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 The Internet of Things (IoT) is at a face paced growth in the advanced Industrial Revolution 
(IR) 4.0 in the modern digital world. Considering the current network security challenges 
and sophistication of attacks in the heavily computerized and interconnected systems, such 
as an IoT ecosystem, the need for an innovative, robust, intelligent and adaptive malware 
attacks and threats security solution is becoming predominant in the current cyberspace. An 
integrated and scalable IoT malware detection framework called iDRP framework with deep 
learning method was proposed as a solution to current IoT malware attacks that are largely 
obfuscated. The novel framework utilized systematic pre-processing and post-processing 
techniques and methods on the BoTNetIoT malware datasets that contains both benign and 
malicious IoT traffic data infected by modern day IoT attacks such as Mirai and Gafgyt etc. 
IoT malware variants in an IoT ecosystem. The raw IoT malware binaries were converted to 
image files (Gray-scaled) and computed statistically with synthesised sparsed and 
differential evolutionary hidden feature structures techniques, which were cyclically trained, 
tested, and cross-validated to establish empirical anomalies with precision in the detection, 
recognizing, and prediction of malware anomalies in a modern IoT ecosystem. Preliminary 
experiments were conducted with standardized image binary files such as the MNIST (2-D), 
and NORB (3-D) datasets as sound scientific exploratory experiments with profound results. 
The comparative results of the performance of our integrated techniques and methods on the 
BoTNetIoT IoT malware datasets achieved a 99.98% accuracy, 99.99% ROC/AUC, 99.95% 
precision, and 99.93 recall rate etc. utilizing the integrated iDRP framework mechanisms 
for effectively detecting IoT malware in an IoT ecosystem. 
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1. Introduction 

This paper is an extension of the work originally presented in 
IEEE 8th R10 Humanitarian Technology Conference (R10-HTC) 
2020 [1]. The Internet of Things (IoT) has in recent times emerged 
as ubiquitous technology to everyday lives especially with the 
advent of the Industrial Revolution (IR) 4.0 in the digital world. 
The IoT technologies comprises of smart devices and objects 
interconnected in a heavily computerized network environment 
that constitutes the backbone of modern innovative critical 
infrastructures that supports fast-paced technological driven world. 
The IoT technologies has been disruptive in many industries such 
as: (1) IoT in Healthcare, (2) IoT in Manufacturing, (3) IoT in 
Transportation and Mobility, (4) IoT in Buildings, (5) IoT in 
Cities, (6) IoT in Agriculture, (7) IoT in Energy, (8) IoT in Retail 
and Marketing, (9) IoT in Logistics and Supply Chain, and (10) 

IoT in Industries across various sectors of the economy. Similarly, 
IoT technologies has brought diverse approaches in solving 
mundane tasks in these sectors by leveraging and amalgamating 
innovative and intelligent automation systems. Additionally, the 
IoT technologies at the present time has been able to help connect 
multiple devices and objects in an expansive interconnected 
network area while collecting high treasure trove of data – big 
data. The big data collected in an IoT ecosystem has become 
paramount to making business decisions, analytics, and gaining 
valuable insights in multidimensional industries in the modern era. 
Furthermore, this big data that are continuously generated in an a 
heavily interconnected environment such as the IoT ecosystem has 
inadvertently set off more attractions and incentives to the cyber 
squatters and cyber criminals in a digital world – Cyber hacking. 
The security of IoT ecosystem is ever more crucial and concerning 
to safeguarding critical infrastructures in the smart environments 
against prolific attacks and state-of-the-art attacks – Cyber 
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intrusions. For example, in recent time there have been a number 
of cyberattacks that caused outages and losses such as the 
(https://www.msn.com/en-my/news/world/dc-police-suffer-
massive-info-leak-after-ransomware-attack/ar-BB1gHTQl) attack 
and (https://www.msn.com/en-my/news/world/european-hackers-
given-us-5-million-for-key-to-reopen-us-pipeline/ar-BB1gIq7K) 
outage coupled with the public health (https://www.msn.com/en-
my/news/world/ireland-tests-cyber-attack-data-fix/ar-AAKe3Qd) 
compromise disruptions on critical infrastructures that serves an 
entire community in the modern society. This is one of the most 
significant attacks in recent time with massive consequences. The 
cyberattacks on critical infrastructures evidently indicates how 
vulnerable and compromising the present-day heavily 
computerized network systems can be, and consequently 
disruptive and detrimental to everyday lives in a digital world. 
Moreover, this clearly indicates that most modern highly 
interconnected critical infrastructures serving every day processes 
in the most developed world can be highly susceptible and 
vulnerable to being hacked with a myriad of modern malware 
attacks such as Ransomware attacks and ‘Zero Day’ attacks. 
Theoretically, in the modern digital world, any device or object 
that can connect to a network system or grid can be hacked. 

 Considering the general consensus in the cybersecurity space 
that humans are usually the weakest link in the chain of command 
in the cybersecurity and network security effort, it is effectively 
safe to deduce that the current static, dynamic, and automated 
malware defense approaches against cyberattacks and cyber 
threats in an IoT ecosystem in a digital world is essentially a futile 
effort. Particularly in the bountiful cyberattacks and cyber threats 
warfare in the modern cyber space clearly indicates the fragility 
and exposure of current interconnected critical infrastructures and 
its related network systems. This has essentially led to the theory 
that detection is a better approach to combating cyberattacks and 
cyber threats in a smart ecosystem of massively interconnected 
computer network systems – malware detection [1]. Malwares are 
typically spread over an interconnected computer network system 
otherwise known as the internet, which is the core backbone of an 
IoT ecosystem. The lack of global unified principles and security 
of IoT protocols present major security and counter-intelligence 
conundrum on a daily basis in the IoT cyberworld. This 
inadvertently exposes various valuable resources and assets in an 
organization to the cybercriminals. The IoT ecosystem can be 
attacked, infected, and breached by different types of malicious 
software commonly known as malwares with categorized malware 
families such as: (a) Ransomwares, (b) Spywares, (c) Scareware, 
(d) Adware, (e) Viruses, (f) Worms, (g) Rootkits, (h) Botnets, (i) 
Trojan Horses that all threatens the integrity, privacy, and security 
of big data in a heavily computerized computer network system 
like an IoT ecosystem – tampering of valuable assets; big dataset. 
One of the major problems [1] with these malware families and 
their nefarious activities combined with innovatory technologies is 
that they have become even harder to detect with traditional and 
automated malware detection tools and techniques in a heavily 
computerized network system – polymorphic malwares. If and 
when potent malwares go undetected in a network system such as 
an IoT ecosystem, this can cause massive damages and disruptions 
to critical computer network infrastructures [1], loss of personal 
information, and potentially loss of livelihood and lives in a 

modern technological-reliant society – obfuscation and evasion of 
malware detection.  

We proposed a novel IoT Security framework known as the 
intelligent, detection, recognition, and prediction (iDRP) 
framework [1] to address these computer network security 
challenges and problems in the modern digital world. The 
proposed iDRP framework is an innovative, intelligent, robust and 
adaptive framework with ultramodern approach to solving 
malware anomalies in an IoT ecosystem. In the unique approach 
proposed, a synergy of the subsets of Artificial Intelligence (Ai); 
Machine Learning (ML) and Deep Learning (DL) will be 
synthesized with modularity and scalability implementation for a 
lifelong training and learning capabilities. Eventually, the goal of 
the research work is to effectively detect, recognize, and predict 
anomalies in an IoT ecosystem innovatively using a subset of 
Artificial Neural Network (ANN) with focus on Multilayer 
Perceptron (MLP); hierarchical DL techniques i.e., Deep Neural 
Network (DNN) to solving the wide range of polymorphic 
malware anomalies problems in an IoT ecosystem. 

2. Related Work 

The drawback of heavily depending on the storage of big data 
set in one or more interconnected storage medium is that 
adversaries now have the perceived knowledge and understanding 
of where to target in their quest in wreaking havoc on present-day 
interconnected network systems. In the event that proper anomaly 
analysis mechanism for countering the attacks on the treasure trove 
of big data is not put in place, then, it means that the assailants will 
in most cases get away with their attacks either undetected or 
worst-case scenario, reside on the host system while plunging the 
gigantic and diverse data in the system [1]. The lack of highly-
developed, efficient, robust security apparatus with well-
established intelligent processes that can accurately measure and 
predict future occurrences of such attacks could be disastrous to 
the specific individual, organization, or government alike. The 
general IoT Security challenges range from Authentication, 
Access Control, Privacy, Confidentiality, Integrity, Policy 
Enforcement, Trust, Secure Middleware, Mobile Security [2],[3] 
[4], and Network Security. The complexity of the interactivity 
between the gigantic number of smart devices and objects together 
with smart network systems give rise to a major security gap in the 
IoT ecosystem. This poses big security risks due to the incessant 
and sophisticated cyber-attacks in the modern internet age – IR 4.0. 
A common denominator amongst all the aforementioned IoT 
Security challenges is the Distributed Denial of Service (DDoS) 
attack. The DDoS attacks occur on major global establishments on 
a regular basis [5]-[7]. Several peculiar IoT Security constraints 
such as integrity, availability, authentication, authorization, and 
privacy have hampered the efforts to address the growing IoT 
Security challenges posed by malicious actors.      

