@ASTES

Advances in Science, Technology and Engineering Systems Journal
Vol. 3, No. 1, 38-48 (2018)
www.astesj.com

ASTES Journal
ISSN: 2415-6698

Special issue on Advancement in Engineering Technology

Framework for the Formal Specification and Verification of

Security Guidelines

Zeineb Zhioua[jl, Rabea Ameur-Boulifa2, Yves Roudier3

Y'EURECOM, Digital Security, France

2L TCI, Télécom ParisTech, Université Paris-Saclay, France

313S - CNRS - Université de Nice Sophia Antipolis, France

ARTICLEINFO ABSTRACT

Article history:

Received: 31 October, 2017
Accepted: 09 January, 2018
Online: 30 January, 2018

Keywords:

Security Guidelines

Formal specification

Model Checking
Information Flow Analysis
Program Dependence Graph

Ensuring the compliance of developed software with general and
application-specific security requirements is a challenging task due to
the lack of automatic and formal means to lead this verification. In
this paper, we present our approach that aims at integrating the formal
specification and verification of security guidelines in early stages of the
development lifecycle by combining both the model checking analysis to-
gether with information flow analysis. We present our framework that
is based on an extension of LTS (labelled transition Systems) by data
dependence information to cover the end-to-end specification and veri-
fication of security guidelines.

1 Introduction

This paper is an extension of work originally pre-
sented in Pacific Rim International Symposium on De-
pendable Computing (PRDC 2017) [1]. About 64% of
the 2500+ vulnerabilities in the National Vulnerabil-
ity Database NVD were due to programming mistakes
[2], and the majority of software vulnerabilities are
caused by coding errors. Flaws and errors can be in-
troduced during the different phases of the software
development lifecycle, from design to development.
The missed programming errors can turn into secu-
rity vulnerabilities at run-time, and can be exploited
by intruders who may cause serious damage to the
software critical assets and resources. The undetected
flaws can cause a cost increase, comprising mainte-
nance and flaw correction fees. Using code analy-
sis tools would avoid such issues and help produce
safe and secure software. The last decades have wit-
nessed the development of many analysis techniques
that aim at detecting security vulnerabilities in the
early stages of development lifecycle; however, most
attention was devoted to control-flow, somehow ig-
noring the data dependencies source of vulnerabilities
that can remain undetected.

On the one hand, it is important for developers

to be aware of domain-specific requirements as fail-
ure to pass the verification and validation phase, and
subsequent application corrections and maintenance
may be costly, time-consuming, and affect the com-
pany’s reputation. On the other hand, security guide-
lines should be expressed in a way that allows their
understanding and easy implementation for develop-
ers who may not be security experts to develop and
deliver secure software.

Security guidelines or security best practices serve
as recommendations to developers to reduce the ap-
plication exposure to security issues, and to ensure
that the developed system will behave as expected in
hostile environments.

The problems described above entail the need to
add on top of the development process different types
of verification such as the compliance with the general
and application-specific security requirements. Ap-
plying formal methods in the different phases of the
software engineering process can help further under-
standing of the system, and detect design flaws rather
early in the development.

In our papers [3,4] we conducted a survey on the
static code analysis methods with the objective of
identifying the approach that best fits our needs in
terms of information flow properties detection and

“Corresponding Author: Zeineb Zhioua, zeineb.zhioua@eurecom.fr

www.astesj.com

https://dx.doi.org/10.25046/aj030106

38

http://www.astesj.com
http://www.astesj.com

Z. Zhioua et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 38-48 (2018)

validation, as well as on the system abstraction mod-
els that constitute a strong basis in order to carry out
the analysis.

The main problem we are tackling in this paper
is how to automatically verify the systematic appli-
cation and compliance of (being) developed software
with security requirements expressed in natural lan-
guage. This problem requires the transformation of
the guidelines written informally into a precise for-
malism by security expert(s), and this is a very tedious
task. Nowadays, formal methods, in particular formal
verification, are increasingly being used to enforce se-
curity and safety of programs.

We propose a framework that first provides secu-
rity experts with the means to express security guide-
lines in a more formal way than plain text. Then,
our framework verifies the adherence to the guide-
lines over an abstraction of the program, and provides
understandable and clear feedback to the developer
to indicate the exact program location where the er-
ror occurred. The innovation of our framework relies
on the combination between model checking and data
dependencies together with the analysis of the system
behavior without actually executing it. We focus on
the current version of our framework on the Java pro-
gramming language.

Below we provide a sample code (Figure [1)
that presents an implicit violation of the guideline
from the OWASP Cryptographic Storage Cheat Sheet
[4]:"Store unencrypted keys away from the encrypted
data"lﬂexplaining the encountered risks when the en-
cryption key is stored in the same location as the en-
crypted data. If we want to verify if the code below
meets this guideline or not, then we have first to an-
notate the sources and the sinks, and run the analy-
sis. We need first to highlight several elements in the
codes below; the data key k and encrypted_cc are stored
respectively in file keys.txt and encrypted_cards.txt.
One may conclude that the guideline is met, as key
k and encrypted_cc are stored in separate files. How-
ever, the two files are located in the same file sys-
tem, which constitutes a violation of the guideline.
Let us look at the details of the code. The devel-
oper encrypts the secret data credit card number,
and stores the cipher text into a file. At line 115,
the developer creates a byte array y used as param-
eter for the instantiation of a SecretKeySpec named k
(line 116). At line 119, the key k is stored in a file,
through the invocation of method save_to_file (Figure
1). Once created, key k is provided as parameter to
the method save_to_file(String data, String file) (Figure
) The developer then encrypts the secret variable
creditCardNumber using method private static byte[]
encrypt(Key k, String text) which uses key k as param-
eter. The encrypted data is then stored using method
save_to_file(String data, String file) (Figure[I). One can
conclude that the guideline is met, as key k and en-
cypted_cc are stored in separate files. But if we take a

Ihttps://www.owasp.org/index.php/Cryptographic_Storage
_Cheat_Sheet#Rule__Store_unencrypted
_keys_away_from_the_encrypted_data

www.astesj.com

closer look, we would notice that the two files are lo-
cated in the same file system. Hence, the code violated
the guideline.

