p(X |H1) are larger than the
quantiles of p(X). By solving Eq. 12 the threshold
probability is computed as given in Eq. 13

pTH = erfinv(2pFN,Limit − 1)σ
√

2 +µ (13)

with µ = E[X] and σ =
√
VAR(X). As a result, the

classifier’s sensitivity is larger than 1−pFN,Limit , since
its false-negative selection probability is smaller than
pFN,Limit . Finally, the decision regions of the linear
classifier are defined (cf. Eq. 7 and 8) by determining
pTH .

Furthermore, the minimization of the classifier’s
specificity is required by the definition of the con-
straint optimization problem (cf. Eq. 1). Accord-
ingly, the classifier’s false-positive selection probabil-
ity is estimated as given in Eq. 14 and shown in Fig.
4.

p̂FP = P (X ≥ pTH |H0) (14)

However, p(X |H0) is not given and thus p̂FP cannot
reasonably be estimated. Furthermore, p̂FP cannot be
reasonably minimized as an optimization parameter
is not defined; consequently, we need a so-called mul-
tivariate stochastic model for performing this. In the
first instance, the idea of minimizing p̂FP and hence
gaining testing efficiency by regarding several distri-
bution functions is explained.

6.3 Preliminaries

Let us assume that two dependent Gaussian random
variables X and X ′ are given. The focus is again on
estimating p̂FN and p̂FP . Fig. 5 shows the probability
distribution functions p(X), p(X |H0) and p(X |H1) as in
Fig. 4. Additionally, the a-posteriori failure probabil-
ity distribution function p(X |X ′) is shown.

p(x)

p(X|H
1
)p(X|H

0
)

p(X|X')

p
TH

p*
TH

Figure 5: Qualitatively minimizing p̂FP by introduc-
ing p(X |X ′) and hence by using conditional informa-
tions.

The main idea is to use several observations of dis-
tinct dependent random variables to achieve a consid-

www.astesj.com 55

http://www.astesj.com

I. Alagöz et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 49-65 (2018)

erably more representative a-posteriori failure proba-
bility distribution function that is relatively narrow
within a certain range. So p(X |X ′) is considered as the
more representative distribution for the failure proba-
bilities and hence p̂FN and pTH are estimated by using
this distribution function. Comparing Figs. 4 and 5,
it can easily be seen that p̂FP is basically minimized,
since the risk of a false-negative selection probability
is computed based on p(X |X ′), which allows a more
representative risk estimation.

All in all, by regarding a set of dependent Gaus-
sian random variables and by using the information
about their observations, a more representative a-
posteriori failure probability distribution function is
achieved, which allows a more precise risk estimation.
Accordingly, the probability of false-positive selection
can be minimized. As a result, a multivariate stochas-
tic model is created to exploit the dependency infor-
mation between random variables for finally achiev-
ing testing efficiency.

6.4 Multivariate Stochastic Model

By using the dependency between the random vari-
ables Xn,1 ≤ n ≤ N , a considerably more accurate es-
timation of p̂FN is achieved and hence p̂FP is mini-
mized. Fig. 6 shows the modeled Bayesian network
consisting of the random variables Xn,1 ≤ n ≤ N , H
and Ĥ .

X
N

H

Ĥ

X
1

X
N-1

X
2

(a)

X
2

H

Ĥ

X
1

(b)

Figure 6: Bayesian Network consisting of an (a) in-
definite and (b) definite number of random variables
Xn,1 ≤ n ≤N .

The focus is on taking a selection decision for an
arbitrary test case ti . XN now models the failure prob-
ability distribution of ti . In our previous example, as
shown in Fig. 1 c), the failure probability distribution
of test case t4 was calculated based on the empirically
evaluated failure probabilities of test cases inside Fig.
1 c). Thus t4 was an element of C2 (N = 2), and its fail-
ure probability was modeled by X2. Analogously, X1

was defined by the empirically evaluated failure prob-
abilities of test cases inside Fig. 1 b). In the interest
of simplification, we always assume that the currently
focused test case ti is an element of cluster CN and
thus XN models its failure probability distribution.

Furthermore, we can calculate the dependency
among Xn,1 ≤ n ≤ N . However, the Bayesian network
in Fig. 6 models the statistical dependency between
H and further random variables Xn,1 ≤ n ≤ N − 1.
These dependencies cannot be calculated, but have to
be modeled for estimating p̂FN and p̂FP .

First of all, we model the classifier Ĥ(·) as follows

Ĥ(xML) =
{
H0, if xML ∈ X0 = [0;pTH [(15)

H1, if xML ∈ X1 = [pTH ;1] (16)

where xML = argmax
xN

[
ln[L(xN |x1, ...,xN−1)]

]
(consult

[1]) is the maximum likelihood estimation. Accord-
ingly, the likelihood estimation is a weighted sum as
given in Eq. 17

xML =:
N−1∑
n=1

wn(xn −µn) +µN (17)

with weights wn,1 ≤ n ≤N − 1 as given in Eq. 18.

wn = −
(Σ−1)n,N
(Σ−1)N,N

(18)

Further, pTH has to be calculated based on a pre-
cise estimation of p̂FN . Thus we derive a calculation
formula for p̂FN for the case N = 2, but we will also
provide a general calculation formula of p̂FN for an
arbitrary number N of random variables.