The malicious attacks on large corporations such as Fortune 
500 enterprises have clearly shown that the security of internet-
connected devices and objects is paramount considering the fact 
that the particular DDoS Malware attack called the "Mirai Botnet" 
crippled even the network servers of these largest technology 
corporations. Some of these large corporations are situated in the 
United States and major European countries [8], 
(https://www.theguardian.com/technology/2016/oct/26/ddos-
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attack-dyn-mirai-botnet), and (https://www.wired.com/story/ 
reaper-iot-botnet-infected-million-networks/). This type of 
nefarious malware attacks contributes to the urgent needs for a 
viable solution to the lingering IoT Security challenges [6], [9], 
[10] with the ever-growing IoT inter-connected network 
environment. According to [8], [11], [12]. One of the security 
challenges of smart devices and objects today is the inability to 
detect when there is an intrusion in the IoT network system. This 
is largely due to the fact that most smart devices lack the capability 
to log and report when such malicious attack occurs in the IoT 
ecosystem. IoT Security needs to be improved and revolutionized 
to prevent, identify, and neutralize the malicious network traffic 
threats on the Billions of IoT connected servers. The exponential 
ramifications of the risks and costs that the malicious attacks on 
the IoT infrastructures pose [13] to businesses, governments, and 
individuals who rely on IoT services such as Healthcare, 
electricity, industrial production, social amenities, 
communications, and logistics is still unknown. Nevertheless, the 
researchers discovered that, the two major challenges that an IoT 
ecosystem currently face are; Low-end Embedded Devices [6], [8], 
[14] with insecure Operating System (OS), and Mirai-Styled 
Malware Attacks [10] otherwise known as Mirai Botnet, which is 
a modern and sophisticated variation of a Distributed Denial-of-
Service (DDoS) attack on the current precarious IoT environments 
and its smart devices and objects.  

2.1. IoT Attacks 

IoT applications are prone to attacks from different hostile 
actors. The multidiscipline industries that adopt IoT as a 
technology have their own variation of attacks on their IoT 
applications and infrastructures. The concept of sensors 
connecting to each other and transmitting big data in a two-way 
traffic in an IoT ecosystem typically creates vulnerabilities [13], 
[15]-[17] in the IoT network system. In the Smart City ecosystem 
in Ukraine that utilizes Smart energy grid system to serve the city, 
30 of such Smart energy were attacked [8], [16], and 
(https://www.thenational.ae/uae/smart-cities-open-door-to-cyber-
attacks-say-security-experts-1.672214), and 80,000 residents were 
without power supply for several hours due to the adversarial 
malicious attack on the Smart Grid system. In the United States, 
156 emergency sirens designed to alert residents of the city of 
Dallas [8], [18], and (https://www.nytimes.com/ 
2017/04/08/us/dallas-emergency-sirens-hacking.html) in the event 
of critical emergencies such as earthquakes, floods, and nuclear 
attacks were set off because of an attack [2] on their Smart City 
system. The impact of such false alarm set off in such a malicious 
manner can be consequential in the end. There is a high likelihood 
of the residents of the city to ignore a true alarm warning in the 
event of an actual emergency, which could potentially lead to loss 
of lives and livelihood [2]. Similarly, 2,200 residents were without 
water supply (https://www.wired.com/2011/11/hackers-destroy-
water-pump/) when hackers attacked and destroyed the Smart 
Water Pump Supply system in the municipality of Springfield, 
Illinois, United States. 

The malicious attacks on IoT applications are not limited to 
Smart Cities and critical infrastructures alone, but also Smart 
Automobile compute system where attackers targeted a popular 
Smart Car maker and hijacked its core automation compute system 
that powers their connected cars for their financial gains. The 

financial gains, also known as “Cryptojacking” [13], [18], [19] 
where hackers use illegally acquired computational resources to 
mine the cryptocurrency shows that hackers will launch attacks on 
IoT applications for monetary reasons. In Smart Healthcare system 
[13], attackers have successfully hacked [6], [8] a heart monitoring 
electronics health (e-health) infrastructure that intelligently 
monitors and analyses patient's heart rate and helps prevent cardiac 
arrest and heart attacks [20]. Furthermore, the security of a Smart 
Home system that helps parents monitor their infants was 
compromised when attackers [6], [8] were able to obtain the login 
credentials of the Smart Home system and about 700 Webcam 
feeds of babies were posted on the internet [13], [20] in a malicious 
attempt by the hackers. The security breaches ultimately led to 
privacy [20] on the victims of the IoT attacks. All these incessant 
IoT attacks [6], [13] indicate that IoT devices and objects are more 
vulnerable and susceptible [19], [21] to various hostile adversaries 
who are constantly looking for weaknesses [16], [18] in the IoT 
infrastructures and IoT software applications 

2.2. IoT Malwares 

Malicious software and worms are very devastating to the IoT 
applications' ecosystem. Malware such as worms pose greater 
threats to the security of IoT applications. Some of the known 
malware worms are Mirai Botnets [22], Ransomware [20], [23], 
Over The Air (OTA) Worm [21],[24], and Struxnex Worm. 
According to the case study and analysis conducted by [18], 
discovered that Mirai Botnet can be directed towards the disruption 
of the availability of the targeted IoT application and the IoT 
compute resources in the IoT environment. In addition, [8],[23] 
classified the Ransomware as primarily Crypto Ransomware, and 
Locker Ransomware, which encrypts and locks critical files, 
respectively in an IoT ecosystem have increased by a staggering 
670% and 350% between 2015 and 2017 respectively and continue 
to grow exponentially nowadays. The implications of such 
malicious software are severe and could disrupt and harm crucial 
IoT infrastructure and potentially cripple an entire IoT ecosystem 
as evident [13],[19] in the coordinated attacks by hackers on the 
key connected internal applications in the city of Atlanta, United 
States. 

The OTA Worm exploits vulnerabilities in the IoT smart 
devices and objects and spreads in the IoT environment by 
compromising the integrity, privacy, and security of the 
interconnected devices and objects therein. The OTA Worm 
embeds itself into the IoT ecosystem thereby causing a breakdown 
of the IoT ecosystem referred to as an “epileptic seizure” [6], [16], 
[24] of the specific IoT smart devices and objects at a close range 
of 350 meters to the building with the help of a drone or Unmanned 
Arial Vehicle (UAV) equipped with the malicious worm. 
Moreover, the mode of launching the OTA Worm attack is also 
carried out with mobility such as physically getting close or driving 
cars to a close proximity of the IoT subject. Even though the OTA 
Drone Worm [6], [16], [24] was successfully launched on a major 
Smart home appliances manufacturer's Smart bulb product line, it 
was, however, performed in a controlled environment and the 
concerned manufacturer of the defected IoT Smart Light Bulb was 
notified, and the appropriate fix was implemented, which now 
reduces the possible attack range to 1 meter [6], [16], [24]. 
However, the risk of exploitation by enemies is present. This 
shows that malicious adversaries are becoming more sophisticated 
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in their approach towards unleashing malicious worm attacks with 
technological advancement. Furthermore, the Struxnex Worm, 
which is a variant and obfuscation of malicious worm was directed 
at Smart Industry such as the Uranium plant [6] connected to an 
IoT infrastructure to intelligently monitor and analyse the 
increment and decrement of the acceleration of the centrifuge and 
enrich the Uranium plant as the need arise autonomously. The 
main goal of the Struxnex worm is to infect and break down the 
smart devices and objects in a Smart Industrial ecosystem [18] 
such as a Uranium plant. 

2.3. IoT Existing Security Challenges and Gaps 

The core existing gap in the IoT Security paradigm is IoT 
security, IoT privacy [3], [4], [17], [19]. However, this research 
has gone further with the IoT security and IoT integrity dimension. 
The importance of anomaly detection in an IoT ecosystem cannot 
be overemphasized in various IoT industries such as Smart 
Healthcare, Smart Education, Smart Agriculture, and Smart 
manufacturing, and Smart Buildings and Smart Cities [13], [25]-
[28]. In the IoT Security dimension, we explored and discovered 
that research has been done on the Classification and Visualization 
of IoT security [20], [21], [29] in which the researchers performed 
experiments to visualize and compare different classes of malware 
in a similarity matrix table based on the images and features of 
some malware samples such as Worms and Trojans Horses. Their 
research work can be improved further to increase the accuracy of 
the detected similarities of the various malware samples and 
increase the performance of the workload on big data. Moreover, 
the experiment was conducted using 'mechanical' compute 
method, which means that their method could possibly detect 
existing malware at a significant slow pace, coupled with the fact 
that, their classification and visualization method cannot 
intelligently predict future occurrences [13], [19], [20] of such IoT 
malware anomalies autonomously. 

3. Methodology 

We present the schematic illustration process of the work 
proposed iDRP framework, including the realization of the 
universal approximations of Multilayer Perceptron (MLP) with 
multiple hidden layers by exploiting the capabilities of H-ELM and 
other related techniques [30]-[33], which have the preeminent 
underexplored potentials for accelerated speed, rapid feature 
learning, and improved classification performance [30], [31], [34], 
[35]. 

 
Figure 1: Schematic Illustration of the Experimental Workflow Process of the 

iDRP Framework 

Figure 1 Shows the schematic illustration of the setup of the 
experimental workflow process of the iDRP framework. The big 

dataset will be fed into the system, when then gets transformed by 
various MLP techniques such as augmentation, normalization and 
classification techniques, and subsequently prepared for the 
algorithm. Feature extractions will be carried out by augmenting 
and fine-tuning the big dataset for the generalization and capability 
of the proposed iDRP framework. 