In this paper, we go through the approach that we
propose in order to help solving the difficulty of cap-
turing implicit and subtle dependencies that can be
source of security guidelines violations.

public static void main(String[] args)
throws NoSuchAlgorithmException,
NoSuchProviderException,
FileNotFoundException {

int ¢ = 123456;

Payment p = new Payment();

p.setCreditCardNumber(c);

String x = "OxeB4fd820ea3ab910a2d303802b38309d";
byte[] v = hexStringToByteArray(x);
SecretKeySpec k = new SecretKeySpec(y,

"AES");

// save
save_to_file(k,"C:/
Ry

//src//secGuidelines//keys.txt");

// encrypted data
byte[] encrypted_cc = encrypt(k, Integer.toString
(p.getCreditCardNumber()));

// save
save_to_file(encrypted_cc,"C:/ [N

+ "//N /s-c//secGuidelines//encrypted_cards.txt");
¥

Figure 1: Sample code for the encryption of credit
card number

public static void save_to_file(String data, String file) {
try (PrintWriter out = new PrintWriter(file)) {
out.print(data +"\r\n");
} catch (FileNotFoundException e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println(“file error");

Figure 2: Source code of save_to_file method

The flow of this paper is as follows: Section [2]in-

troduces the security guidelines and discusses the mo-
tivation behind this work. In Section |3, we explain in
detail the approach we carried out. We highlight sev-
eral issues related with the guidelines presentation to
developers in Section [4] In Section [5] we introduce
the notion of information flow analysis that we make
use of in our framework for the detection of implicit
dependencies. In Section [6} we present our model
construction methodology. We provide in Section[7|a
comprehensive application of our formalism to spec-
ify and to verify the selected guideline. In section
we outline the related work, followed by a discussion
in Section[9} And finally, Section[10|concludes the pa-
per and discusses future work.

39

http://www.astesj.com

Z. Zhioua et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 38-48 (2018)

2 Security Guidelines

Organizations and companies define non-functional
security requirements to be applied by software de-
velopers, and those requirements are generally ab-
stract and high-level. Security requirements such as
confidentiality and integrity are abstract, and their
application requires defining explicit guidelines to be
followed in order to meet the requirements. Secu-
rity guidelines describe bad as well as good program-
ming practices that can provide guidance and support
to the developer in ensuring the quality of his devel-
oped software with respect to the security aspect, and
hence, to reduce the program exposure to vulnera-
bilities when delivered and running on the customer
platform (on premise or in the cloud). Bad program-
ming practices define the negative code patterns to
be avoided, and that can lead to exploitable vulnera-
bilities, while good programming practices represent
the recommended code patterns to be applied on the
code.

Official sources, such as OWASP [5], Oracle [6],
CERT [7], NSA [8], NIST [9] propose rules and exam-
ples of good/bad programming practices. The pre-
sentation of the security guidelines differ from one
source to another. For instance, CERT Oracle Cod-
ing Standard for Java [7] provides for each guideline
a textual description, followed by a compliant sample
code, and another sample code violating the guide-
line. OWASP [5] provides for most guidelines a de-
tailed description, and examples of compliant and
non-compliant solutions.

Motivation The OWASP Foundation[5] for instance
introduces a set of guidelines and rules to be followed
in order to protect data at rest. However, the guide-
lines are presented in an informal style, and their in-
terpretation and implementation require security ex-
pertise, as stressed in [3]. In the OWASP Storage Cheat
Sheet [5], OWASP introduces the guideline ”Store un-
encrypted keys away from the encrypted data” [5] ex-
plaining the encountered risks when the encryption
key is stored in the same location as encrypted data.
This guideline recommends not to store encrypted to-
gether with the encryption key, as this operation can
result in a compromise for both the sensitive data and
the encryption keys. However, encryption keys can
be declared as byte arrays with insignificant names,
which makes their identification as secret and sensi-
tive data very difficult.

Correctly applying this guideline would provide a
strong protection mechanism against this attack sce-
nario: an attacker can get access to the encryption
server or client, and can retrieve the encrypted data
with the encryption key. Fetching those two elements
allows the deciphering of the encrypted sensitive in-
formation. This reminds the well known HeartBleed?
[10] attack that occurred couple of years ago (April
2014), and that allowed an attacker to read the mem-

Zhttp://heartbleed.com/

www.astesj.com

ory, steal users credentials directly from the systems
protected by the vulnerable version of OpenSSL. This
example emphasizes the critical attacks that can be
performed if the guideline is not respected. OWASP
provides a set of security guidelines that should be
met by developers, but does not provide the means to
ensure their correct implementation. We aim at cov-
ering this gap through the formal specification of se-
curity guidelines and their formal verification using
formal proofs.

In the sample code that we provided in Section |1} we
showed how we could implicitly violate the guideline.
Detecting this violation is not trivial, as it includes
subtle dependencies that should be analyzed with due
consideration. This is the main objective of this paper,
and we could achieve this through the approach that
we depict in details in the next Section.

3 Approach

In this section, we go through the details of our ap-
proach that aims at filling the gap between the in-
formal description of security guidelines presented in
natural language, and their automatic verification on
the code level to provide precise and comprehensive
feedback to the developer.

