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 In this paper, we are concerned to investigate the efficiency of the second-order Redlich-
Kister Finite Difference (RKFD) discretization scheme together with the Four Point Explicit 
Group Kaudd Successive Over Relaxation (4EGKSOR) iterative method for solving two-
point boundary value problems (TPBVPs). In order to apply this block iteration to solve any 
linear system, firstly we discretize all derivative terms via the second-order RKFD 
discretization scheme over the proposed problem in order to get the second-order RKFD 
approximation equation. Due to the main characteristics of the coefficient matrix for the 
generated linear system which are large-scale and sparse, the best choice for solving this 
linear system is using one of the iterative methods. Therefore, the formulation of the Kaudd 
Successive Over Relaxation method together with the Explicit Group iteration method 
mainly on the Four-Point Explicit Group Kaudd Successive Over Relaxation (4EGKSOR) 
iterative method has been presented to solve this linear system iteratively. In order to show 
the efficiency of the 4EGKSOR, another two iterative methods have also been considered 
which are the Gauss-Seidel (GS) and the Kaudd Successive Over Relaxation (KSOR) to solve 
three examples of the proposed problems in which all numerical results obtained were 
recorded based on the number of iterations, execution time and maximum norm. Based on 
the performance analysis, clearly, the 4EGKSOR iterative method shows substantiated 
improvement in terms of the number of iterations and execution time.  
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1. Introduction  

The successful of the development of numerical techniques for 
boundary value problems has been growing rapidly in the past few 
decades. Many researchers give more attention to this problem 
numerically and show the capability of their numerical techniques 
in solving this problem especially TPBVPs; due to its application, 
this problem can be found in science, engineering and physics 
fields including optimal control, beam deflection and heat flow [1-
4]. In initial works on obtaining the numerical solutions of 
TPBVPs, many authors attempted to achieve higher accuracy by 
using the various numerical methods. It was done either by 
suggesting the families of spline methods for solving second-order 
two-point boundary value problem, see in [5-9]. The basic 
approach of these methods is dividing the interval into subinterval 
and at the same time, the construction of spline, B-spline and 
extended B-spline in each subinterval considered. For achieving 
better accuracy, these methods are required to solve a system of 
equations. Another numerical method is to solve TPBVPs by 

developing the innovative method based on the Galerkin method 
see in [10-12]. Numerous numerical methods are used to solve the 
boundary value problems related TPBVPs for obtaining the 
approximation equation can be seen in [13-17].  

Besides of using the above numerical methods to solve the 
proposed problem (1) as stated in the first paragraph, many studies 
were also introduced via the use of the concept of finite difference 
method (FDM). As a result, several numerical discretization 
schemes mainly in a family of the finite difference schemes have 
been proposed to form a new finite difference discretization 
scheme. For example, the standard finite difference [18], 
Chebyshev finite difference [19] and Rational Finite Difference 
[20] are imposed for solving TPBVPs. Clearly, the development of 
Chebyshev finite difference and Rational Finite Difference 
schemes has been encouraged by the combination of the standard 
finite difference concept together with the Chebyshev and rational 
approximation functions respectively.  In conjunction with these 
combinations, the author in [20] also introduced a new finite 
difference scheme via the combination of exponential 
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approximations and finite difference discretization schemes which 
is known as exponential finite difference discretization schemes to 
show its capability for solving TPBVPs [21].  