The experimental implementation is to demonstrate the proof-
of-concept of the proposed iDRP framework using the generalized 
MLP techniques for demonstrating how a non-traditional malware 
detection mechanism [32], [33] can be applied to systematically, 
dynamically, adaptively, and intelligently detect, recognize, and 
predict malware anomalies in the generated big data of an IoT 
ecosystem through converted image file, such as a log file, and 
binary dataset to create synthesized Machine Learning (ML) and 
Deep Learning (DL) models. Based upon the premise that 
attackers are getting more sophisticated with the advancement of 
technology every day, and considering that attackers have been 
developing malwares that can dynamically modify their signatures 
while in the network environment, which approximately makes it 
more difficult to detect. This fundamentally relegates the notion of 
applying the traditional and automated Signature-Based Analysis 
method to solving a potential attacks and threats in an IoT 
ecosystem. Furthermore, the Heuristic-Based Analysis method, 
which is otherwise known as Behavioural-Based Analysis 
technique applied by several Anti-Virus and Anti-Malware 
vendors on computer network systems has not been sufficient 
either. Hence, there are various gaps [19],[20],[36] in the field of 
study to develop a novel approach to solving the inherent and 
existential security threats in computer network systems, 
especially in the fast-growing IoT ecosystems that has now 
become ubiquitous to everyday life. The hypothesis is that 
nowadays, contaminated and malicious programs in an IoT 
ecosystem can easily masquerade themselves as benign software 
applications once in the network space. Therefore, a dynamic, 
robust, and intelligent Pattern-based model approach to discerning 
and distinguishing the genuine and malicious program in a system 
as counter-intelligence is paramount as the building block to 
proactively combating an unwanted and illegitimate program from 
executing and consequently causing some irreversible damages 
and potentially loss of lives in an IoT ecosystem with its critical 
infrastructures. 

To explore the binary classification and analysis techniques, 
we will be using the standardized Modified National Institute of 
Standards and Technology (MNIST) dataset 
(http://yann.lecun.com/exdb/mnist/), which has been 
demonstrated to have the capability to be embedded with malicious 
codes (virus-MNIST) (https://arxiv.org/abs/2103.00602) 
adaptively, NORB (https://cs.nyu.edu/~yann/research/norb/) to 
perform the experiment by encoding the dataset, which will serve 
as a standard benchmark for comparative training, testing, 
evaluation, and analysis of the experiment. 
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4. The Proposed iDRP Framework Architecture  

This section provides the analysis of the proposed Intelligent 
anomalies detection, recognition, and prediction (DRP) also 
known as iDRP-framework as shown in Figure 2. The 
conceptualization of the proposed iDRP-framework is based on the 
relationship between feature extraction, feature classification, 
precision in the identification of anomalies, and predictions of 
anomalies in the generated dataset of IoT ecosystem. Table 1 and 
2 displays the synthesis of the list of the development techniques 
comparatively in tandem with the corresponding frameworks’ 
techniques to be synthesized and applied for the development and 
validation of the proposed intelligent framework. The information 
gathered in the literatures of this research study has clearly shown 
that there still exist gaps in effectively tackling the myriad of 
anomaly detections, identifications, and recognition in complex 
data sets generated in an IoT ecosystem.  

The limitation in the forecasting of anomalies (malwares) in 
the IoT ecosystem forms the spine of this research study and 
consequently the creation of an Intelligent framework called 
iDRP-framework to address the issues of anomalies (malwares) 
identification in an IoT ecosystem. In particular, the ability to 
accurately Detect, Recognize, and Predict (DRP) anomalies 
(malwares) from logging big datasets generated in an IoT 
ecosystem cannot be overemphasized.  

Evidently, the extraction of miniscule features of the big 
datasets to assist in the ‘fine-grained classification’ of features of 
complex datasets has been demonstrated by other researchers 

[30],[36] to help in the precision of anomaly identification in an 
IoT ecosystem. 

 
Figure 3: Proposed iDRP framework for Anomaly (Malware) Identification in 

IoT ecosystem – Architecture Breakdown 

Figure 3 illustrates the overview of the proposed iDRP 
framework architecture with the “Data Augmentation” segment 
consisting of data propagation, data labelling, feature extraction, 
and feature representation etc. The proposed iDRP framework 
architecture is flexible, robust, and adaptive in its design to 
intelligently and effectively extract mapped minuscule information 
in the stacked layers of the proposed iDRP framework for 
detecting, recognizing, and predicting malware binaries in an IoT 
ecosystem. 

Figure 2: Proposed iDRP framework for Anomaly (Malware) Identification in IoT ecosystem – Overview [1] 
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Table 1: Synthesized Components of Development and Validation of the 
Proposed iDRP Framework I [1] 

No 
Comparative Features of Synthesised Frameworks I 

Features H-
ELM SAPIM Smart 

Weather 
Flight 

Monitoring eTRIKS Data 
Lifecycle DRIPROM 

1 Pre-processor ✓ ✕ ✓ ✓ ✓ ✓ ✓ 
2 Detection ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
3 Recognition ✓ ✕ ✕ ✕ ✕ ✓ ✓ 
4 Prediction ✕ ✓ ✕ ✕ ✕ ✕ ✕ 

5 Post-
processor ✕ ✕ ✕ ✕ ✕ ✕ ✕ 

6 Lifelong 
Learning ✕ ✕ ✕ ✕ ✕ ✕ ✕ 

7 Lifelong 
Training ✕ ✕ ✕ ✕ ✕ ✓ ✕ 

8 Cyclic Feed ✕ ✕ ✕ ✕ ✕ ✓ ✕ 

Key: H-ELM (Tang, Deng and Huang, 2016), SAPIM (Wang et al., 2018), Smart Weather 
(Onal et al., 2017), Flight Monitoring (Li, Ming and Li, 2017), eTRIKS (Oehmichen et 
al., 2017), Data Lifecycle (Arass, Tikito and Souissi, 2018), DRIPROM (Cuzzocrea and 
Damiani, 2018). 

 

Table 2: Synthesized Components of Development and Validation of the 
Proposed iDRP Framework II 

No 

Comparative Features of Synthesised Frameworks II 

Features 
IoT-

HarPSecA 
Framework 

3-Way IoT 
Framework 

IoT-Flock 
Framework 

FIFAC 
Framework 

BiDeL 
Framework 

Combat 
Intelligence 
Framework 

1 Pre-
processor ✓ ✕ ✕ ✕ ✓ ✓ 

2 Detection ✓ ✓ ✓ ✓ ✓ ✓ 
3 Recognition ✓ ✕ ✕ ✕ ✕ ✓ 
4 Prediction ✕ ✓ ✕ ✕   

5 Post-
processor ✕ ✕ ✕ ✕ ✕ ✕ 

6 Lifelong 
Learning ✕ ✕ ✕ ✕ ✓ ✕ 

7 Lifelong 
Training ✕ ✕ ✕ ✕ ✕ ✓ 

8 Cyclic Feed ✕ ✕ ✓ ✓ ✕ ✓ 

Key: IoT-HarPSecA Framework (Samaila et al., 2020), 3-Way IoT Security Framework 
(Zeeshan, Reed and Siddiqui, 2019), IoT-Flock Framework (Ghazanfar et al., 2020), 
FIFAC Framework (Awadelkarim Mohamed and Abdallah M. Hamad, 2020), BiDeL 
Framework (Otoo-Arthur and van Zyl, 2020), Combat Intelligence Information 
Monitoring Framework (Jin, Xing and Wang, 2020). 

 

Table 1 and Table 2 lists the synthesis of the development 
techniques comparatively in tandem with the corresponding 
frameworks’ techniques to be applied for the development and 
validation of the proposed iDRP framework. 

4.1. Overview of Proposed iDRP Framework 

Notably, Figure 1 shows the diagram of the proposed iDRP 
framework with extraction mechanism as a pre-processor and 
cyclical post-processor apparatus of logged complex dataset in an 
IoT ecosystem. These form the backbone of the novelty in the 
proposed iDRP framework. Significantly, from what has been 
learnt from the literatures of the existing knowledge domain that 
was conducted through the in-depth investigations, the 
aforementioned gaps in the anomalies (malwares) identification in 
an IoT ecosystem will be effectively tackled with the proposed 
technique for the novel iDRP framework.   

4.2. Components of Proposed iDRP Framework 

• Preprocessing – The pre-processing component, which is one 
of the major contributing steps in the framework to effectively 
address the aforementioned identified problems in the 
anomaly identification in IoT ecosystem. This component 1 
involves the incorporation of Pre-Processor of a complex 
dataset by using ML technique like the enhanced traditional 
Data Augmentation techniques – blend of Enhanced Data 
Augmentation techniques and Propagations. 

• Detection - The signatures extracted in component 1 will be 
fed forward to the component 2, the detection component for 
effective classification of signatures and labels i.e., ‘fine-

grained classification’ mechanism for feature learning to 
precisely detect Malware anomalies in an IoT ecosystem. 
Likewise, the Learning and Training of anomalies signatures 
experiments will be conducted extensively combined with 
Dictionary Classifiers and the Database of both the new and 
historical malwares in the detection component. 

• Recognition - A similar procedure will be performed in the 
component 3, the recognition component, with the primary 
aim of precisely recognizing each specific Malware in the 
logged complex data of IoT ecosystem.  