We started first by doing attempts to extract se-
curity properties from the code level, but we found
out that we needed to have a reference against which
we can compare the extracted program parts. This
brought the idea of performing a deep survey on the
guidelines that we gathered from different sources, as
explained in Section

The positive (resp. negative) security guidelines
serve to express the desired (resp. undesired) pro-
gram behavior. However, we operate on the code
level, meaning that we do not monitor the program
execution. We need then to approximate the program
behavior but still from a static point of view. This re-
quires that we transform the program into a formal
model that allows us to exploit its properties, and
approximate its behavior. In addition, the program
model that we construct should be able to represent
the whole flow of information in order to be able to
reason about how data propagates, and capture pos-
sible information leakage. This induces the need to
choose a formalism to represent the information flows
that can be checked over this program model. Having
covered the aforementioned aspects, we proceed to
verify whether the program meets the specified guide-
lines or not. As we aim to decrease considerably the
heavy load on the developer, we propose an automatic
formal verification of the guidelines. The purpose is
to verify that security guidelines are met, and not to
prove that the program is correct. To the best of our
knowledge, no prior work has filled in this gap be-
tween the informal description of security guidelines
and their automatic formal verification on the code
level.

40

http://www.astesj.com

Z. Zhioua et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 38-48 (2018)

The big picture of the proposed approach is shown
in Figure (3] highlighting the relevant steps towards
fulfilling the transformation of security guidelines
written in natural language into exploitable formulas
that can be automatically verified over the program to
analyze.

The crucial part of the work is the explicit map-
ping between abstract security guidelines formal
specification, and concrete statements on the code.

In order to make the process more concrete, a sep-
aration of duties needs to be made. We make the dis-
tinction between the security expert and the developer.
The former carries out the formal specification of the
security guidelines and their translation from natu-
ral language to formulas and patterns. He establishes
also the mapping between the abstract labels and pos-
sible Java language instructions. The latter invokes
the framework that makes use of this specification to
make the mapping between abstract labels and the
program logic, and then to verify the compliance of
his developed software with the security requirement.

The idea we propose, as depicted in Figure[3] is the
following:

3.1 Formal Specification
Guidelines

of Security

Starting from the guidelines presented in an informal
manner, we make the strong assumption that the se-
curity expert formally specifies the security guide-
lines by extracting the key elements, and builds the
formulas or patterns based on formalism. The estab-
lished formulas or patterns can be supported by stan-
dard model checking tools. We present in Section
how the guideline that we consider in this paper can
be modeled in a formalism, and can be formally veri-
fied using a model checking tool.

3.2 Program Model Construction

Choosing a program representation depends on the
intended application. In our case, the program should
be abstracted in a way that preserves its properties,
such as the explicit and the implicit dependencies,
hence allowing the performance of deep information
flow analysis. In our framework, we have chosen the
Program Dependence Graph (PDG) (see section@ as
the representation model, for its ability to represent
both control and data dependencies. The generated
PDG is then augmented with details and information
extracted from the formulas and patterns of the se-
curity guidelines. We performed Information Flow
Analysis over the constructed PDG in order to aug-
ment it with further security-related details. This
analysis aims at capturing the different dependen-
cies that may occur between the different PDG nodes,
hence, augmenting the generated PDG with relevant
details, such as annotations mapping the PDG nodes
to abstract labels of the security guidelines. Then, we
generate form the augmented PDG, a Labelled Transi-
tion System tha is accepted by model checking tools.

www.astesj.com

3.3 Verification

As previously mentioned, security guidelines will be
modeled in the form of sequence of atomic proposi-
tions or statements representing the behavior of the
system. The security guidelines will then be verified
over the Labelled Transition System that we generate
from the PDG augmented with implicit and subtle de-
pendencies. The verification phase can have the fol-
lowing outcomes:

* The security guideline is valid over all the feasi-
ble paths

* The security guideline is violated

The first case can be advanced further, meaning
that the verification can provide more details to the
developer (or the tester) about circumstances under
which the security guideline is valid. In the second
case, recommendations to make the necessary correc-
tions on the program can then be proposed . The con-
crete mapping between the abstract propositions in
the formal security guidelines and the program model
is managed in the Security Knowledge Base (Section

9).

4 Security Guidelines Analysis

Security guidelines are usually presented in an infor-
mal and unstructured way. Their presentation differs
from one source to another, which can be mislead-
ing to developers. We did the effort of analyzing the
guidelines from different sources, and we raised dif-
ferent problems that we have discussed in [4]. Upon
this survey, we noticed a lack of precision and a to-
tal absence of automation. From developers perspec-
tive, the understanding and interpretation of guide-
lines is not a trivial task, as there is no formalization
that exposes the necessary program instructions for
each guideline, or that explains how to apply them
correctly in their software. In order to overcome this
weakness, we come up with a centralized database
that gathers the possible mappings between guide-
lines and Java instructions in the Security Knowledge
Base. In the OWASP Secure Coding Practices guide
[5], a set of security guidelines are presented in a
checklist format arranged into classes, like Database
Security, Communication Security, etc. The listed pro-
gramming practices are general, in a sense that they
are not tied to a specific programming language. An-
other programming practices guide we can consider
for instance is the CERT Oracle Coding Standard for
Java[7] ; for each guideline, the authors provide a de-
tailed textual explanation. For most, there are also
provided examples of compliant and non-compliant
sample codes in addition to the description. We want
to pinpoint another key element that gathered our
attention; there is a huge effort invested in order to
build and maintain the catalogs, but no attempt was
undertaken to instrument their automatic verification
on the code level.