6.4.1 Derivation of probability distribution func-
tions

In the following, some probability distributions are
driven that are used for estimating p̂FN . First of all,
the joint pdf p(ĤX1HX2)

p(ĤX1HX2) = p(Ĥ |X1)p(X1|H)p(H |X2)p(X2) (19)

and the conditional pdf p(ĤX1H |X2) are given in Eq.
19 and 20, respectively.

p(ĤX1H |X2) =
p(ĤX1HX2)

p(X2)

= p(Ĥ |X1)p(X1|H)︸ ︷︷ ︸
p(ĤX1 |H)

p(H |X2) (20)

In the next step Eq. 21 is obtained by setting the equa-
tion p(Ĥ |X1)p(X1|H) = p(ĤX1|H) into Eq. 20.

p(ĤX1|H) =
p(ĤX1H |X2)
p(H |X2)

(21)

Furthermore, the most important relation p(Ĥ |H) ≤
p(Ĥ |X2)
p(H |X2) is driven in Eq. 22.

p(ĤX1|H) ≤ p(Ĥ |H) ≤
p(ĤH |X2)
p(H |X2)

≤
p(Ĥ |X2)
p(H |X2)

(22)

www.astesj.com 56

http://www.astesj.com

I. Alagöz et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 49-65 (2018)

Thus, the probability calculation P (Ĥ =H0|H1) can be
estimated by using the relation in Eq. 22 as given in
Eq. 23.

p̂FN = P (Ĥ =H0|H1) ≤ P (Ĥ =H0|X2 = x2)
P (H1|X2 = x2)

(23)

Since p̂FN cannot be directly estimated, as the con-
ditional pdf p(Ĥ |H) is not given for performing the
probability calculation P (Ĥ = H0|H1), the relation in
Eq. 23 is used for estimating an upper bound for p̂FN .
However, the linear classifier’s actual false-negative
deselection probability would be smaller than the cal-
culated upper bound.

Since the constraint in Eq. 24 has to be fulfilled,

P (Ĥ =H0|H1) ≤ pFN,Limit (24)

we solve the inequality in Eq. 25.

P (Ĥ =H0|X2 = x2)
P (H1|X2 = x2)

≤ pFN,Limit (25)

As x2 = P (H1|X2 = x2) holds, the following inequality
is finally solved.

P (Ĥ =H0|X2 = x2) ≤ pFN,Bound (26)

Eq. 26 is driven for the case N = 2 but in the general
case, where the number of random variables Xn,1 ≤
n ≤ N is given by an arbitrary N , the following in-
equality has to be solved.

P (Ĥ =H0|XN = xN) ≤ pFN,Bound (27)

By solving Eq. 27, the threshold probability

pTH = −wN (xN −µN)−w0 +µN (28)

is obtained with weights

wN = −e
2I − 1
e2I

(29)

and

w0 = −
√

2σN
√
e2I − 1erfinv(2pFN,Bound − 1)

e2I
(30)

Thus, the differential mutual information is de-
fined in Eq. 31.

I := I (X1, ...,XN−1;XN) (31)

6.4.2 Conditional Independence

We have already motivated and introduced the follow-
ing dependent random variables Xn,1 ≤ n ≤ N . We
have explained the fact that test case failure proba-
bilities are correlated, since test cases are executed on
the same system, and thus they show a dependent be-
havior.

However, the random variables Xn,1 ≤ n ≤ N are
conditionally independent. This means that the infor-
mation about a test case evaluation dominates such

that a test case’s originally calculated failure proba-
bility becomes irrelevant after observation of its state.
Accordingly, the dependency among failure probabil-
ities vanishes after observation of test case evalua-
tions. This means that a fail of a test case tm is ac-
tually expected based on the information about the
evaluation of another test case tn and no longer on tn’s
originally calculated failure probability. Thus the re-
maining random variables Xn,1 ≤ n ≤ N − 1 become
independent of the random variable XN after obser-
vation of H ’s realization (cf. Fig. 6).

6.4.3 Specificity Estimation

The specificity is given by the term 1 − p̂FP . As ex-
tensive mathematical derivations are needed for ob-
taining a calculation formula of p̂FP , these derivation
steps are given in the appendix and in what follows
here only the result is given.

Theorem 1 (False-Positive Probability Estimation).
p̂FP is estimated as given in Eq. 32

p̂FP = P (Z ≥ −w0 +wT∆µ) =
1
2

1− erf

−w0 +wT∆µ
√

2σZ


(32)

with σZ = [w1 · · ·wN−1]Σ1,1[w1 · · ·wN−1]T + w2
Nσ

2
N and

∆µ = µ−µH0
. The conditional moment has the following

definition E[X |H0] = µH0
For the case N = 2, Eq. 32 can be simplified; after

several calculation steps the following Eq. 54 results

p̂FP =
1
2

1− erf

ψ (33)

with

ψ =
√
e2I − 1erfinv(2pFN,Bound − 1) +

√
e4I−e2I

σ1
√

2
∆µ1 −

√
e2I−1
σ2
√

2
∆µ2

√
2e4I − 3e2I + 1

(34)

6.4.4 Small Dimension Validation

Fig. 7 shows five plots of p̂FP for different values of
displacements ∆ = µn −µn,H0

. Indeed, the actual value
of ∆ is unknown. However, the focus is on the min-
imization of p̂FP . Accordingly, p̂FP decreases in each
sub-figure of Fig. 7. The actual value of ∆ only de-
termines how fast p̂FP decreases. So we can solve the
optimization problem (cf. Eq. 1) by minimizing p̂FP .
We considered two random variables X1 and X2, as
in our example in Sec. 4 where we created two clus-
ters. A very important factor here is the underlying
strategy for clustering test cases. As the distribution
of the random variables X1 and X2 is directly related
to the clustering strategy the main focus is on the
maximization of the differential mutual information
I (X1;X2). Accordingly, I is an optimization parame-
ter for effectively reducing p̂FP . Lastly, we chose the

www.astesj.com 57

http://www.astesj.com

I. Alagöz et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 49-65 (2018)

(a) (b)

(c) (d) (e)

Figure 7: Estimation of p̂FP for different values of ∆ and σ with ∆ = α ·v ·10−3. The value of α is 0, 1, 5, 10 and
15 in Fig. 7 a), Fig. 7 b), Fig. 7 c), Fig. 7 d) and Fig. 7 e) respectively.

following values {0.01,0.05} for σ = σ1 = σ2 and se-
lected the following displacements ∆ = α ·v ·10−3 with
α ∈ {0;1;5;10;15} and v = [1,−1]T .