• Prediction - Correspondingly, in the component 4, Prediction 
component, the forecast of anomalies will be rationalized and 
realized by synthesizing the components 2, 3 and 4 for 
accurate predictions of the occurrence of anomalies in an IoT 
ecosystem. 

• Postprocessing - In component 5, Post-Processing, the 
assessed anomalies will be fed back into the entire system in 
a cyclic manner. This ‘feed-forward’ and ‘feed-backward’ 
propagation methods that were applied and implemented in 
the model of the framework will essentially ensure that the 
framework is well-adjusted, robust, intelligent, and adaptable 
adequately to address the growing threats and risks in the IoT 
security paradigm. 

4.3. Preliminary Experiment for Proposed iDRP Framework 

The preliminarily experiments were conducted using MNIST 
dataset, a standardized dataset, which is comprised of small 28x28 
pixels of randomized hand written number images with 
corresponding annotated numbers as labels. The MNIST dataset 
presents a better experimental starting point for developing the 
MLP for the recognition of patterns in the converted log file image 
with minimal pre-processing and formatting overhead cost for the 
ML and DL models. The standardized MNIST dataset used in this 
experiment contains 34,300 training set samples and 14,700 test 
images of 28x28 = 784 pixels for each image, which is a subset of 
original 60,000 training set samples of the standard benchmark 
MNIST dataset.  

4.4. Conceptual Implementation of Proposed Framework 

The Data Augmentation techniques and propagation 
techniques [30],[31],[37], which helped with the ‘fine-grained 
extraction and classification’ of signatures of complex datasets 
were applied to the model implementation of the proposed novel 
iDRP framework. The applied research approach for the 
development of the iDRP framework is implemented using Python 
Programming language (https://www.python.org/), which is an 
open-source language with rich and extensive libraries that is 
easily accessible to the general masses. Keras (https://keras.io/), a 
high-level library that is built upon a low-level library such as 
TensorFlow (https://www.tensorflow.org/) is used for 
implementing the required Neural Network (NN) with simplistic 
interface that is built on the Python platform as a native Python 
library. TensorFlow serves as the tensor manipulation library to 
Keras, as a bridge low-level Application Programming Interface 
(API) for the robustness of implementing minimalistic and concise 
NN models. Significantly, Keras has several extensible modules 
that are suitable and adaptable to advanced scientific research 
work, which has formed the basis for the informed decision to 
choose the combination in implementing the complex NN models 
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especially for the stacking of the various layers; hierarchical 
models for this experiment. 

4.5. Neural Network (NN) of Framework 

The NN has been able to provide access and manipulation to 
the fed benchmarked dataset dynamically while exploring the 
binary features of the converted logged image files with different 
categories in the pre-processing of the dataset, while the necessary 
adjustments were made accordingly. Importantly, different layered 
NN combinations have been explored while calling upon the 
Functional model, ‘tf.keras’ to provide the building blocks and 
backend support for the configurable NNs [29] for the training, 
testing, and prediction in the application. The novelty of the 
approach in the development of the proposed iDRP framework is 
to use dynamic Pattern-Based model approach to intelligently and 
accurately detect, recognize, and predict anomaly in an IoT 
ecosystem. 

4.6. H-ELM Derivative Formula 

A formular for the H-ELM was derived from [30],[31] as a 
result of the amalgamation of the Radial Bias Function (RBF) 
nodes with the defined Activation function [30] for mapping 
indiscriminate features of the converted logged datasets of an IoT 
ecosystem. The primary aim is to precisely approximate the 
continuous targets with mobility at the evolving RBF nodes 
adaptively [30],[31],[37]. This ensures the irregular initialization 
of the hidden nodes H in a given set of big data in an IoT 
ecosystem. This is expected to significantly reduce the training 
errors while increasing the precision in the accuracy of the output 
with better performance and speed.  
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⋮
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� =  �

ℎ1(𝑥𝑥1) … ℎ𝐿𝐿(𝑥𝑥1)
⋮ ⋮ ⋮

ℎ1(𝑥𝑥𝑁𝑁) ⋮ ℎ𝐿𝐿(𝑥𝑥𝑁𝑁)
�                        (1)                           

where 𝐻𝐻 is the randomized hidden layer output matrix, which 
denotes the hidden nodes and output weights of the Neural 
Network, while 𝑥𝑥1…𝑥𝑥𝑁𝑁 is the number of training dataset. 
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where 𝑇𝑇 represents the training dataset of the target matrix. 

In order to optimize the performance of the ELM feature 
mapping, the following formula is applied: 
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𝑇𝑇                                                     (3)                   

The resultant output of the ELM feature mapping will be 

𝑓𝑓(𝑥𝑥) = ℎ(𝑥𝑥)𝛽𝛽 = ℎ(𝑥𝑥) HT �1
𝜆𝜆

+ 𝐻𝐻𝐻𝐻𝑇𝑇�
−1
𝑇𝑇                       (4) 

Alternatively, the equation is condensed to 
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The derived output function of the ELM feature mapping is 

 𝑓𝑓(𝑥𝑥) = ℎ(𝑥𝑥)𝛽𝛽 = ℎ(𝑥𝑥) �1 
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In the hidden nodes H of the training dataset, hidden 
information can now be exploited and extracted from the hidden 
layers h to transform T the output weights β.  This will ensure 
minimal fine-tuning of the parameters or weights of the hidden 
layers with stable minimal overhead cost to achieve maximum 
output. This randomized approximation and differential evolution 
technique has been proven [30]-[32] to be effective, which 
ultimately secures the increment in both the feature learning and 
classification. 

5. The Need to Convert IoT Malware Binaries to Images 

The technological advancements in present-day cyberattacks 
has made the activities of advanced attackers more complex to 
detect as a result of emerging obfuscation techniques [27], [38], 
[39] and interactions [40] with stealth variations carried out on IoT 
ecosystems. 

In modern times, the emerging polymorphic malware attacks 
in the IoT ecosystems have been a major concern [1] due to 
complex obfuscation code structures that are mostly time based 
[41], [42]. These IoT malware signatures attacks that are 
predominantly multivariate [39], [40], [42]-[44] are updated 
sequentially on a minute-by-minute or hour-by-hour basis by the 
attackers, thereby inundating and silencing any potential alert 
system, which may cause massive vulnerabilities for exploitations 
in an IoT ecosystem. The current widespread detection and 
mitigation mechanisms for these emerging polymorphic IoT 
malware attacks that are largely obfuscated intricately can be 
problematic and resource intensive to both the traditional and 
automated malware detection solutions such as the signature based 
(e.g., large database), and automated based techniques (insufficient 
information) etc., adopted by major cybersecurity vendors, 
practitioners, and researchers in the cross-discipline cybersecurity 
industries. The domain experts and analysts may write different 
rules manually or automatedly to detect complex obfuscated 
malware scripts in an IoT ecosystem as a possible approach to 
solving the problem, the caveat to such an approach in determining 
the benignity or maliciousness of such malware binaries in an IoT 
ecosystem is that it would be near impossible to efficiently and 
accurately determine either a clean or infected malware script in 
the IoT ecosystem – subtle obfuscated IoT malware classification 
problem.  It certainly would be time and resource intensive to 
adequately write thousands and/or millions of rules for virtually all 
current and new malware obfuscation variants in the contemporary 
IoT ecosystem.   

Evidently, the aforementioned complex IoT malware detection 
approaches are no longer suitable for current growing subtle and 
complex obfuscated cybersecurity paradigm for five (5) major 
reasons: (1) the distinct fragments (sections) of converted IoT 
malware image file can be visualized [27], [38]; (2) the distinct 
textural patterns of the converted IoT malware image files can be 
classified (and reclassified), and analyzed using image processing 
[27], [45] classification techniques commonly applied in computer 
vision [30], [31]; (3) the advanced attackers typically modify or 
reuse codes to generate new variants  of complex obfuscated IoT 
malware scripts [38]-[40]; (4) the vector structures of converted 
IoT malwares image files of the same family are similar [27], 
which means vectorized representation (i.e., faster speed)  of the 
IoT malware image files will be sufficient to be fed directly as 
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input into the similar ML-DL algorithms [30], [31] built for image 
and pattern recognitions [27], [45]-[47]; (5) the captured IoT 
malware dataset once converted to image files will be immutable 
(nondestructive and tamper proof), so there is no workaround its 
state by the attackers. Therefore, an amalgamation and syntheses 
of the modern ML-DL techniques and methods designed utilizing 
converted immutable IoT malware binaries to image files is both a 
logical and pragmatic solution to the current rapidly growing 
complex IoT malware problems that would scale adaptively. 

5.1. The Benefits of Converting IoT Malware Binaries to Images 

One of the biggest advantages of converting IoT malware 
binaries to Gray-scale image files is the fact [27] that the IoT image 
maintains the structures and patterns with rich information – 
structural integrity. The immutability of the IoT image files 
guarantees that converted complex IoT malware scripts will 
always be reliable to work with (ensuring a total control of the 
collected IoT malware dataset in the environment without the risk 
of compromise externally) by leveraging the ever-growing 
advancement of modern technologies such as Artificial 
Intelligence. Moreover, the structural integrity of the stately 
converted IoT malware image files facilitate the high-level 
precision and accuracy of detection of minuscule byte codes of the 
clean or infected codes with corresponding Cross-Validation 
techniques of modern ML-DL algorithms – efficient detection, 
recognition, and prediction of anomalies in an IoT ecosystem. 
Another advantage of converting IoT malware binaries to image 
file is the speed (time) of processing and computing the thousands 
and millions of both the benign and malicious IoT malware image 
file vectors using ML-DL techniques – computational time. 