41

http://www.astesj.com

Z. Zhioua et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 38-48 (2018)

-
dab

A

_ Formal Specification

MCL Formulas

Program Model Labelled Transition System
-
Construction

Feedback to the Developer

Figure 3: Framework for the formal specification and verification of Security Guidelines

5 Information Flow Analysis

In our framework, we make use of the Information
Flow Analysis for many purposes, mainly the detec-
tion of implicit and subtle dependencies that can be
source of covert channels and sensitive information
leakage. From a security perspective, this might have
serious damages on the security of the infrastructure
as well as on users sensitive data. One might argue
about using known security mechanisms such as ac-
cess control to control the information propagation in
a program. This aspect is of a paramount importance
when dealing with information security. However,
from a historic point of view, access control mecha-
nisms, are used to verify the access rights at the point
of access, and then, to allow or deny the access to the
asset over which the mechanism is set. Access con-
trol mechanisms, just like encryption, can’t provide
assurance about where and how the data will propa-
gate, where it will be stored, or where it will be sent
or processed. This entails the need for controlling in-
formation flow using static code analysis. This same
idea is emphasized by Andrei Sabelfeld and Andrew
C. Myers [11], who deem necessary to analyze how the
information flows through the program. According to
the authors, a system is deemed to be secure regarding
the property confidentiality, if the system as a whole
ensures this property.

The main objectives of the information flow con-
trol [12] are to preserve the confidentiality and in-
tegrity of data; the former objective consists in guar-
anteeing that confidential data don’t leak to public
variables. As for the second objective, it consists in
verifying that critical data is independent from public
variables/output. Information flow control analyzes
the software with the objective of verifying its compli-
ance and conformance to some security policies. Dif-
ferent approaches have been proposed for Informa-
tion Flow Control, where we can distinguish between
language-based and type-based information flow con-
trol. The former has the advantage of exploiting the
program source code and the programming language
specificity, but falls short in covering different aspects
such as physical side channels that is covered by other

www.astesj.com

approaches[13] and execution environment proper-
ties. Language-based security mechanisms have been
treated in the literature, including the bytecode ver-
ifiers and sandbox model. Those mechanisms en-
force security through the Java language, but only the
bytecode verifiers make use of the static code anal-
ysis. Type-based information flow control, on the
other hand, basically makes use of the typing rules
that capture illegal flows of information throughout a
program, however, they are neither flow-insensitive,
context-sensitive nor object-sensitive, which leads to
imprecision, which in turn leads to false alarms.

6 Program Model Construction

The starting key element for this step is the standard
PDG that we generate from the Java program byte-
code using the JOANA tool [14]. In this PDG, con-
trol and (explicit/implicit) data dependencies are cap-
tured, which constitutes a strong basis to perform a
precise analysis. Since our main objective is to auto-
matically verify the adherence of programs to formal-
ized security guidelines, we need to model check the
guidelines MCL formulas over the program model.
However, the PDG is not formal, and doesn’t consist a
basis for the formal verification through model check-
ing. Thus, we need to construct from the augmented
PDG a model that is accepted by a model checking
tool, and that can be verified automatically through
model checking techniques. We depict in Figure
the program model construction flow that we have
adopted to generate the Labelled Transition System
(LTS) from the PDG, that we generate from the pro-
gram sources.

* Augmented Program Dependence Graph: this
component first builds the program dependence
graph (PDG) from the Java bytecode (.class) us-
ing the JOANA IFC tool [14]. We have cho-
sen the Program Dependence Graph (PDG) as
the abstraction model for its ability to represent
both control and (explicit/implicit) data depen-
dencies. The generated PDG is then annotated

42

http://www.astesj.com

Z. Zhioua et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No.

1, 38-48 (2018)

JOANA IFC

Annotator
N} e
N——
Augmented PDG

Augmented
PDG

Figure 4: Methodology for the model construction: From program sources to the Augmented Program Depen-

dence Graph, to the Labelled Transition System

by the PDG Annotator with specific annotations
(labels in the MCL formulas). The PDG Anno-
tator retrieves the nodes details (method signa-
ture) from the PDG, and fetches from the Secu-
rity Knowledge Base the matching label if it ex-
ists. We run the information flow analysis using
the JOANA IFC, that is formally proven [14] in
order to capture the explicit and the implicit de-
pendencies that may occur between the program
variables. The operation results in a new PDG
that we name the Augmented PDG. We show
in Figure [5|the Augmented PDG of the sample
code (Figure|l) that we consider in this paper.

LTS Construction: this component translates au-
tomatically the Augmented PDG into a param-
eterized Labelled Transition System (pLTS) that
is accepted by model checking tools. The anno-
tations on the PDG nodes are transformed into
labels on the transitions in the pLTS.

Java Classes Parser: This component that we
have developedEltakes as input the URL of the
Java class official documentation, and parses
the HTML code (Javadoc) in order to extract
all the relevant details: the class name, the in-
heritance, the description, the attributes, the
constructor(s), the methods signatures, their re-
turn type and their parameters. This component
populates the Security Knowledge Base with the
extracted information.

6.1 Program Dependence Graphs

PDG (Program Dependence Graph) is a language-
independent representation of program. This model
was first proposed by Ferrante et al. [15] as a program
representation taking into consideration both control

Shttps://github.com/zeineb/Java-classes-parser

www.astesj.com

and data relationships in a program. Formally, the
PDG is a directed graph whose nodes correspond to
program statements and whose edges model depen-
dencies in the program. Those dependencies can be
classified as either control or data dependencies. The
nodes are predicates (variable declarations, assign-
ments, control predicates) and edges are data and con-
trol dependencie representation; both types are com-
puted using respectively control-flow and data-flow
analysis.

PDGs have the ability to represent the informa-
tion flow in a program, and have different proper-
ties, such as being flow-sensitive, context-sensitive and
object-sensitive [13]. Being flow-sensitive is the ability
of considering the order of statements in the program.
The context-sensitivity is perceived from the fact that
if the same method is invoked multiple times, then
each call site will be represented a separate node in
the graph, and will be analyzed separately. In other
words, the methods calling context is considered, and
this increases precision. The object sensitivity, on the
other hand, is the ability to extend the analysis to the
attributes level for Object Oriented Programs; object,
which is an instance of a class, is not considered as an
atomic entity, hence the analysis will be extended to
the attributes level.