7 Optimization

The first strategy is to optimize the feature selec-
tion. Optimal features are learned in an unsupervised
learning session where an evolutionary optimization
framework is applied to search for optimal features.
The next strategy is to improve the labeling of test
cases through an active learning strategy.

7.1 Evolutionary Optimization

Clustering (and sub-clustering) of test cases is per-
formed based on features. Therefore, different cluster-
ings for different selections of feature subsets (Φm,Φs)
are possible. Accordingly, a different statistical model
is obtained, as it reflects the failure frequencies in
clusters. Furthermore, the differential mutual infor-
mation (cf. Eq. 31) depends on the statistical depen-
dencies and thus changes for different clusterings.

Sec. 6 proposed a calculation formula for the
weights wn,0 ≤ n ≤ N, of a linear classifier. However,
those formulas still depend on the differential mutual
information I . A desired sensitivity has to be guaran-
teed, and thus the hyperplane is adjusted according to
the value of I . It can be shown that for small values of
I , the position of the hyperplane still guarantees a de-
sired sensitivity but the false-positive selection prob-
ability increases. To minimize the false-positive selec-

tion probability, the differential mutual information
has to be maximized, which is the final strategy for
solving the constrained optimization problem (cf. Eq.
1).

First, clustering depends on the history-tuples of
test cases as, for example, the length of the history-
tuples determines the maximum number |S |K of clus-
ters. Second, feature selection is optimized. All in
all, we have summarized that K (number of consid-
ered previous regressions) is an optimization param-
eter and bs (for coding selected and main features) is
an optimization matrix. However, this is a large-scale
high dimensional optimization problem, as there exist
many possible settings for K and bs. Thus, [3] and [4]
suggest that the high dimensional optimization prob-
lem can be solved in a reasonable time by using evolu-
tionary algorithms. Accordingly, an evolutionary op-
timization framework is applied for solving the men-
tioned high dimensional optimization problem. As
each setting for K and bs is one possible solution for
clustering test cases, which is the basis for derivation
of a stochastic model, the fitness of this solution can
be evaluated by calculating the extracted information
I in Eq. 31. Thus, the optimal parameter and matrix
setting with the best fitness will survive and will be
returned by the evolutionary optimization algorithm.

Fig. 8 shows the overall flow chart of the evolu-
tionary optimization framework. First of all, a new
population consisting of several genotypes is initial-
ized. Each genotype stands for a possible setting of K
and bs . In the next step, the corresponding pheno-
types of the genotypes are derived. Hence each phe-

www.astesj.com 58

http://www.astesj.com

I. Alagöz et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 49-65 (2018)

notype encodes a stochastic model. Accordingly, the
population is evaluated, wherein the fitness of each
phenotype is calculated. However, a bad fitness is also
possible due to bad statistical properties of the under-
lying stochastic model. This means that statistical cal-
culations based on the stochastic model that a pheno-
type encodes cannot guarantee desired statistical con-
fidence bounds. This will be explained in more detail
in Sec. 8. Those phenotypes with bad fitness cannot
survive and hence are eliminated.

Accordingly, remaining genotypes (phenotypes)
are stochastically selected, and successively new
genotypes are generated due to crossover and mutation
operations. After a certain number of iterations, the
phenotype with the best fitness will be selected, and
this will be used in the selection algorithm. However,
if the population is empty since all phenotypes were
of bad fitness, then the training mode is activated, in
which test cases are still executed without running the
selection algorithm.

Start

Population Evaluation

Initialization

Crossover & Mutation

Population Evaluation

k < K
MAX

Stochastic Selection

End

k := 0;

true

false

k = k+1;

Figure 8: Evolutionary Optimization Framework.

7.2 Active Learning

Our classifier’s conducted decisions can be regarded
as hard or even as soft decisions. Once taken, hard
decisions are never changed later on, in contrast to
soft decisions. The test efficiency can be significantly
increased by conducting soft decisions as opposed to
hard decisions.

7.2.1 Hard Decision

[1] performs hard decisions since a selected test case
is automatically executed and a once deselected test
case is never selected again in the current regression
test. In the following passages, the disadvantage of
conducting hard decisions will be explained in detail
in relation to classifier decisions.

The linear classifier’s decision depends on the cur-
rent estimation of N̂FN as it calculates the allowed
residual risk pFN,Limit (cf. Eq 6) of potentially taking
a wrong decision. N̂FN returns the number of sup-
posedly unrevealed system failures that would be de-
tected by those already deselected test cases that are
elements of TExec. Accordingly, the linear classifier’s
decision depends on the decisions it has already taken
(TExec) and hence it is memory driven.

Each deselected test case tj has an individual ad-
ditional contribution N̂FN,j (cf. Eq. 36) to the overall
estimation N̂FN such that the relation in Eq. 35 holds.

N̂FN =
∑

∀tj∈TExec

N̂FN,j (35)

N̂FN,j is the product of tj ’s failure probability x and
the false-negative probability P (Ĥ = H0|H1) by dese-
lecting tj as given in Eq. 36.

N̂FN,j = P (H1)P (Ĥ =H0|H1) (36)

Because of this fact, a deselection of an arbitrary
test case can cause that the residual risk pFN,Limit
reaches zero as N̂FN increases (cf. Eq. 6). This means
that no more risk (pFN,Limit = 0) is allowed, and all
remaining test cases have to be consequently selected.

Indeed, selecting test cases even if their deselec-
tion is allowed according to risk calculations is some-
times the better choice. In fact, this is the case if
pFN,Limit is zero and thus it can be significantly in-
creased by selecting and executing an already dese-
lected test case in order to eliminate its risk. When
this is done, N̂FN decreases and hence pFN,Limit in-
creases and thus a residual risk for further deselec-
tions is obtained.