5.2. Visualization of IoT Malware Image for Exploitations 

The textural and structural anatomy of IoT malware image files 
reveals the intricacies and patterns of the minuscule information 
that are sufficient for synthesized spatial and differential 
exploitations and analysis [27], [30], [31] of the tiniest byte codes 
(exploiting hidden structural and textural information by utilizing 
advanced ML-DL techniques and methods i.e., ‘fine-grained’ 
layer-by-layer mapping and representations) of the features of 
converted complex IoT malware image files with high-level 
precision and accuracy in an IoT ecosystem – effectively 
distinguishing the benignity and maliciousness within a few bytes 
of codes as shown in Figures 4 and 5. 

 
Figure 4: Visual structure of IoT Malware image file 

The Figure 4 above shows the visual representation of the 
sections of a converted IoT malware image file with different 
segment textures (https://code.google.com/p/pefile/). The above 
section representations (.text = ‘fine grained’ section with unique 
validity of data on the Operating System (OS) level e.g., Windows, 
Linux, .rdata and .data =  the uninitialized and initialized scripts 
are the header and section table of the file that distinctively 
separates the unlaunched and launched codes respectively, .rsrc = 
the resource section that contains mostly padded zeros. These 
structures and patterns are important because the slightest of 
modifications (changes) in the variations of IoT malware binary 
codes can be easily detected stately – often within a few bytes. 

 
Figure 5: Visual structure of IoT Malware image file (Rich Information) 

The Figure 5 above shows the rich visual representation of the 
section of an IoT malware image file with extensive details for 
exploitations and analysis. The segmented textures and patterns are 
essential for the pattern recognition of both benign and malicious 
IoT malware binaries converted to image files in an IoT ecosystem. 
The various segments of the IoT malware binary file structure are 
easily isolated for the synthesis of spatial and evolutionary feature 
mapping (i.e., spatial and evolutionary data matrix), extractions, 
representations, classifications, and Cross-Validation of the hidden 
minuscule features (i.e., the IoT malware signatures in the header, 
sections 1, 2, and section+n ) of the converted IoT malware image 
files by utilizing ML-DL techniques and methods with high-level 
precision and speed of detection of complex obfuscated anomalies 
in an IoT ecosystem. 

5.3. Overview of Converting IoT Malware Binaries to Images 

The conversion of typical binary files is based on standardized 
OS binary file format structures, which is analogous to debugging 
and homologous to reverse engineering of malware binary 
programs structurally. This can be simply performed using various 
python libraries such as pefile (https://code.google.com/p/pefile/) 
for fundamental exploration, understanding, and analysis of the 
layout features of a binary program. However, for a more in-depth 
exploration, exploitation, and analysis of rich hidden features, a 
systematic approach has to be applied to gain valuable insight into 
the various layers and architectures of the IoT malware binary file 
to image file. These procedures for converting IoT malware 
binaries to image files consists of the following five (5) 
fundamental steps: (1) Sort Dataset (i.e., variants, variant name, 
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no. of occurrence) retrieved by attributes; (2), Import Libraries 
(e.g., os, numpy, scipy, and array) to access and extrapolate the IoT 
malware binaries; (3) Augment IoT Dataset (i.e., reshape, resize, 
and scale et al) the dataset; (4) Standardize the IoT dataset; (5) 
Save the converted IoT malware images in a repository.  
Thereafter, feature selections techniques for consistent feature 
vectors (i.e., color range, intensity, pattern structure) can be 
performed on the converted IoT malware image files and 
processed as input feature classifications – supervised learning. 

6. Experimental Implementation of iDRP Framework  

The approach for the experiment of the proposed novel iDRP 
framework [1] involves the cleaning, manipulation, and extraction 
of IoT malware binaries to be preprocessed, and visualized as IoT 
malware image file for the evolutionary exploitation of hidden 
minuscule segment features for both supervised and unsupervised 
structural features representations and classifications with high-
level precision to detect, recognize, and predict anomalies in a 
heavily computerized network system such an IoT ecosystem.  

This experimental implementation of the proposed novel iDRP 
Framework is a proof-of-concept for the research study. The 
experiments were conducted with several distinct structural 
different datasets (BoTNet-IoT [43], MNIST, virus-MNIST, and 
NORB datasets etc.), yet similar conceptual procedures and 
methods (e.g., Figure 6) in the multiclassification and analysis to 
extrapolate meaningful hidden information for sound scientific 
evaluations and validation quantitatively. The Figures 7, 8, 9, 10 
represent and demonstrate the correlations between the textual 
standardization methods of the IoT malware images, MNIST 
images, and NORB images datasets.  This is to enable the 
systematic implementation and evaluation of the performance of 
the proposed novel iDRP framework techniques and methods (e.g., 
Figures 11, 12, 13, 14) for optimal malware binaries’ classification 
and analysis in the present-day IoT ecosystem. The datasets used 

to perform the experiments were converted to 8-bit gray-scale 2-D 
array with a channel range between 0 to 255 for consistencies in 
the datasets. Essentially, this process generates a vectorized 8-bit 
binaries, which are then converted to the gray-scale 2-D image 
files for structural texture uniformity for extracting and detecting 
padded hidden information in a logged IoT malware file.  

 
Figure 7: MNIST (2-D) images to Gray-scale images (0 to 255) standard channel 

 
Figure 8: NORB (3-D) images to Gray-scale images (0 to 255) standard channel 

The 3-D NORB image files, which has uneven generic object 
representations such as animals, vehicles, and nature etc. provide 
similar abundant natural environment and characteristics for 
representing, visualizing, and detecting certain distinct patterns of 
structurally complex textures of IoT malware variants that 
conceals hidden features that modern polymorphic and new 
malware engines in an IoT environment exhibits. This hypothesis 
was helpful for the scientific empirical and statistical observations 

Figure 6: Comparison of similarities between the classification and analysis procedures for IoT malware images and MNIST and NORB datasets 
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for the classification and analysis for the detection of IoT malware 
anomalies with high level precision and performance in the 
experiment for uniquely solving contemporary IoT malware 
obfuscation problems by attackers [1].  

We performed the experiments on the premise and fact [48] 
that malware of the same family has similar characteristics and 
textures, while being distinct from other malware families in 
nature. Comparatively [48], for visual analysis of IoT malware 
binaries, the binary fragments of polymorphic and new malware 
variants are visually similar and consistently fragmented alike by 
the same token in terms of their image dissections and layouts as 
with their primitive nature irrespective of the malware variants or 
obfuscations and their specialized binary complex code structures.  

 
Figure 9: Captured IoT malware images with binaries I 

Therefore, we approached the problem by proposing an iDRP 
framework techniques and methods that leverages both the H-
ELM [30] and E-HELN [31] techniques and methods for universal 
approximation using differential evolution for optimized 
generation of complex image features to precisely extrapolate 
hidden features of IoT malware binary images files for expedient 
training and learning in the DNN. The advantage of these 
synthesized techniques and methods is that they both provide an 
optimized classification and characteristics learning and training 
coupled with minuscule and hidden feature representation modules 
for accurately detecting, recognizing, and predicting IoT malware 
binaries speedily. 

 
Figure 10: Captured IoT malware images with binaries II 

The generative model techniques and methods that were 
applied cyclically in the iDRP framework to provide better 
discriminative capabilities for analyzing and evaluating the 
captured IoT malware binary information and statistics with high 
level precision and performance. 

Overall, we explored and computed (gray-scaled etc.,) the 
binaries of the engineered BoTNetIoT malware dataset [43] 
exploits (Botnet attacks e.g., Mirai, Gafygt and their variants, and 
benign traffic etc. on IoT objects, devices, and environs), split them 
into 70% (training) and 30% (testing) ratio processed 
systematically and Cross-validated with a combination of both 
authentic benign and infected IoT malware traffic dataset with 
different strains [43], similar techniques and methods as with the 
statistical exploratory MNIST and NORB datasets experiments 
performed. The converted IoT malware gray-scaled images were 
normalized (min-max normalization, anti-aliasing techniques etc.), 
flattened, reshaped into 1-D and 2-D pixel and arrays for 
consistency and standardization. These were performed with the 
structured techniques and methods by applying the evolutionary 
adversarial training and testing techniques and methods for 
classification and Cross-validation to accurately estimate the 
comparative capabilities and skills (e.g., accuracy, precision, 
recall, and F1-score etc.) of the implemented techniques and 
methods in the proposed and implemented experiments. These 
were conducted for effective classification estimation and 
validation – pre-processing of data. These matched aggregated 
distribution of the train-test split techniques and methods together 
with the resampling methods, which are both semi-supervised and 
unsupervised classification clustered enabled the optimized 
resampling of the utilized datasets quantitatively. Specifically, 
with the categorical distributions mapped against data distributions 
of the IoT malware binaries and structures, empirical and statistical 
analysis of the results were scientifically established.  

Evidently, captured IoT malware binary classification and 
analysis using the proposed integrated novel iDRP framework 
techniques and methods contributed provides treasure trove of 
hidden information exploited with both 2-D and 3-D images 
synthesized based on their distinct structural compositions and 
textures unpacked in comparison to static, dynamic, and automated 
analysis techniques and methods that are prone to present-day 
complex and unpacked code obfuscation and time consuming. 