PDG abstracts away irrelevant details, such as in-
dependent and non-interacting program statements,
that represent the unfeasible paths.

In our framework, we make use of the JOANA tool,
that stands for Java Object sensitive Analysis [16] for
the construction of the PDG. JOANA [14] is a frame-
work that statically analyzes the byte code of Java pro-
grams; the tool first generates from the program byte
code a PDG, which constitutes an over-approximation
of the information flow in the program to analyze.
The PDG contains apart from the nodes represent-
ing the statements and the variable declarations in the

43

http://www.astesj.com

Z. Zhioua et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 38-48 (2018)

program, contains also edges referring to control and
data dependencies between nodes. The dependencies
represent explicit dependencies as well as transitive
and implicit dependencies.

JOANA's strength relies on the ability to track how
information propagates through a program, and cap-
tures both the explicit and implicit information flows.

6.2 Augmented Program Dependence
Graph

We extend the definition of program dependence
graphs to accommodate propositions over the set of
program variables. Once the PDG is built, we com-
pute all the propositions that are defined over the pro-
gram. These propositions are parametrized by the
variables defined within the program. Each node is
annotated with a set of propositions.

There are two categories of information which can
all be used as annotations. The first category is ob-
tained by identifying the set of standard instructions:
variables assignments, method calls, etc. at a given
node. Example of methods are encypt, hash, log,
normalize, sanitize. Second category is dedicated to
relationship between variables, the dependencies in
terms of explicit and implicit data dependencies be-
tween variables in a program.

e_to_file

148

149 qve_to_ﬁle

151

Figure 5: Augmented Program Dependence Graph for
the sample code. Strong edges represent the control
flows, the dashed edges refer to explicit and implicit
data flows. Nodes are labeled with their correspond-
ing instructions line numbers

www.astesj.com

Note that referring to our security knowledge base,
different annotations on the PDG were pre-computed,
like for instance the save, userInput and the encyp-
tion_key.

Automatic annotations. First, we have created our
own annotations based on the atomic propositions of
the security guidelines formulas. We made modifi-
cations on the source code of JOANA, and added the
annotations hash, userInput, Password, encrypt, etc. in
addition to the predefined annotations SOURCE and
SINK. As shown in Figure [5} different program nodes
are annotated with abstract labels, such as node 65
annotated as Password, node 73 annotated as hash and
node 80 annotated as log or store. The log annota-
tion was pre-computed after the PDG is built, mean-
ing that the security knowledge base was accessed to
fetch the concrete possible mappings between known
APIs, methods, methods parameters mapped to the
abstract labels the formulas are built upon. The map-
ping between the method invocation logger.log and the
label log is already established. Same for the hash la-
bel. However, for the Password, the automatic anno-
tation requires a semantic analysis to be performed
over the code in order to determine the variable names
matching password. The semantic analysis is not in
the scope of this paper.

Annotations validation by the developer. Once the
automatic detection of the atomic propositions on the
PDG is performed, the intervention of developer is re-
quired to validate the added annotations. There might
also be the case where the developer creates a method
implementing the hash functionality, then the detec-
tion of the label hash on the program model will fail.
In the sample code, the logging, which is one simple
possible storing operation, was invoked. The devel-
oper, in our example, annotated the node 65 as Pass-
word, and the node 80 as store (in addition to the log
automatic annotation).

6.3 Labelled Transition System

A parameterized Labelled Transition System (pLTS)
is a labelled transition system with variables; a pLTS
can have guards and assignment of variables on
transitions. Variables can be manipulated, defined,
or accessed in states, actions, guards, and assign-
ments. JML [17], Z [18], B [19] allow to describe the
states of the system through mathematics-based ob-
jects (machines, sets, etc.), and they describe pre- and
post-conditions on the transitions between the states.
Those languages deal with sequential programs and
do not handle value passing for most.

Definition 1 (pLTS) A parametrized LTS is a tuple
pLTS = (S,s9, L, —) where:

e S isa set of states.

e sq €S is the initial state.

44

http://www.astesj.com

Z. Zhioua et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 38-48 (2018)

o Lis the set of labels of the form (a, ey, (xj:= ej)jE]),
where «a is a parametrized action, ey is a guard,
and the variables x; are assigned the expressions e;.
Variables in are assigned by the action, other vari-
ables can be assigned by the additional assignments.

o —C S xLxS is the transition relation.

Informally, we interpret the behavior of a program
as a set of reachable states and actions (instructions)
that trigger a change of state. The states express the
possible values of the program counter, they indicate
whether a state is an entry point of a method (ini-
tial state), a sequence state (representing standard se-
quential instruction, including branching), a call to
another method, a reply point to a method call, or a
state which is of the method terminates. Each transi-
tion describes the execution of a given instruction, so
the labels represent the instruction names.

The LTS labels can mainly be of three types: ac-
tions, data and dependencies.

* Actions: they refer mainly to all program in-
structions, representing standard sequential in-
structions, including branching and method in-
vocations.

* Value passing: as performed analysis involves
data, generated LTSs are parametrized, i.e, tran-
sitions are labelled by actions containing data
values.

* Dependencies: in addition to program instruc-
tions, we added transitions that bring (implicit
and explicit) data dependencies between two
statements with the objective of tracking data
flows. Indeed, transitions on LTS show the de-
pendencies between the variables in the code.
We label this kind of transition by depend varl
var2 where varl and var2 are two dependent
variables.