However, the amount ∆N̂FN of how much N̂FN can
be decreased by selecting an arbitrary test case is sig-
nificant. If later more than one test case can be des-
elected, and these deselected test cases add the same
amount of expected unrevealed system failures ∆N̂FN
to N̂FN is in fact a gain in terms of reducing the regres-
sion test effort. So the strategy is to deselect primarily
those test cases with fewer failure probabilities in or-
der to increase testing efficiency.

www.astesj.com 59

http://www.astesj.com

I. Alagöz et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 49-65 (2018)

As a result, the regression test efficiency can be in-
creased. Therefore, the proposed selection method [1]
is extended by a soft decision methodology. So each
decision for deselecting a test case is now regarded as
a soft decision that might be changed later. (We note
here that the other way round is impossible since an
already selected test case is automatically executed on
the system under test and hence deselecting it later
does not make sense).

7.2.2 Soft Decision

Fig. 9 shows the logic for managing soft selection de-
cisions: Let us assume that ti is the next test case that
is analyzed by the linear classifier. If ti is deselected,
then it is queued into a priority queue whereby its pri-
ority is calculated as given in Eq. 37.

prio(ti) = N̂FN,i = P (H1)P (Ĥ =H0|H1) (37)

In the other case, if ti is selected then test cases dese-
lected up to this point are analyzed to the end of im-
proving the trade-off between the assumed risk and
the total number of deselected test cases. As a conse-
quence, the most probable failing test case tj is ob-
tained by taking the peek-operation on the priority
queue. The priority of ti and tj is compared, and the
test case with the higher priority is selected and exe-
cuted on the system under test.

If tj is executed, then it is removed from the set
TExec← TExec\tj and added into the set TExec← TExec∪
tj . Furthermore, tj ’s state is evaluated eval(tj) and
accordingly the empirical failure probabilities of test
cases are updated in algorithm 1. Since the calculated
failure probabilities are averages of test case evalu-
ations, the failure probabilities of those sub-clusters
(see Eq. 4) have to be updated where tj is an ele-
ment of them. Accordingly, the failure probabilities
of ∀tk ∈ TExec are updated in algorithm 1.

Algorithm 1 Test case selection algorithm
procedure update statistics(TExec, tj) . TExec
contains already deselected test cases; tj is executed

for each test case tk ∈ TExec do
∃!Cn,l =⇒ tk ∈ Cn,l . Find sub-cluster of tk

and thus determine n and l
if tj ∈ Cn,l then

pn,l ← 1
|Cn,l |

∑
∀ti∈Cn,l eval(ti) . see Eq. 4

P (H1)← pn,l
update tk ’s priority: prio(tk) . see Eq. 37

end if
end for
if eval(tj) == 1 then

NT P ← NT P + 1
end if

end procedure

The important point is that even the failure proba-
bility of ti is computed again. In most cases, ti would
be deselected. Nevertheless, it could be possible that

the execution of tj has failed, such that a further sys-
tem failure has been found. In such a case, even ti ’s
failure probability may have increased such that its
deselection has to be checked again by the linear clas-
sifier.

All in all, testing efficiency can be significantly in-
creased by performing soft selection decisions. The
performance of both selection strategies (hard decision
and soft decision) will be compared in Sec. 9.

8 Learning Phase

The learning phase is of essential importance due to
the fact that during this phase, the system reliability is
actually learned. Test case selection is a safety-critical
binary classification task as probably system failures
would remain undetected and hence, a correspond-
ing quality measure of wrong decisions is required.
Accordingly, risk estimations on probably undetected
system failures due to deselection of test cases have
to be as accurate as possible. The more the system is
learned during a regression test, the more precise the
risk estimations are. However, learning a system in
terms of understanding its reliability is a costly pro-
cess, as it requires test cases to be executed. The fun-
damentally important research question is how much
training data is enough for safely selecting test cases
with a desired sensitivity.

8.1 Statistical Sensitivity Estimation

We have already required a specific sensitivity in the
constraint optimization problem (cf. Eq. 1). Accord-
ingly, we define the following confidence level in Eq.
38, which is basically driven from the constraint of Eq.
1.

P
(
Ψ ≤ γ

)
≥ 1−α (38)

Ψ is an estimator for the number of false-negatives
N̂FN =

∑
ti∈TEXEC

N̂FN,i and the bound is given as γ =
NT P ·pFN,MAX
1−pFN,MAX . Ψ =

∑
i ψi is composed of several ran-

dom variables ψi standing for the distribution of each
N̂FN,i . ψi ’s distribution is complex, since the individ-
ual contribution of a deselected test case ti is given
by N̂FN,i = xN p̂FN where xN is ti ’s failure probability
and p̂FN is the corresponding estimated false-negative
probability: The following theorem is already proved
in [1] and gives the formula for the false-negative
probability estimation.

Theorem 2 (False-Negative Probability). For a given
pth the calculation formula of the false-negative probabil-
ity P (Ĥ =H0|H1) has the form

p̂FN =
1
2

1 + erf

 1
√

2

xN − (xN − pth)e2I −µN
σN
√
e2I − 1

 (39)

where xN is the failure probability of a test case, whereas
µN ,σN are parameters of the probability distribution
functionN (µN ,σN).

www.astesj.com 60

http://www.astesj.com

I. Alagöz et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 49-65 (2018)

enqueue(ti)

prio(ti)≥
prio(tj)

select
ti

select
ti

execute tj

ti

tj

Priority Queue

true

false

true

false

execute ti tj = peek()

truefalse

dequeue()

Figure 9: The extended concept for conducting soft decisions

These statistics are created on the basis of sam-
ple averages, such that the consideration of sample
variances becomes inevitable during the estimation of
confidence intervals. For instance, the false-negative
probability estimation p̂FN (see Eq. 39) is composed of
the statistics xN , µN , σN and I . Therefore, its variance
depends on the individual variances of each statistic,
including the sample variance of xN . Especially the
probability distribution of I is complex as it is non-
linearly composed of a set of multivariate distributed
Gaussian random variables.