6.1. Pre-Processing Component Technique Overview 

The data Pre-processing component in the proposed iDRP 
framework involved the augmentation, transformation, and 
classification of the raw dataset that are fed and parsed into the 
network. Feature extraction and mapping of the sparse data feed 
for layer representation of random features were performed to fully 
exploit the minuscule information [1] in the converted logged 
image files for universal approximation (i.e., MD5 Hashes and 
malware binaries) of the mapped datasets in the IoT ecosystem.  

Figure 11 shows the pre-processing component of the proposed 
iDRP framework and its integration into the overall architecture. 
The pre-processor ‘feed-forward’ the systematically processed 
dataset (i.e., ‘fine-grained’ gray-scaled converted logged file) 
directly into the detection component of the proposed iDRP 
framework to ensure the universal approximation and 
classification of the precision and accuracy of detection of 
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anomaly is optimized for high-performance with detailed 
description for exploits – preparation of dataset for 
standardization. 

 
Figure 11: Pre-processing Component of iDRP Framework Overview 

The systematic data manipulation techniques such as the 
systematic extrapolation of feature representations to form the 
vectorized structures applied in the experiment substantially 
helped in the distinction of the effective assignment of randomized 
and differentiated hidden layer weightages synthesized. The 
feature immutability techniques to stately capture complex code 
implemented in effect ensures that the feature extractions and data 
augmentations performed are compact and dynamic to materially 
eliminate unnecessary redundancies in the generated data. These 
scalable techniques intrinsically set the approximation numbers of 
the hidden nodes in the converted logged file of the original input 
dataset to achieve compact features for exploitations. Uniquely, 
these innovative and intelligent techniques implemented radically 
extrapolates rich hidden features for universal approximation 
competence on both the raw datasets and converted logged file to 
ensure that the delay in the binary classification analysis is 
effectively mitigated for optimal outputs in the proposed iDRP 
framework. Expediently, the compact features extracted and 
delivered to the next ‘following’ components iteratively, which is 
the detection components in the proposed iDRP framework. 

6.2. Detection Component Technique Overview 

The detection component involves the identification, 
determination, and classification of converted logged file dataset, 
whether such dataset is benign or infected. Considering this is a 
binary classification problem, several techniques [1] were 
deployed to achieve the expected results by conducting several 
systematic experimentations to discover the best suitable 
techniques. In particular, the systematic cross-validation splits, and 
weightage allocation techniques were beneficial for the 
classification precision and accuracy in the experiment of the 
detection component of the proposed iDRP framework.  

Figure 12 shows the detection component of the proposed 
iDRP framework that is strategically the responsible component 
for determining whether the pre-processed data feed in the network 
is benign or infected with optimized classification precision and 
accuracy with maintained high-performance in an IoT ecosystem. 
Mainly, the mapped converted logged files are systematically 
rescaled and gray-scaled before they are dynamically fed ‘feed 
forward’ into the DNN of the IoT ecosystem. 

 
Figure 12: Detection Component of iDRP Framework Overview 

The primary focus of the detection component is to 
intelligently identify the presence of polymorphic malware 
anomalies [1] with high level of accuracy in the converted logged 
dataset, which creates the unique separation of concern in its 
architecture – design principle. The detection component is 
robustly and innovatively designed in its structure to encapsulate 
the interaction between the dynamic and static states of the dataset 
in the converted logged file of an IoT ecosystem. By and large, the 
detection components feed and receives immutable mapped 
hidden information dynamically to exploit with other modular 
components in the proposed iDRP framework. The ‘Loose 
Coupling’ and yet cohesion of the detection component [1] 
essentially promotes the dynamic and robust interaction of the 
various components directly or indirectly connected to it in the 
proposed iDRP framework while explicitly performing the 
primary function of detecting anomalies (randomly and differential 
mapping hidden features) in the network system. 

6.3. Recognition Component Technique Overview 

The recognition component is inherently responsible for 
identifying what class of anomaly the detected malware family is 
associated with or lack thereof [1]. The recognition component 
explicitly curates the type of anomalies present if found in the 
network by precisely defining the exact variants or obfuscation of 
the IoT malware anomalies for launching attacks such as zero-day 
attacks. This unique technique involves the heuristic classification 
of variants of IoT malware anomalies in the network system [1], 
which are universally approximated in the random and differential 
feature mapped converted logged file that are rescaled and 
represented as gray-scale images in an IoT ecosystem. 

 
Figure 13: Recognition Component of iDRP Framework Overview 
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Figure 13 shows the recognition component of the proposed 
iDRP framework. The recognition component in the architecture 
of the proposed iDRP framework facilitates the structural 
distinction of the universally approximated mapped converted 
logged file in the DNN of the IoT ecosystem. Thereby determining 
and identifying the particular class of malware anomalies that each 
existential or inherent malware family belongs to while 
intelligently discovering new variants or obfuscation of such IoT 
malware anomalies in the process from the repository that could 
potentially result in a zero-day attack in an IoT ecosystem. This 
unique technique provides the capability for the proposed iDRP 
framework to be able to adaptively and robustly perform the 
required intelligent classification precision and accuracy [1] of 
recognizing specific types of anomalies in IoT ecosystem with 
high performance. The systematic integration of data from both the 
Pre-Processor and detection components ensures that there is both 
shared characteristics and cohesion amongst the interconnected 
components of the proposed iDRP framework. Constructively, the 
arbitrary boundaries established between the multi-directional 
connections that are ‘Loosely coupled’ essentially eliminates 
constraints in the shared information such as hidden layer features 
to and from ‘fro’ the recognition components to the preceding and 
forwarding components virtually in the proposed iDRP framework 
– architecture intelligence. 

6.4. Prediction Component Technique Overview 

The prediction component is practically responsible for 
predominantly predicting the occurrence of captured malware 
anomalies in the IoT ecosystem. The systematic elimination of 
unnecessary ‘checkpointing’, ‘overlearning’, and ‘overfitting’ etc. 
techniques applied in the implementation of the prediction 
component effectively helped in the classification precision and 
accuracy of the predicted malware binaries innovatively in the 
experimental implementation of the proposed iDRP framework.  

 
Figure 14: Prediction Component of iDRP Framework Overview 

Figure 14 shows the prediction component of the proposed 
iDRP framework. One of the main features of the prediction 
components is that it can be configured to predict specialized 
family of malware binaries that are captured in the IoT ecosystem. 
Likewise, the systematic assignment of numerical score in the 
prediction component implementation ensures that the ‘learning 
curve’ of the prediction classification precision and accuracy is 
properly monitored and dynamically optimized for high-
performance. Crucially, the loss or error in the prediction 
component is systematically calibrated to ensure that the network 

is neither ‘under-fitting’ nor ‘under-learning’ to achieve maximum 
probabilistic outcomes in detection, recognition and prediction of 
malware binaries in an IoT ecosystem. 

The prediction component employs the network weights to 
accurately predict the occurrence of malware binaries in the 
network system. The cyclical and infinite interconnection of the 
prediction component [1] to other components with accessibility 
to the repositories in the network ensures that the continuous 
learning of rapidly evolving malware families is adaptively and 
intelligently tackled in the growing threats and attacks on the 
technologically driven IoT ecosystem. In the prediction 
component, rigorous systematic estimate of the capability of the 
DNN model were performed exclusively. The prediction 
component of the proposed iDRP framework is highly effective 
predominantly due to the capability to systematically stabilize the 
universal approximation of the mapped hidden features that are 
fully exploited in the network – intelligent classification prediction 
technique. 

6.5. Post-Processing Component Technique Overview 

The Post-Processing component ensures the cyclical and 
infinite enhancement of the information distributed in the entire 
proposed iDRP framework [1]. The optimization techniques 
implemented guarantees that the loss i.e., ‘validation loss’ in the 
network model will always be minimized while fostering the 
continuous and lifelong learning in the network. The substantially 
reintroduction of the refined information dynamically and 
innovatively into the network forms the unsupervised building 
block technique in the overall implementation of the proposed 
iDRP framework. Broadly, the ‘autoencoder’ combined with the 
‘weightage reloading’ concepts [1] are integral aspects of the 
unique features of the Post-Processing component in effectively 
maximizing the classification precision and accuracy support for 
the other interconnected components in the proposed iDRP 
framework. 

 
Figure 15: Post-Processing Component of iDRP Framework Overview 

Figure 15 shows the Post-Processing component of the 
proposed iDRP framework. The systematic implementation 
techniques implemented in the Post-Processing component 
provide the comparable performance for the convergence of both 
the training and testing models for stochastic consistencies in the 
network while storing the models for exploration capabilities in the 
IoT ecosystem [1]. The Post-Processing component adequately 
helped stabilize the performance behaviour in the operations of the 
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overall proposed iDRP framework via the checkpoint structuring, 
weightage aggregation, weightage updating, and vector scaling 
and retention techniques etc. With minimal ‘hyper-
parameterization’, ‘regularization’, and ‘resampling’ techniques 
etc., the robust and innovative Separation of Concerns technique 
effectively helped to reduce redundancies in the implementation of 
the network for optimal competence and high-performance in 
detecting, recognizing, and predicting malware binaries and 
anomalies in a massively computerized network system such as an 
IoT ecosystem. 