7 Verification

With the objective of achieving our main goal con-
sisting in helping a programmer verify that his pro-
gram satisfies given security guidelines, we translate
the augmented PDG into a formal description, which
is precise in meaning and amenable to formal analy-
sis. As usual, in the setting of distributed and concur-
rent applications, we provide behavioral semantics of
analyzed programs in terms of a set of interacting fi-
nite state machines, called LTS [20]. An LTS is a struc-
ture consisting of states with transitions, labeled with
actions between them. The states model the system
states; the labeled transitions model the actions that
a system can perform. Considered LTS are specific;
their actions have a rich structure, for they take care of
value passing actions and of assignment of state vari-
ables. They encode in a natural way the standard in-
structions of PDGs (as shown in Figure[5). Besides the
classical behavior of a PDG, we encode in our LTS the

www.astesj.com

result of tracking of explicit and implicit dependen-
cies between program instructions. These dependen-
cies are encoded by transitions labeled with the action
depend input_data output_data (see Figure[6), allowing
one to prove information flow properties.

el file_name2

depend file_ng#
save_to_file(encrypted_cc.file_name2)

save_to_file(k.file_namel)

depend enclypted_cc p
k = new SecretKj{

Payment()

Figure 6: Labelled Transition System for the sample
code given in Figure

Once the behavioral models are generated, we use
model checking technique to automatically verify cor-
rectness of guidelines against the model.

For expressing the properties, we adopt MCL logic
[21]. MCL (Model Checking Language) is an exten-
sion of of the alternation-free regular p-calculus with
facilities for manipulating data in a manner consis-
tent with their usage in the system definition. The

45

depend encfypted_cc k

http://www.astesj.com

Z. Zhioua et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 38-48 (2018)

MCL formula are logical formula built over regular
expressions using boolean operators, modalities oper-
ators (necessity operator denoted by [] and the pos-
sibility operator denoted by ()) and maximal fixed
point operator (denoted by y). For instance, the guide-
line ”Store unencrypted keys away from the encrypted
data” will be encoded directly by the following for-
mula MCL:

[truex.{create_key ?key:String}.truex.
({save 'key ?loc1:String}.truex.
{encrypt ?data:String !key}.truex.
{save !data ?loc2:String}.truex.
{depend 'loc1 !'loc2}

{encrypt ?data:String 'key}.truex.
{save lkey ?loc1:String}.truex*.
{save !data ?loc2:String}.truex
.{depend !loc1 !loc2})] false

This formula presents five actions: the ac-
tion {create_key ?key:String} denoting encryption key
key (of type String) is created, the actions {save
Ikey ?locl:String}, {save !data ?loc2:String}, {encrypt
?data:String !key} denoting respectively the storage of
the corresponding key in location locl, the storage of
the corresponding data in location loc2, the encryption
of data using key, and the particular action true denot-
ing any arbitrary action. Note that actions involving
data variables are enclosed in braces ({ }). Another par-
ticular action that we make use of in this formula is
{depend !loc1 !loc2}, denoting the implicit dependency
between the file locations locI and loc2; we captured
this implicit dependency through advanced informa-
tion flow analysis on the code.

This formula means that for all execution traces,
undesirable behavior never occurs (false). The unex-
pected behavior is expressed by this sequence of ac-
tions: if encryption key k is saved in loc1, and k is used
to encrypt data that is afterwords stored in loc2, then
if loc1 and loc2 are dependent, the guideline is vio-
lated. The second undesirable behavior, expressed in
the second sequence of the formula, means that if en-
cryption of data using k occurs before the storage of
kin loc1, and if loc1 and loc2 are dependent, then the
guideline is violated.

We made use of the checker EVALUATOR of the
CADP toolbox [22] to verify the property. From a
behavioral point of view, the verification result is
true, indicating that the guideline is verified. How-
ever, from a security point of view the answer should
be false, as the variable xx containing the password
in plain text, was leaked to the logging operation
through and the implicit flow between this variable
and the logging operation. To guarantee the reliabil-
ity of the analysis, one needs to check secret/sensitive
variables and depending variables as in the presented
formula.

No surprise the answer is false. In addition to a
false, the model checker produces a trace illustrating
the violation from the initial state, as in Figure

www.astesj.com

8 Related Work

Prior work in the area of information-flow security
[23] has been developed during the last decades. A
line of work [24] [25] adopts the Extended Static
Checking, a specific technique for finding source code
errors at compile-time. Eau Claire [21] framework op-
erates as follows; it translates C program into Guard
Commands (Guarded Command Language), that are
afterwards translated into verification conditions for
each function of the program. The generated verifi-
cation conditions serve as input to automatic theorem
prover. Adopting the prototype Eau Claire is very
much-time consuming, requiring annotations entered
by the developer, hence it is hard to integrate in the
development phase.

De Francesco et al. [26] combine abstract interpre-
tation and model checking to check secure informa-
tion flow in concurrent systems. The authors make
use of the abstract interpretation to build a finite
representation of the program behavior: a labelled
transition system . The security properties are spec-
ified in temporal logics, and are model checked over
the built LTS. Their approach consists in verifying the
non-interference property, meaning that the initial
values of high level (secret) variables do not influence
the final values of low level (public) variables. This
approach checks for the non-interference only on two
program states, which might miss possible informa-
tion leakage within the process itself. In addition, the
adopted formalism does not support value passing,
and does not reason about data propagation.

The Verification Support Environment [27] is a
tool for the formal specification and verification of
complex systems. The approach adopted by the au-
thors is similar to model-driven engineering, in the
sense that the formal specification results in code gen-
eration from the model.