Therefore, we choose the following approach to
solving Eq. 38. We simplify the definition of ψi as
follows ψi = p̂FN · XN where p̂FN is assumed to be
a constant value without any distribution. This step
simplifies the calculation complexity of Eq. 38 sig-
nificantly, as Ψ becomes simply a weighted sum of
Gaussian random variables. However, the variance of
p̂FN is of course relevant and should not be easily ne-
glected. Accordingly, we require a maximum confi-
dence interval width for p̂FN such that the estimated
false-negative probability is quite accurate and hence
can be assumed to be just like a constant value with-
out any statistical deviation. We calculate the confi-

dence interval [p̂(l)
FN ; p̂(u)

FN] and its width δ = p̂(u)
FN − p̂

(l)
FN

and require a maximal confidence interval width of
δmax.

The Wilson score interval [22] delivers confidence
bounds for binomial proportions. Therefore, we cal-

culate the following confidence intervals [x(l)
n ;x(u)

n]
(confidence level: 1 −α = 99%) for each failure prob-
ability estimation xn,1 ≤ n ≤ N . Each bound is conse-
quently used for building the bounds of the composed
statistics σ , Σ and I . By doing this, we obtain the fol-
lowing bounds: σ (b), Σ(b) and I (b) with b = {u, l}. Ac-

cordingly, we calculate p̂(b)
FN by consequently inserting

the bounds σ (b), Σ(b) and I (b) for the statistics σ , Σ and
I respectively.

8.2 Criteria for Training

In order to guarantee a statistical bound on the sensi-
tivity with a 99% confidence level, the following con-
ditions have to be checked.

1. δ ≤ δmax

2. P
(
Ψ ≤ γ

)
≥ 1−α = 99%

If both conditions are fulfilled, then these risk cal-
culations in the selection algorithm are reasonably
accurate and hence selection decisions can be per-
formed. However, if one condition is not fulfilled then
the training mode is just active, such that test cases
still have to be executed.

9 Industrial Case Study

A German premium car manufacturer constitutes
each regression test as being a system release test, and
thus the system test takes up to several weeks accord-
ing to [5]. However, a first detected system failure
makes a system release impossible so optimizing the
current regression for achieving high efficiency in re-
ducing the regression effort becomes justified.

It is often the case that close to the so-called start
of production (SOP) of a vehicle, many electronic con-
trol units (ECU) have only some critical spots and
thus each regression test is expected to be a system-
release test. Since many test cases pass, a lot of time
is spent in observing passing test cases. Therefore,
reducing the number of executed passed test cases
(since a system failure is detected and a system release

www.astesj.com 61

http://www.astesj.com

I. Alagöz et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 49-65 (2018)

is no longer possible) and keeping the limited testing
time back for fault-revealing test cases decreases the
regression test effort significantly. In any case, a final
regression test will succeed after further system up-
dates have been conducted; this will be constituted as
a final release-test that meets the high-quality stan-
dards of [5].

In our industrial case study, we applied our selec-
tion method to a production-ready controller that im-
plements complex networked functionalities for the
protection of passengers and other road users. There-
fore its test effort is immense, and hence we apply
our regression test selection method for accelerating
its testing phase. In Fig. 10 the right-hand side of the
well-known V-Model (see [23]) is shown, whereas the
focus is on system testing in our case study.

A hardware-in-the-loop simulator (HiL) [24] is
used for validating an ECU’s networked complex
functionalities as well as its I/O-interaction and its ro-
bustness during voltage drops, as it provides an effec-
tive platform for testing complex real-time embedded
systems.

HiL Simulator

ECU

Voltage

Bus Comm.

Diagnosis

I/OModule Test

Integration Test

Function Test

System Test

Application

Figure 10: A HiL simulator is used for performing the
system test.

Further, we selected for the following test case fea-
tures for training the machine learning algorithm:

• Name of verified system parts

• Name of a function for which reliability is as-
sured

• Number of totally involved electronic control
units during the testing of a networked func-
tionality

• Error type (broken wire etc.) in hardware ro-
bustness tests

• Set of checked diagnostic trouble codes, DTCs

• Number of checked diagnostic trouble codes,
DTCs

Since the quality of our selection decisions is
hedged on a stochastic level, it can appear that dur-
ing different runs of our selection method, a statisti-
cal deviation of the false-positive probabilities could
occur. Therefore, we constitute several independent
runs of a regression test, where we set pFN,MAX = 1%.
The boxplots and the quantiles of the false-positive
probabilities are given in Fig. 11 and in Table 4, re-
spectively.

Fig. 11 shows the overall boxplots of the false-
positive probabilities achieved during the regression
test replications. To compare the hard with the soft
decision strategy we performed distinct regression test
replications where we disabled and enabled the pa-
rameter for ’soft decision’, respectively.

It can be seen from Fig. 11a) and Fig. 11b) that the
average false-positive probability is about 74% and
23% for hard and enabled soft decisions respectively.
As already mentioned, conducting hard decisions does
not allow for global optimization of the trade-off be-
tween an already assumed risk and the corresponding
number of totally deselected test cases. Global opti-
mization hence requires the analysis of all test cases
deselected thus far over and over again, and, if neces-
sary, the selection of an already deselected test case.
Therefore, test cases with a higher failure probabil-
ity should be considered again for eventual selection
in an ongoing regression test in order to potentially
deselect further less risky test cases. As a result, the
regression test effort can be reduced much more by
applying soft decisions.

Furthermore, the condition in Eq. 40 on the false-
negative probability pFN or on the number of actually
occurring false-negatives NFN was fulfilled in all con-
ducted regression test replications.

pFN ≤ pFN,MAX = 1% or

NFN ≤ 1
(40)

Our implemented algorithm for selecting test
cases runs on a desktop CPU that is specified in Ta-
ble 5. We decided to conduct a multithreaded execu-
tion of the evolutionary algorithm such that the fit-
ness of all phenotypes in a population is computed in
a multithreaded manner (in total 32 threads). Thus
the average CPU load is approximately 95% and the
maximum memory allocation is about 4GB. We need
a mean analysis time of 0.9s for deciding whether a
test case should be selected or not.