Apart from the use of Chebyshev, rational and exponential 
approximation functions as mentioned in the previous second 
paragraph, this paper attempts to investigate the feasibility of the 
Redlich-Kister polynomial as a numerical method for solving 
TPBVPs. Based on the previous studies on the application of the 
Redlich-Kister polynomial, the findings have pointed out that 
various types of Redlich-Kister polynomial functions have 
successfully been used to develop the appropriate mathematical 
models in physics and chemistry fields [22-24].  In addition to 
these functions, only one study has been explored to investigate 
the application of the Redlich-Kister approximation function in the 
numerical analysis particularly on constructing the mathematical 
model. For instance, in [25], the authors investigated the 
construction of two mathematical models based on the piecewise 
third-order Redlich-Kister polynomial model and the piecewise 
first-order polynomial model respectively to show the relationship 
of the number of iterations for Gauss-Seidel towards its 
corresponding grid size. The findings of their work concluded that 
the results of the piecewise third-order Redlich-Kister polynomial 
model gave highly accurate solutions as compared with the first-
order polynomial solution. Inspired by the high accuracy of the 
Redlich-Kister (RK) function based on high-order approximation 
function, we present a feasibility study of two newly established 
Redlich-Kister Finite Difference (RKFD) discretization schemes 
for solving TPBVPs.  

In order to solve the proposed problem, firstly, the RKFD 
discretization scheme will be used to discretize TPBVPs to form 
the RKFD approximation equation. After that, the approximate 
equation was obtained will lead us to construct a linear system. 
Since the generated linear system has a large and sparse matrix, the 
use of iterative methods is the best linear solver [26-28]. For 
instance, the implementation of the point iteration family namely 
SOR [29], AOR [30] and KSOR [31] can be used to solve this 
linear system. In addition to this point iteration family, Evans [32] 
introduced the Explicit Group (EG) iterative method which is 
faster than the Gauss-Seidel (GS) iterative method to get the 
numerical solution of this linear system. Despite the speed up the 
convergence rate for Explicit Group (EG) iteration, many 
researchers also developed new variants of the EG iteration family 
such as 9-Point EG [33], EGSOR [34], EDGSOR [35] and 
MEGSOR [36] in which all these block iterations have 
significantly reduced their convergence rate. Therefore, further 
discussion of this paper focuses on investigating the efficiency of 
the 4EGKSOR iterative method which is inspired by the paper 
research [37] and apply together with the newly established RKFD 
discretization scheme for solving the system of Redlich-Kister 
approximation equations. The formulation of the 4EGKSOR 
iterative method can be established via the combination of the EG 
and KSOR iterative methods. 

Before applying and investigating the performance of this 
4EGKSOR method, we need to do the process of discretization and 
let us consider the general equation for TPBVPs, which are given 
as follows 

( ) ),()()(
2

2
xrxUxG

dx
dUxZ

dx

Ud
=++

 
[ ]φ,0∈x  (1) 

with the Dirichlet conditions, 
( ) ,00 ϕ=U        ( ) .1ϕφ =U  

2. Redlich Kister Finite Difference Approximation 
Equation 

The previous section has mentioned that the use of the RK 
function to introduce two newly established RKFD discretization 
schemes for approximating the proposed problem (1). To start the 
discretization process, firstly let us consider the RK 
approximation function of order n as follows 

( ) ( )∑
=

⋅=
n

k
xkTkaxnU

0
 (2) 

where nkka ,...,2,1,0, = are the unknown parameters to be 
determined.  
 

 
Figure 1: Distribution of grid network considered. 

To facilitate us in discussing the use of this approximation 
function, let us construct the distribution of uniformly node points 
as indicated in Figure 1. Based on Figure 1, let us consider the 
first three RK functions that need to consider the number of node 
points as shown in Figure 2. 
 

 
Figure 2: The path for T1, T2 and 3.  

Then to derive the new second-order RKFD approximation 
equation, let us consider 2=n in equation (2) and applying the 
concept in Figure 2, the second-order RK approximation function 
can be written as 

 
( ) ( ) ( ) ( )xTaxTaxTaxU 221100 ++=  (3) 

where the first three RK functions are defined as 

( )
( )
( ) ( ).12

,1

,10

xxxT
xxT

xT

−=
=
=

 

 
Referring to Figure 1, let us define the node points, 

ncchxcx ,...,2,1,0,0 =+= where 1,2,0 ≥=−= ppn
n

h φ
 
donates the 

uniform step size. Then ( ) 1,,1, +−== ccckkUkxU  and 
( ) 1,,1, +−== ccckkTkxT represent the approximation value of 

functions, ( )xU  and ( ).xT By considering any group of three 

node points, cxcx ,1− and 1+cx  for equation (3), we have the 
following equations  