SecureDIS [28] makes use of model checking to-
gether with theorem-proving to verify and generate
the proofs. The authors adopt the Event-B method,
an extension of the B-Method, to specify the system
and the security policies. The authors do not make it
clear how the policies parameters are mapped to the
system assets, and they do not extend the policy ver-
ification and enforcement on the program level. The
work targets one specific system type (Data Integra-
tion System), and is more focused on access control
enforcement policies, specifying the subject, the per-
missions and the object of the policy. However, access
control mechanisms are not sufficient for the confi-
dentiality property, as they can’t provide assurance
about where and how the data will propagate, where
it will be stored, or where it will be sent or processed.
The authors target system designers rather than de-
velopers or testers, and consider a specific category of
policies focused on data leakage only.

46

http://www.astesj.com

Z. Zhioua et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 38-48 (2018)

>

@ create_key !k‘msave Ik !Ioc1‘m encrypt !data 'k ‘m save !data !loc2 ‘O depend !loc1 !loc2 ‘@

N\

Figure 7: Path violating the guideline

GraphMatch [29] is a code analysis tool/prototype
for security policy violation detection. GraphMatch
considers examples of security properties covering
both positive and negative ones, that meet good and
bad programming practices. GraphMatch is more fo-
cused on control-flow security properties and mainly
on the order and sequence of instructions, based on
the mapping with security patterns. However, it
doesn’t seem to consider implicit information flows
that can be the source of back-doors and secret vari-
ables leakage.

PIDGIN [30] introduces an approach similar to
our work. The authors propose the use of PDGs to
help developers verify security guidelines throughout
the exploration of information flows in their devel-
oped software and also the specification and verifica-
tion of adherence to those policies. Privacy policies
are encoded in LEGALEASE language that allows to
specify constraints on how user data can be handled,
through the clauses ACCEPT and DENY [?]. The spec-
ification and verification of security properties rely on
a custom PDG query language that serves to express
the policies and to explore the PDG and verify satisfi-
ability of the policies. The parameters of the queries
are labels of PDG, which supposes that the developer
is fully aware of the complex structure of PDGs, iden-
tify the sensitive information and the possible sinks
they might leak to. For example, the authors propose
a policy specifying that the guessing game program
should not choose a random value that is deliberately
different from the user’s guess provided as input.

9 Discussion

We tackled in this paper the problem of verifying
the adherence of the developed software to security
guidelines that are presented in formal language. We
raised the main issue regarding the interpretation, im-
plementation and verification of the guidelines that
are written in natural language, which might be sub-
ject to misinterpretation by developers. We worked
towards stripping away ambiguities in [19] capturing
implicit information flows that can be source of in-
formation leakage. We provided a centralized repos-
itory (Security Knowledge Base) gathering the secu-
rity guidelines and patterns that we have discussed
in detail in [19]. Apart from the patterns, we have
centralized the labels that are used to build the for-
mulas, mapped to the traditional information anno-
tations (SOURCE, SINK and DECLASS) together with
their security level (HIGH / LOW).

4https://github.com/zeineb/Java-classes-parser

www.astesj.com

Security Knowledge Base Security Knowledge Base
is a centralized repository gathering the labels of the
formulas mapped to APIs, instructions, libraries or
programs. This helps the automatic detection of la-
bels on the system model. We built Security Knowl-
edge Base using a Java classes parserﬁthat operates as
follows: for the different Java classes used in the pro-
gram to analyze, we launch the parsing of this given
class (html code, javadoc), and we extract all the rel-
evant details, such as the description, the attributes,
the constructors, the methods signatures and their pa-
rameters. Then, we made the effort of performing a
semi-automatic semantic analysis to detect key ele-
ments, such as the keyword secure, key, print, input,
etc. This operation is of a paramount importance, as
it allows us to map the key words used to build the
formulas, to the possible Java language instructions
(methods invocations, constructors invocations, spe-
cific data types declarations, etc). For example, the
Java API KeyGenerator.generateKey() is mapped to the
label isKey. This label is also mapped to the tradi-
tional information flow annotation high level source.

As part of the Security Knowledge Base, we have
also considered the vulnerabilities the program could
eventually be exposed to if the guideline is violated.
The Security Knowledge Base is rich yet extensible
repository, that can be extended if new security con-
cepts are introduced. For instance, the same guideline
might be expressed through different MCL formulas
and using different terms that are semantically equiv-
alent. Let us take the example of the guideline ”Store
unencrypted keys away from the encrypted data” that
we have previously formulated using those keywords:
create_key, save and encrypt. Among the keywords con-
tained in the dictionary that we provide to the secu-
rity expert, the create_key is semantically equivalent to
isKey, the word save is equivalent to store, and so on
and so forth. Hence, the used keywords can be re-
placed with their equivalent as long as they do not
alter the semantics of the guideline.

10 Conclusion

In this paper, we presented on a high level the ap-
proach that we propose with the objective of fill-
ing the gap for the verification of the security guide-
lines. We pinpoint different issues with the secu-
rity guidelines that are present in different sources,
but no verification means is provided to the develop-
ers to make sure that their being developed software
adheres to those guidelines. Security guidelines are
meant mainly for developers, but the way they are

47

http://www.astesj.com

Z. Zhioua et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 38-48 (2018)

presented presents ambiguities, and this might lead to
misinterpretation. Formalizing the guidelines would
help strip away ambiguities, and prepare the ground
for the formal verification. We stressed on the need for
performing model checking as verification approach.
This allows to have an automatic verification, hence to
reduce the intervention of a human operator, whether
the developer or the security expert leads this verifi-
cation.

References

1.

o *® N oG

10.

11.

12.

13.

14.