10 Conclusion and Future Work

We proposed a holistic optimization framework for
the safety assessment of systems during regression
testing. To this end, we designed a linear classifier
for (de-) selecting test cases according to a classifica-
tion due to a risk-associated recognition. Therefore we
defined an optimization problem, since the classifier’s
specificity has to be maximized whereas its sensitiv-
ity still has to exceed a certain threshold 1− pFN,MAX .
Accordingly, we developed a novel method for deter-
mining the weights of a linear classifier that solves
the above optimization problem. We have theoreti-
cally shown that the classifier performance is directly
interrelated with the success of selected relevant fea-
tures of test cases. Lastly, we applied our method to
a production-ready controller and analyzed the over-
all regression test effort subject to an active learning
strategy. We have demonstrated that, in the regres-
sion testing of safety-critical systems, significant sav-

www.astesj.com 62

http://www.astesj.com

I. Alagöz et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 49-65 (2018)

pFP
0

0.2

0.4

0.6

0.8

1

Boxplot of p
FP

(a) hard decision

pFP
0

0.2

0.4

0.6

0.8

1

Boxplot of p
FP

(b) soft decision

Figure 11: Boxplots of false-positive probabilities in case of a) hard and b) soft decisions

Table 4: Quantiles of the false-positive probabilities in each replicated regression test

Quantiles of False-Positive Probability
0.025 0.25 0.5 0.75 0.975

Hard Decision 50.8% 63.8% 73.9% 76.2% 78.2%
Soft Decision 22.6% 22.7% 23% 25.6% 28.1%

ings can be achieved. As feature selection is a com-
plex task, and thus an evolutionary optimization sup-
posedly finds local optima, more thorough research in
this field may indeed allow higher-order reductions of
the classifier’s false-positive selection probability.

11 Appendix

In the following, a detailed proof of Theorem 1 is
given, relating to the proofs given in [1].

Proof of Theorem 1

Proof. According to [1], the maximum likelihood es-
timation xN,ML (abbreviated xML in the following) is
given in Eq. 41.

xML = µN −
(xD −µD)TΦΛ−1φT

φΛ−1φT
(41)

As ΦΛ−1φT = P1Σ
−1P T2 and φΛ−1φT = P2Σ

−1P T2 =(
Σ−1

)
N,N

holds (consult Proof of Theorem 3 in [1])
xML can be written as given in Eq. 42.

xML =:
N−1∑
n=1

wn(xn −µn) +µN (42)

with wn = −

(
Σ−1

)
n,N(

Σ−1
)
N,N

. Furthermore, the threshold

probability pth was calculated in [1] as given in Eq.
43.

pth = xN

+

√
2σN
√
e2I − 1erfinv(2pFN,Bound − 1) +µN − xN

e2I
(43)

By introducing the definitions of the weights w0 :=

−
√

2σN
√
e2I−1erfinv(2pFN,Limit−1)

e2I and wN := − e2I−1
e2I the

threshold probability can be written as pTH = −w0 +
µN −wN (xN −µN).

Eq. 44 derives the final definition of the hyper-
plane y(x) and the acceptance region of the rival hy-
pothesisH1 by putting the definitions of xML and pTH
together.

xML ≥ pTH

µN +
N−1∑
n=1

wn(xn −µn) ≥ −w0 +µN −wN (xN −µN)

w0 +
N∑
n=1

wn(xn −µn) ≥ 0

w0 +wT (x −µ)︸ ︷︷ ︸
y(x)

≥ 0

(44)

The estimation of the false-positive probability is

www.astesj.com 63

http://www.astesj.com

I. Alagöz et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 49-65 (2018)

Table 5: Computational/memory requirements and algorithm performance

CPU Intel Core i7-4800MQ @ 2.7 GHz, 8 Threads
CPU Load 95%

RAM 4 GB

Allocated Threads 32 Threads
Response Time 0.9 seconds

performed by calculating p̂FP = P (Ĥ = H1|H0). How-
ever, as already explained in Sec. 6, the conditional
pdf p(Ĥ |H) is not given and therefore p̂FP cannot be
directly estimated. Thus, we assume that the condi-
tional pdf p(Ĥ |H) is of a Gaussian distribution with
mean E[X |H0] = µH0

and covariance matrix E[(X −
µH0

)(X −µH0
)T |H0] = Σ. However, µH0

is an unknown
parameter vector; additionally, the second-order mo-
ments are assumed to be invariant of an event H0. We
will calculate p̂FP in dependency on the unknown vec-
tor µH0

and will qualitatively show that p̂FP can be
minimized independently of µH0

due to an optimiza-
tion strategy. In showing this, we demonstrate that the
concept of our work is validated and mathematically
proved.

First of all, Eq. 44 is given in Eq. 45 with an addi-
tional term.

w0 +wT (x −µ) ≥ 0

w0 +wT (x −µ+µH0
−µH0

) ≥ 0
(45)

Furthermore, by introducing the definition ∆µ = µ −
µH0

Eq. 45 can be written as given in Eq. 46.

wT (x −µH0
) ≥ −w0 +wT∆µ (46)

Accordingly, p̂FP is estimated as given in Eq. 47.

p̂FP = P
(
wT (X −µH0

) ≥ −w0 +wT∆µ
∣∣∣∣H0

)
(47)

By substituting U :=
∑N−1
n=1 wn(Xn −µn,H0

) and V :=

wN (XN − µN,H0
) with µn,H0

=
(
µH0

)
n

the false-positive
estimation is given as follows.

p̂FP = P
(
U +V ≥ −w0 +wT∆µ

∣∣∣∣H0

)
(48)

Based on that fact, that H0 is given U and V are con-
ditionally independent (see explanation in subsection
6.4.2) of each other and hence the random variable
Z := U + V has the mean E[Z] = E[U] + E[V] and the
variance σ2

Z = σ2
U + σ2

V . Since E[Xn|H0] = µn,H0
holds

the mean of U and V is zero (E[U] = 0; E[V] = 0).
The variances of U and V are given in Eq. 49

σ2
U = [w1 · · ·wN−1]Σ1,1[w1 · · ·wN−1]T (49)

and Eq. 50 respectively.