Specifically, the Post-Processing component is pivotal in the 
construction of the defined weights of the hidden features 
exploited for the lifelong learning of the overall proposed iDRP 
framework. With the Post-Processing component in the 
architecture of the proposed iDRP framework, minimal ‘fine-
tuning’ is required while the other interconnected components can 
fully explore compact features in the universally approximated 
hidden features in the network [1]. Essentially, these specialized 
innovative and dynamic techniques implemented in the 
experiment further help to minimize the training, testing and 
learning time and overhead cost for both the existing and new 
datasets in the network [1]. The historical information aggregation 
technique in the network of the proposed iDRP framework are 
used to systematically discover and generate visualization and 
analysis of the classification precision and accuracy together with 
its overall high competency and performance. 

6.6. Summary of Components Techniques 

The generalized Artificial Neural Network (ANN) applied in 
the experimental implementation of this proposed iDRP 
framework is systematic and innovative Multilayer Perceptron 
(MLP) with Deep Neural Network (DNN) with integrated modular 

components to expedite the cross-validation methods for universal 
approximation and classification towards the effective learning, 
training, and testing capabilities for optimal outcome. The 
amalgamations of the unique innovative and intelligent random 
and differential feature extraction, augmentation, transformation, 
scaling, universal approximation, compactness, mapping, auto 
encoding, weightage saving, and weightage reloading, vector 
scaling and retention, cross-validation, resampling etc., techniques 
were successfully designed and implemented in the interconnected 
components of proposed iDRP framework to achieve core optimal 
results. The specialized immutable randomized and differentiated 
projections techniques implemented in the experiment formed the 
core of the feature representations of the complex malware binaries 
for classification precision, accuracy and analysis in the 
implementation of the proposed iDRP framework – binary 
classification problem with complex structure system.  

The ‘checkpoints’ of the network structures were set up to save 
model weights architecture intelligently and automatically 
whenever there is any improvement attained in the model 
classification system. The best part of some of the amalgamated 
specialized techniques implemented is that if there is no 
improvement in the weight classification of the model, then, the 
last highest improved weights will be applied in the model. 
Thereby maximizing the capability to accurately detect, recognize, 
and predict captured and generated malware binaries anomalies in 
an IoT ecosystem. The singularity of each of the components in the 
proposed iDRP framework ensured an easy to manage and 
maintain network. This generalized Separation of Concern 
technique ensures that each component in the proposed iDRP 
framework remains consistent and true to its primary function in 
the architecture. 

Figure 16: Results of implemented experiment of iDRP Framework with the corresponding snippet of metrics for evaluation 
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The dynamic and innovative abstraction and segregation of the 
different components the implemented proposed iDRP framework 
makes it adaptable to the growing threats and attacks in the heavily 
computerized systems and smart technologies such as an IoT 
ecosystem. This fundamentally delineates specialized 
responsibilities amongst the various components in the network 
with flexible boundaries. Essentially, malware binaries data are 
analyzed and shared in the interconnected components while at its 
core separated in execution to perform specified operations in the 
proposed iDRP framework. The strategy deployed in the 
experimental implementation of the proposed iDRP framework 
has demonstrated the intelligent capabilities to determine the 
slightest of improvements in the network model weightage’s 
structure and only save the best weights and architecture model 
together for future usage. This simply means that the overall 
system has been designed to continually learn, adapt, improve and 
perform better with time in combating the ever-growing malware 
threats such as the prevalent polymorphic IoT malware threats and 
attacks in the IoT ecosystem.   

The overall procedures involve (a). pre-processing of dataset, 
(b). loading of dataset, (c). augmentation of dataset (d). creating of 
model architecture (e). compiling of model (f). fitting of model (g). 
evaluation of model (h). saving of model weights (i). loading of 
saved model weights (j). evaluation of saved model (k). post-
processing of outcome. These approaches were conducted in 
multiple hidden layers Neural Network ‘feed-forward’ 
propagation and cyclic method using Deep Learning (DL) models 
to precisely, efficiently and optimally and intelligently detect, 
recognize, and predict (iDRP) anomalies in an IoT ecosystem. 
Cumulatively, several ANN techniques were leveraged 
innovatively and intelligently to significantly improve the 
classification precision, accuracy, and performance in the 
implementation of the proposed iDRP framework.  Notably, the 
dynamic and innovative extensibility and maintainability of the 
proposed iDRP framework has made it highly adaptable and 
adoptable in effectively safeguarding and protecting critical 
infrastructures in multi-industries that depends on heavily 
computerized interconnected network systems and smart 
technologies such as an IoT ecosystem in the digital space. 

7. Results, Observations and Discussions 

A 100% accuracy rate, 100% ROC/AUC rate together with a 
precision rate of 99.94%, and recall rate of 99.90%, and merely a 
loss rate of 0.02% were achieved in the preliminary 
implementation of the iDRP framework experiment. Please see 
Figure 16 screenshot for the output of results and metrics. These 
results were attained based on the syntheses of the various 
techniques and procedures applied and discussed in the previous 
sections.  

In like manner, a 99.98% accuracy rate, 99.99% ROC/AUC 
ROC/AUC rate together with a precision rate of 99.95%, and recall 
rate of 99.93 %, and a mere loss rate of 0.03% were achieved in 
the actual implementation of the integrated iDRP framework 
experiment using real IoT malware dataset – BoTNetIoT dataset.  

The metrics used in evaluating the experimental 
implementation of the proposed iDRP framework are: Accuracy 
rate, Precision rate, Recall rate, Receiver Operator Characteristic 
(ROC) and Area Under the Curve (AUC) rate, Loss rate, True 

Positive (TP) rate, False Positive (FP) rate, True Negative (TN) 
rate, False Negative (FN), and F1-Score respectively. 

 
Figure 17: Graph of Accuracy and Loss Results of implemented experiment of 

proposed iDRP Framework 

Figure 17 shows the result of the evaluated models of the 
experimental implementation together with the corresponding 
rates and scores. The 100% accuracy value, 100% ROC/AUC 
value with a precision value of 99.90%, and crucially with a much 
lower False Positive (FP) rate. that were attained in the 
experimental implementation of the proposed iDRP framework 
shows that there is a correlation in the accuracy, ROC/AUC, and 
precision rate in the Deep Learning (DL) classifiers in tandem with 
the hypothesis of the research study. It further proves that the 
experimental implementation of the proposed iDRP framework in 
this research study is highly innovative, applicable, useful, relevant 
and efficient; accurate, precise, robust, dynamic, adaptable, and 
scalable in detecting, recognizing, and predicting anomalies in the 
form of polymorphic malwares in an IoT ecosystem. 

The visualization of the results of the models evaluated were 
represented in plotted Deep Neural Network graphs and charts to 
gain better insights and understanding of the complex binary 
classification matrix problems and solutions in the experimental 
implementation of the proposed iDRP framework. Figure 10 
displays the optimal efficiency and accuracy correspondingly with 
insignificant loss rates in relations to the performance of the 
evaluated model for detecting, recognizing, and predicting the 
anomalies in an IoT ecosystem. Minimal training was required. 

Logically, it is understandably that 50 epochs would likely fare 
better than a 5 epochs of model training and testing of datasets. At 
the same time, with a direct comparison of the regular 50 epochs 
with the 50 epochs’ ‘Checkpointing’ Deep Neural Network model 
technique of intelligently and systematically saving and reloading 
the best performance weightage in the repository of the overall 
system, a 100% accuracy rate and a 100% ROC/AUC rate together 
with a 99.94% precision rate and 99.90% recall rate of detection, 
recognition, and prediction of the anomalies in an IoT ecosystem 
was achieved in the experiment. 

7.1. Cross-Validation and Evaluation Performance of Predictor 
Model Results 

The results of the various output attained in the experiment on 
the proposed iDRP framework network has been reported in Table 
3. The output of the different techniques towards the innovative 
synthesis, augmentations permutations, adjustments, and tuning of 
parameters in the Neural Networks together with various 
optimization techniques in the experiment has been extensively 
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investigated and compared to show the selected outcome in the 
project. 

Table 3: Comparison of the Experimental Results 

 
Table 3 displays the comparison in the various parameter 

tuning and optimizations performed in the experiments together 
with their corresponding metrics and results. It is evident that the 
continuous tuning process has significant impact on the overall 
output, especially with the classification precision and accuracy of 
the predictors. Likewise, the optimization parameter ADAM plays 
a vital role in minimizing loss function while increasing the speed 
of the convergence of the Neurons in the system. The dynamic and 
cyclic hyperparameter tuning approach in the Neural Network 
construct of this experiment will ultimately facilitate an 
incremental and better outcome. 

7.2. Comparison of Generalized Artificial Neural Network (ANN) 
Results 

The selection of the appropriate NN model for the 
implementation of the proposed iDRP framework involved the 
systematic experimentations of various streamlined and focused 
ANNs such as Recurrent Neural Network (RNN), Convolutional 
Neural Network (CNN), Multilayer Perceptron (MLP), and Hybrid 
Network (synergy of RNN and CNN) to effectively determine the 
best possible NN model for the binary classification problem of 
this nature. 

Table 4: Comparison of Artificial Neural Network (ANN) - RNN, CNN, MLP, 
and Hybrid Models Results 

 
Table 4 shows the comparison between the various NNs in 

determining the chosen NN for the implementation of the proposed 
iDRP framework. Evidently, MLP performed best for the binary 
classification of precision and accuracy in the experiment – binary 
classification problem. 