Zeineb Zhioua and Stuart Short and Yves Roudier, “Towards
the Verification and Validation of Software Security Proper-
ties Using Static Code Analysis”, in International Journal of
Computer Science: Theory and Application,

Jon Heffley, Pascal Meunier, “Can Source Code Auditing
Software Identify Common Vulnerabilities and Be Used to
Evaluate Software Security?”, in Proceedings of the 37th
Hawaii International Conference on System Sciences-2004,
https://doi.org/10.1109/HICSS.2004.1265654

Zeineb Zhioua and Stuart Short and Yves Roudier, ”Static
Code Analysis for Software Security Verification: Problems
and Approaches”, in 2014 IEEE 38th Annual International
Computers, Software and Applications Conference Work-
shops,

Zeineb Zhioua and Yves Roudier and Stuart Short and Rabea
Ameur-Boulifa, “Security Guidelines: Requirements Engi-
neering for Verifying Code Quality”, in ESPRE 2016, 3rd In-
ternational Workshop on Evolving Security and Privacy Re-
quirements Engineering

OWASP, Cryptographic Storage Cheat Sheet

Oracle, Secure Coding Guidelines for Java SE

CERT, SEI CERT Oracle Coding Standard for Java

NSA, Juliet Test Suite

National Institute of Standards and Technologies and Elaine
Barker, “"Recommendation for Key Management”, 2016,

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-

57ptlr4.pdf

Durumeric, Zakir and Kasten, James and Adrian, David and
Halderman, J Alex and Bailey, Michael and Li, Frank and
Weaver, Nicolas and Amann, Johanna and Beekman, Jethro
and Payer, Mathias and others, "The matter of heartbleed”,
in Proceedings of the 2014 Conference on Internet Measure-
ment Conference

Sabelfeld, Andrei and Sands, David, "Declassification: Di-
mensions and Principles”

Denning, Dorothy E. and Denning, Peter], ”Certi-
fication of Programs for Secure Information Flow”,
https://doi.org/10.1145/359636.359712

Hammer, Christian and Krinke, Jens and Snelting, Gregor,
”Information flow control for java based on path conditions
in dependence graphs” in IEEE International Symposium on
Secure Software Engineering

Jrgen Graf and Martin Hecker and Martin Mohr and Gregor
Snelting, “Checking Applications using Security APIs with
JOANA”, in 8th International Workshop on Analysis of Se-
curity APIs

www.astesj.com

27.

28.

29.

30.

Ferrante, Jeanne and Ottenstein, Karl J. and Warren, Joe D.,
"The Program Dependence Graph and Its Use in Optimiza-
tion”, in ACM Trans. Program. Lang. Syst., July 1987,
https://doi.org/10.1145/24039.24041

Jurgen Graf and Martin Hecker and Martin Mohr, “Using
JOANA for Information Flow Control in Java Programs - A
Practical Guide”, in Proceedings of the 6th Working Confer-
ence on Programming Languages (ATPS’13)

Leavens, Gary T and Baker, Albert L and Ruby, Clyde, ”JML:
a Java modeling language” in Formal Underpinnings of Java
Workshop (at OOPSLA98)

Potter, Ben and Till, David and Sinclair, Jane, "An Introduc-
tion to Formal Specification and Z”

Lano, Kevin, "The B language and method: a guide to prac-
tical formal development”

A. Arnold, "Finite transition systems. Semantics of commu-
nicating systems”

Sabelfeld, Andrei and Myers, Andrew C, “Language-based
information-flow security”, in IEEE Journal on selected ar-
eas in communications

Mateescu, Radu and Thivolle, Damien, A Model Checking
Language for Concurrent Value-Passing Systems” in ”Pro-
ceedings of the 15th International Symposium on Formal
Methods” , https://doi.org/10.1007/978-3-540-68237-0-12

Garavel, Hubert and Lang, Frederic and Mateescu, Radu
and Serwe, Wendelin "CADP 2010: A Toolbox for the
Construction and Analysis of Distributed Processes” in
”Tools and Algorithms for the Construction and Analysis
of Systems: 17th International Conference, TACAS 2011”,
https://doi.org10.1007/978-3-642-19835-9_33

Flanagan, Cormac and Leino, K. Rustan M. and Lillib-
ridge, Mark and Nelson, Greg and Saxe, James B. and Stata,
Raymie, "PLDI 2002: Extended Static Checking for Java”,
http://doi.acm.org/10.1145/2502508.2502520

Chess, Brian V “Improving computer security using ex-
tended static checking”

De Francesco, Nicolette and Santone, Antonella and Te-
sei, Luca ”Abstract Interpretation and Model Checking for
Checking Secure Information Flow in Concurrent Systems”

Serge Autexier and Dieter Hutter and Bruno Langenstein
and Heiko Mantel and Georg Rock and Axel Schairer
and Werner Stephan and Roland Vogt and Andreas
Wolpers, "VSE formal methods meet industrial needs”,
https://doi.org/10.1007/s100099900022

Akeel, Fatimah and Salehi Fathabadi, Asieh and Paci,
Federica and Gravell, Andrew and Wills, Gary, “"Formal
Modelling of Data Integration Systems Security Policies”,
https://doi.org/10.1007/s41019-016-0016-y

John Wilander and et al, “Pattern Matching Security Proper-
ties of Code using Dependence Graphs”

Andrew, Johnson and Lucas, Waye and Scott, Moore, “Ex-
ploring and Enforcing Security Guarantees via Program De-

pendence Graphs”, https://doi.org/10.1145/2737924.2737957

“Formal specification of security guidelines for program cer-
tification”

”Abstract Interpretation and Model Checking for Checking
Secure Information Flow in Concurrent Systems” in Pro-
ceedings of Fundamenta Informaticae, 2003

48

http://www.astesj.com

	Introduction
	Security Guidelines
	Approach
	Formal Specification of Security Guidelines
	Program Model Construction
	Verification

	Security Guidelines Analysis
	Information Flow Analysis
	Program Model Construction
	Program Dependence Graphs
	Augmented Program Dependence Graph
	Labelled Transition System

	Verification
	Related Work
	Discussion
	Conclusion