σ2
V = w2

Nσ
2
N (50)

As [w1 · · ·wN−1]T = −ΦΛ−1φT

φΛ−1φT
holds and by substi-

tuting β := ΦΛ−1φT the term βTΣ1,1β can be simpli-
fied in Eq. 51 as already explained in the proof of
Theorem 3 in [1].

βTΣ1,1β = −
det(Σ1,1)

det(Σ)
+ σ2

N

det(Σ1,1)
det(Σ)

2

(51)

It can easily be seen that the variance of U is equal

to σ2
U = βT Σ1,1β[(

Σ−1
)
N,N

]2 . Furthermore,
(
Σ−1

)
N,N

= det(Σ1,1)
det(Σ)

holds and thus the variance is further simplified and
is given in Eq. 52.

σ2
U = − det(Σ)

det(Σ1,1)
+ σ2

N (52)

Finally, the false-positive probability is estimated as
follows:

p̂FP = P (Z ≥ −w0 +wT∆µ) =
1
2

1− erf

−w0 +wT∆µ
√

2σZ


(53)

For the case N = 2, Eq. 53 can be simplified and after
several calculation steps the following Eq. 54 results

p̂FP =
1
2

1− erf

ψ (54)

with

ψ =
√
e2I − 1erfinv(2pFN,Bound − 1) +

√
e4I−e2I√

2σ1
∆µ1 −

√
e2I−1√

2σ2
∆µ2

√
2e4I − 3e2I + 1

(55)

References
[1] I. Alagöz, T. Herpel, and R. German, “A selection method for

black box regression testing with a statistically defined quality
level,” in 2017 IEEE International Conference on Software Test-
ing, Verification and Validation (ICST), March 2017, pp. 114–
125, doi: 10.1109/ICST.2017.18.

[2] F. Bürger and J. Pauli, “Representation optimization with fea-
ture selection and manifold learning in a holistic classification
framework,” in Proceedings of the International Conference on
Pattern Recognition Applications and Methods, 2015, pp. 35–44,
doi: 10.5220/0005183600350044.

[3] T. Back, Evolutionary algorithms in theory and prac-
tice: evolution strategies, evolutionary programming, ge-
netic algorithms. Oxford university press, 1996, doi:

10.1108/k.1998.27.8.979.4.

www.astesj.com 64

http://dx.doi.org/10.1109/ICST.2017.18
http://dx.doi.org/10.5220/0005183600350044
http://dx.doi.org/10.1108/k.1998.27.8.979.4
http://dx.doi.org/10.1108/k.1998.27.8.979.4
http://www.astesj.com

I. Alagöz et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 49-65 (2018)

[4] F. Bürger and J. Pauli, “Understanding the interplay of simul-
taneous model selection and representation optimization for
classification tasks,” in Proceedings of the 5th International Con-
ference on Pattern Recognition Applications and Methods, 2016,
pp. 283–290, doi: 10.5220/0005705302830290.

[5] “ISO/DIS 26262-10 - Road vehicles — Functional
safety,” http://www.iso.org, Tech. Rep., 2012, doi:

doi:10.3403/30205385.
[6] G. Xie and Z. Dang, “Model-checking driven black-box

testing algorithms for systems with unspecified compo-
nents,” CoRR, vol. cs.SE/0404037, 2004. [Online]. Available:
http://arxiv.org/abs/cs.SE/0404037

[7] R. Grosu and S. A. Smolka, Monte Carlo Model Check-
ing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005,
pp. 271–286, doi: 10.1007/978-3-540-31980-1 18. [Online].
Available: https://doi.org/10.1007/978-3-540-31980-1 18

[8] A. Legay, B. Delahaye, and S. Bensalem, “Statistical model
checking: An overview,” in International Conference on
Runtime Verification. Springer, 2010, pp. 122–135, doi:

10.1007/978-3-642-16612-9 11.
[9] E. Elkind, B. Genest, D. Peled, and H. Qu, Grey-Box Checking.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp.
420–435, doi: 10.1007/11888116 30. [Online]. Available:
https://doi.org/10.1007/11888116 30

[10] K. Sen, M. Viswanathan, and G. Agha, “Statistical model
checking of black-box probabilistic systems,” in International
Conference on Computer Aided Verification. Springer, 2004, pp.
202–215, doi: 10.1007/978-3-540-27813-9 16.

[11] D. Peled, M. Y. Vardi, and M. Yannakakis, Black Box
Checking. Boston, MA: Springer US, 1999, pp. 225–240,
doi: 10.1007/978-0-387-35578-8 13. [Online]. Available:
https://doi.org/10.1007/978-0-387-35578-8 13

[12] S. Yoo and M. Harman, “Regression testing minimiza-
tion, selection and prioritization: a survey,” Software
Testing, Verification and Reliability, vol. 22, no. 2, pp.
67–120, 2012, doi: 10.1002/stvr.430. [Online]. Available:
http://dx.doi.org/10.1002/stvr.430

[13] G. Rothermel and M. J. Harrold, “A safe, efficient re-
gression test selection technique,” ACM Trans. Softw.
Eng. Methodol., vol. 6, no. 2, pp. 173–210, Apr.
1997, doi: 10.1145/248233.248262. [Online]. Available:
http://doi.acm.org/10.1145/248233.248262

[14] A. Orso, M. J. Harrold, D. Rosenblum, G. Rothermel,
M. L. Soffa, and H. Do, “Using component metacontent
to support the regression testing of component-based soft-
ware,” in Proceedings IEEE International Conference on Soft-
ware Maintenance. ICSM 2001, 2001, pp. 716–725, doi:

10.1109/ICSM.2001.972790.