The MLP NN mainly performed better with model flexibility 
in terms of training, testing, and development. The optimal 
capability for an MLP NN to be abstracted in its architecture 
design and robustly extract fine-grained features with universal 
approximation made it a perfect candidate for the implementation 
NN model of the proposed iDRP framework. Chiefly, the MLP NN 
allows the Separation of Concerns in its architecture by creating 
boundaries (methods, and objects) for the several interconnected 
components in the proposed iDRP framework while providing the 

layers and tiers the independent capability for each component to 
maintain their core operations dynamically. 

7.3. Comparison of Classification Techniques on Standardized 
Datasets Results – Preliminary Experiment 

The amalgamations of innovative MLP techniques applied in 
the implementation of the proposed iDRP framework network 
demonstrated to be advantageous in the specialized classification 
precision and accuracy on accurately detecting, recognizing, and 
predicting malware binaries in the standardized dataset in an IoT 
ecosystem. 

Table 5 shows the comparison of the different classification 
results of experiments on standardized datasets. The synthesized 
innovative techniques in the proposed iDRP framework network 
technique that have been successfully implemented have proven to 
be more efficient and competent in tackling polymorphic IoT 
malware attacks and their variants or obfuscation that are typically 
responsible for zero-day attacks in a heavily computerized network 
system and smart technologies such as the IoT ecosystem. The 
learning capabilities and accuracy of a specific predictor problem 
of this nature was significantly amplified through the innovative 
classification precision and accuracy techniques that were 
proposed and implemented in the systematic experiments iDRP 
framework network.  

Table 5: Comparison of Classification Experimentations Techniques with 
Standardized Datasets and Results – Preliminary Experiment 

 
7.4. Comparison of Classification Techniques on Standardized 

Datasets (BoTNetIoT) Results  

The standardized IoT malware generic traffic metric and 
evaluation were used as parameters to compare the effectiveness 
of the learning and training techniques in correlations with the 
validation of the techniques applied to detecting benign and 
malicious network traffic in an IoT ecosystem. Table 6 shows the 
attained results.  

Table 6 indicates that the proposed novel iDRP framework 
techniques and methods perform better with other notable 
techniques for IoT malware detections. Significantly, the optimal 
results were achieved with the synthesis of both the discriminative 
features and differential evolution techniques for the universal 
approximation of the extrapolated hidden information together 
with connected structures in the integrated iDRP framework. 

 

 

Cross-Validation Classification Parameter Tuning Metrics of iDRP (MLP) Model 

using Keras Library with Tensorflow Backend 
Dataset 

(MNIST) 

NN 

Layers 

Epoch 

(Iterations) 

Optimizer Learning 

Rate 

TPR FPR Precision Recall MAE F-

Score 

Accuracy 

(%) 

Training 

Time (s) 

✓  5 5 ADAM 0.02 0.924 0.924 0.924 0.924 0.200 0.947 92.43 1.00 

✓  ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

✓  ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

✓  50 50 ADAM 0.02 0.996 0.996 0.996 0.996 0.159 0.979 99.60 10.00 

✓  50 50 ADAM 0.01 0.999 0.998 0.999 0.998 0.010 0.998 100.00 0.03 

Legend: MLP=Multilayer Perceptron, NN=Neural Network, Learning Rate=Dropout Rate, TPR=True Positive Rate, FPR=False 

Positive Rate, MAE=Mean Absolute Error, F-Score=Measure of Test Accuracy 

No. Metric         ANN RNN CNN MLP Hybrid (RNN + CNN) 

1 Detection 98.53% 99.71% 100.00% 99.83% 

2 Recognition 98.24% 99.64% 100.00% 99.84% 

3 Prediction 97.32% 99.52% 100.00% 98.91% 

 

No. Technique   Dataset 
MNIST NORB 

Accuracy (%) Accuracy (%) 

1 SAE 98.60 86.28 

2 SDA 98.72 87.62 

3 DBN 98.87 88.47 

4 DBM 99.05 89.65 

5 MLP-BP 97.39 84.20 

6 ML-ELM 99.04 88.91 

7 H-ELM 99.13 91.28 

8 iDRP 100.00 100.00 

Key: SAE (Stacked Auto Encoders), SDA (Stacked Autoencoders), DBN (Deep Belief Networks), DBM (Deep Boltzmann Machines), 

MLP-BP (Multilayer Perceptron Back Propagation), ML-ELM (Machine Learning Extreme Learning Machine, H-ELM (Hierarchical 

Extreme Learning Machine), iDRP (Intelligent Detection Recognition Prediction) 
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Table 6: Comparison of Classification Techniques on Standardized IoT Malware 
Datasets (BoTNetIoT) Results 

No. Techniques Accuracy Precision Recall F-score 

1 Resnet34 [41] 92.39% 93.57% 64.55% 76.40% 

2 Resnet50 [41] 94.50% 95.78% 94.02% 94.90% 

3 MobileNet [41] 91.32% 91.67% 91.03% 91.35% 

4 SOINN [41] 91.75% 89.68% 95.52% 92.50% 

5 iDRP 99.98% 99.95% 99.93% 99.97% 

Evidently, the innovative iDRP framework network techniques 
performed better with even the state-of-the-art MLP NN 
techniques and methods etc. The flexibility, extensibility, stability, 
and maintainability in the architecture design of the innovative 
iDRP framework network that were developed have demonstrated 
to be optimal in helping achieve the overall outcome. Through the 
leveraged innovative and systematic techniques implemented in 
the experiments of the proposed iDRP framework network, it is 
safe to mention that the optimal security and protection of heavily 
computerized network systems and smart technologies such as an 
IoT ecosystem against evolving attacks and threats can be better 
managed with improved innovation and intelligence in the digital 
ecosystem. 

8. Conclusion 

The novelty of this work are the systematic integrations, 
techniques and methods of the adaptive and scalable pre-
processing and post-processing components designed and 
developed for multi-class classifications and capturing the 
immutable vector state structures from categorical distributions to 
mapped data distributions in order to estimate and exploit hidden 
textural features of converted polymorphic and new IoT malware 
binary images in correlations with their aggregated distributions in 
a network. Together with, the modular detection, recognition, and 
prediction components DL approach provided new concepts 
through the syntheses of the three (3) key components with the 
multi-class classification, data augmentation, vector scaling and 
retention, clustering, cross-validation, and resampling techniques 
and methods etc., synthesized and interconnected evolutionarily by 
the post-processing techniques in the proposed novel iDRP 
framework, which can be multidisciplinary. In particular, 
considering the textural and structural changes in polymorphic and 
new malware variants or obfuscation, the applied techniques and 
methods that were designed and developed ensured the improved 
and accurate detection, recognition, and prediction of the complex 
code malwares that specifically changes their binary structures on 
execution in an IoT ecosystem. A higher level of feature extraction 
and classification estimation of the modular hidden layer 
information were achieved to intelligently and efficiently detect 
the present-day obfuscation of malware attacks and infections in 
an IoT ecosystem. Overall, the derived intelligent immutability of 
the stately vectorized mapped data estimation techniques and 
methods implemented ensured optimal results in the experiments.  

We conducted and tested the proposed implemented 
experiments with sound scientific procedures and processes to 
provide the proof-of-concept by conceptualizing and applying 
conventional scientific processes such as conducted in the 
engineering, medical, animal science fields etc., to establish 

empirical and statistical analysis in the performed experiments i.e., 
structurally complex, yet similar vector images; MNIST (2-D) and 
NORB (3-D) datasets prior to the comparative real IoT malware 
(BoTNetIoT) dataset converted image files as benchmark, which 
is analogous to animal to human experiments in the pure science 
and engineering fields systematically. The premise of the research 
experiments is to discover conclusive scientific approaches, 
techniques, and methods to solving polymorphic and new malware 
anomalies problems in an IoT ecosystem. These were achieved by 
applying the aforementioned procedures and techniques to solving 
the IoT malware problems with new ideas in this work. Extensive 
analysis was conducted by synthesizing the various techniques on 
the big datasets utilized in the proposed experiments. The 
syntheses of the integrated procedures and techniques in the 
proposed novel iDRP framework, which consists of five (5) 
components; pre-processor, detection, recognition, prediction, 
and post-processor components provided the seamless 
evolutionary information distributions for a high-level accuracy 
result in the experiment. Standardized metrics such as accuracy 
rate, ROC/AUC rate, precision rate, True Positive (TP) rate, False 
Positive (FP) rate, True Negative (TN) rate, False Negative (FN) 
rate, recall rate, and F1-Score were calculated and recorded to 
effectively determine the performance of the finalized generative 
DNN models in the proposed and implemented systematic 
experiments of the iDRP framework research. 

In the end, the resultant output of the proposed experiments 
was tested and evaluated to achieve the best performance and 
consistency, accuracy, and precision etc., of the comparative 
aggregated model results achieved. As a result, a 100% accuracy 
rate, 100% ROC/AUC rate, 99.94% precision rate, and 99.90% 
recall rate were successfully achieved with the preliminary 
experiment, while with a real IoT malware data, BoTNetIoT, a 
99.98% accuracy rate, 99.99% ROC/AUC rate, 99.95% precision 
rate, and 99.93 recall rate were successfully attained as solution 
with the synthesized techniques and methods to the regression and 
binary classification problems for intelligent malware anomalies 
detection in an IoT ecosystem. 

Future Work 

The future work would be to evaluate the systematic 
‘checkpointing’ of various weightages and best performing 
weights measurement together with the corresponding network 
topography and architecture in IoT security models, which will be 
verified, validated and explored further for better security solution 
in expanding heavily computerized interconnected systems.  
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