,1,221,111,001 −+−+−=− cTacTacTacU   (4) 
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,,22,11,00 cTacTacTacU ++=   (5) 

.1,221,111,001 +++++=+ cTacTacTacU   (6) 

After that, the expression of three parameters 2,1,0, =kka in 
equation (3) can be determined by solving the equations (4), (5) 
and (6) via a matrix approach. With these three parameters, we 
rewrite the second-order RK approximation function, ( )xU   in 
equation (3) in which it can be shown as follows 

( ) 1)(2)(11)(0 +++−= cUxNcUxNcUxNxU   (7) 

where the second-order RKFD shape functions, 2,1,0),( =kxkN
are defined respectively as 

( )

( )

( )




















=






=






=

,c-hcxhc+xh+h-x
h

xN

,+hc-hxhc-x
h

xN

,c+hcxhc-xh+h-x
h

xN

22222
22

1
2

22222
2
1

1

22222
22

1
0

  (8) 

 Then the first and second derivative of these RK shape 
functions can be shown as  
 

( ) ( )

( ) ( )

( ) ( )










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=′
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=′
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2
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22
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10

  (9) 

and 

( )

( )

( )













=′′

−=′′

=′′

.
2
12

,
2
21

,
2
10

h
xN

h
xN

h
xN

  (10) 

 Then, by applying the first derivative concept into the function 
(7) with respect to ,cx it can be shown that the second-order 
RKFD discretization scheme of the first derivative of the function, 
( )xU is given as 

 

1)(2)(11)(0 +′+′+−′=
∂
∂

cUcxNcUcxNcUcxN
cx

U  (11) 

and for the second derivative of the function ( )xU  with respect to 

cx  can be approximated by 

1)(2)(11)(02
2

+′′+′′+−′′=
∂
∂

cUcxNcUcxNcUcxN
cx

U  (12) 

where ( ) nccUcxU ,...,2,1,0, == represent the approximation 

solution of function ( ).xU Clearly, equations (11) and (12) are 
known as two newly established Redlich-Kister finite difference 
discretization schemes. 
 

From the proposed problem (1), it needs to be rewritten in the 
discrete form at a node point, cx  and then we get 

 

( ) ),()()(
2

2
cxrcxUcxG

cdx
dU

cxZ
cdx

Ud
=++  (13) 

Then by considering both equations (11) and (12) and 
substitute them into equation (13), it can be pointed out that the 
newly established RKFD approximation equation of TPBVPs can 
be formulated as follows 
 

,11 crcUccUccUc =+++− γβα  (14) 
where 
 

).(2)(2

,)(1)(1

),(0)(0

cxNcZcxNc
cGcxNcZcxNc

cxNcZcxNc

′+′′=
+′+′′=

′+′′=

γ
β
α

        

and 
 

( ) ( ) ( ),,, cxrcrcxGcGcxZcZ ===  .1,...,3,2,1 −= nc        
 Referring to the RKFD approximation equation (14) and 
considering  ,1,...,2,1 −= nc  it is obvious that we can construct a 
generated linear system with its large-scale and sparse coefficient 
matrix  as follows 
 

rUW =⋅  (15) 
where 

[ ]
[ ] .111232011

,12321

,
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=
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3. Derivation of 4EGKSOR Iterative Method 