[15] H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chan-
dra, H. Aradhye, G. Anderson, G. Corrado, W. Chai,
M. Ispir, R. Anil, Z. Haque, L. Hong, V. Jain, X. Liu,
and H. Shah, “Wide & deep learning for recommender
systems,” in Proceedings of the 1st Workshop on Deep
Learning for Recommender Systems, ser. DLRS 2016, vol.
abs/1606.07792. New York, NY, USA: ACM, 2016, pp.
7–10, doi: 10.1145/2988450.2988454. [Online]. Available:
http://doi.acm.org/10.1145/2988450.2988454

[16] R. Langone, O. M. Agudelo, B. De Moor, and J. A. Suykens,
“Incremental kernel spectral clustering for online learning of
non-stationary data,” Neurocomputing, vol. 139, pp. 246–260,
2014, doi: 10.1016/j.neucom.2014.02.036 .

[17] S. Mehrkanoon, O. M. Agudelo, and J. A. Suykens, “Incre-
mental multi-class semi-supervised clustering regularized by
kalman filtering,” Neural Networks, vol. 71, pp. 88–104, 2015,
doi: 10.1016/j.neunet.2015.08.001.

[18] B. Settles, “Active learning literature survey,” University
of Wisconsin–Madison, Computer Sciences Technical Report
1648, 2009. [Online]. Available: http://axon.cs.byu.edu/
∼martinez/classes/778/Papers/settles.activelearning.pdf

[19] C. Lin, M. Mausam, and D. Weld, “Re-active learning:
Active learning with relabeling,” 2016. [Online]. Avail-
able: https://www.aaai.org/ocs/index.php/AAAI/AAAI16/
paper/view/12500

[20] F. Bürger and J. Pauli, “Automatic representation and clas-
sifier optimization for image-based object recognition,” in
VISAPP 2015 - Proceedings of the 10th International Con-
ference on Computer Vision Theory and Applications, Volume
2, Berlin, Germany, 11-14 March, 2015., 2015, pp. 542–
550, doi: 10.5220/0005359005420550. [Online]. Available:
https://doi.org/10.5220/0005359005420550

[21] Handbook of Mathematics. Springer Berlin Heidelberg,
2007, doi: 10.1007/978-3-540-72122-2. [Online]. Available:
https://doi.org/10.1007%2F978-3-540-72122-2

[22] M. Thulin, “The cost of using exact confidence intervals for
a binomial proportion,” Electron. J. Statist., vol. 8, no. 1, pp.
817–840, 2014, doi: 10.1214/14-EJS909. [Online]. Available:
https://doi.org/10.1214/14-EJS909

[23] I. Sommerville, Software Engineering: (Update) (9th Edition)
(International Computer Science). Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 2011.

[24] M. Schlager, Hardware-in-the-Loop Simulation: A Scalable,
Component-based, Time-triggered Hardware-in-the-loop Simula-
tion Framework. VDM Verlag Dr. Müller E.K., 2013.

www.astesj.com 65

http://dx.doi.org/10.5220/0005705302830290
http://dx.doi.org/doi:10.3403/30205385
http://dx.doi.org/doi:10.3403/30205385
http://arxiv.org/abs/cs.SE/0404037
http://dx.doi.org/10.1007/978-3-540-31980-1_18
https://doi.org/10.1007/978-3-540-31980-1_18
http://dx.doi.org/10.1007/978-3-642-16612-9_11
http://dx.doi.org/10.1007/978-3-642-16612-9_11
http://dx.doi.org/10.1007/11888116_30
https://doi.org/10.1007/11888116_30
http://dx.doi.org/10.1007/978-3-540-27813-9_16
http://dx.doi.org/10.1007/978-0-387-35578-8_13
https://doi.org/10.1007/978-0-387-35578-8_13
http://dx.doi.org/10.1002/stvr.430
http://dx.doi.org/10.1002/stvr.430
http://dx.doi.org/10.1145/248233.248262
http://doi.acm.org/10.1145/248233.248262
http://dx.doi.org/10.1109/ICSM.2001.972790
http://dx.doi.org/10.1109/ICSM.2001.972790
http://dx.doi.org/10.1145/2988450.2988454
http://doi.acm.org/10.1145/2988450.2988454
http://dx.doi.org/10.1016/j.neucom.2014.02.036
http://dx.doi.org/10.1016/j.neunet.2015.08.001
http://axon.cs.byu.edu/~martinez/classes/778/Papers/settles.activelearning.pdf
http://axon.cs.byu.edu/~martinez/classes/778/Papers/settles.activelearning.pdf
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12500
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12500
http://dx.doi.org/10.5220/0005359005420550
https://doi.org/10.5220/0005359005420550
http://dx.doi.org/10.1007/978-3-540-72122-2
https://doi.org/10.1007%2F978-3-540-72122-2
http://dx.doi.org/10.1214/14-EJS909
https://doi.org/10.1214/14-EJS909
http://www.astesj.com

	Introduction
	Related Work
	Basic Definitions
	Motivation
	Performance of Known Machine Learning Methods
	Concept
	Sensitivity Estimation
	Univariate Stochastic Model
	Preliminaries
	Multivariate Stochastic Model
	Derivation of probability distribution functions
	Conditional Independence
	Specificity Estimation
	Small Dimension Validation

	Optimization
	Evolutionary Optimization
	Active Learning
	Hard Decision
	Soft Decision

	 Learning Phase
	Statistical Sensitivity Estimation
	Criteria for Training

	Industrial Case Study
	Conclusion and Future Work
	Appendix