Since the characteristics of the coefficient matrix of the linear 
system (15) are large-scale and sparse, the family of iterative 
methods can be chosen to be the best linear solver as stated in the 
first section. To solve this linear system, the Kaudd Successive 
Over Relaxation (KSOR) iterative method was developed by [38] 
as one of more efficient point iterative methods by using one 
weighted parameter which is used to speed up its convergence rate 
and show to be more economical computationally than the Gauss-
Seidel (GS) iterative method. Due to the advantage of lower 
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computational complexity, we establish the formulation of the 
Four-Point Explicit Group Kaudd Successive Over Relaxation 
(4EGKSOR) iterative method, which is a combination between a 
standard Kaudd Successive Over Relaxation (KSOR) iterative 
method and Explicit Group approach by using the newly 
established RKFD approximation equation (14).  To derive the 
formulation of 4EGKSOR, let us consider the grid network in 
Figure 1 and a group of block node points concept in Figure 3. 
Figure 3 illustrates the finite grid network of the RKFD 
approximation equation where block approach has been done 
until iteration convergence is achieved. 

 
Figure 3: Distribution of grid network for 4EGKSOR method. 

Before discussing more details on the formulation of the 
4EGKSOR method, let us consider the coefficient matrix W (15) 
being defined as 

LJFW ++=  (16) 
where J is diagonal matrix, F and L are strictly lower and upper 
matrices of the generated linear system (15) . Then, the large-scale 
and sparse linear system (15) becomes 

( ) rULJF =⋅++  (17) 
 In drive to achieve the linear system (17) based on the point 
iteration approach, the implementation of the KSOR method over 
the linear system can be stated in matrix form as follows [31,39] 

( ) ( )[ ] ( ) ( ) ( )[ ] rFJqULJFJqU 11111 −−−++−−−=+ ωωωω  (18) 

where ( )1+qU indicates the current value of U at the  ( )thq 1+
iteration. 

Again, imposing the KSOR method (18) can also be rewritten 
in the point iteration approach as follows 

( )
( )

( )
( )

( ) ( )( )1 11
1 11 1

q q q q
c c c c c c cU U r U Uω

ω ω α γ+ +
− ++ += + − −  (19) 

for ,1,...,3,2,1 −= nc whereas the optimum value of ω the 
different value subject to the size value of .n The range value ofω
is given [31] by [ ].0,2−−∈Rω  

By using the same steps to obtain equation (19), let us begin to 
introduce the KSOR block iteration approach. To start this 
discussion, let us consider again a sequence of a group of four and 
three node points in Figure 3. As we can see that two types of 
blocks were used to form during the implementation of the 
4EGKSOR iteration. Firstly, the four-point block iteration is 
applied for the completed group of four and three point block is 
imposed into the ungrouped case. Referring to equation (15), the 
4EGKSOR iterative method is defined as [37]   
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(20) 

 

where 
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Meanwhile, for the ungrouped case has been applied for only 
one group of three points block is shown as follows 
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where 
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Thus, Algorithm 1 describes a summary of the 4EGKSOR 
iterative method, which has been implemented for solving the 
proposed problem (1). 

Algorithm 1:4EGKSOR iteration 
i. Set the initial value .0=U  

ii. Calculate the coefficient matrix, .W  
iii. Calculate the vector, .r   
iv. For ,7,...,9,5,1 −= nc  calculate the equation (20). 
v. For ,3−= nc  calculate the equation (21). 

vi. Check the convergence test, .1010)()1( −=〈−+ εq
cUq

cU

If yes, go to step (vii). Otherwise, go back to step 
(iv). 

vii. Display approximate solution. 
 
4. Numerical Problem and Discussion 

In this section, we investigate the feasibility of the 4EGKSOR 
iterative method for solving three examples of one-dimensional 
TPBVPs and then compared with GS and KSOR methods which 
are set up as a benchmarking for this study. All the results that 
have been obtained by imposing these three methods considered 
into these three examples are analyzed based on three comparison 
parameters such as the number of iterations (Iter), execution time 
(Time) in seconds and maximum norm (MaxNorm) at five 
different sizes, .4096,2048,1024,512,256=n In this study, we 

also set up the value of tolerance error, 1010−=ε for all grid sizes 
are considered. 
 
Example 1 [40] 

Consider one-dimensional TPBVPs as 
 

( ) ,
11

2

2 −−−=
∂
∂

−
∂

∂ xe
x
U

x

U  (22) 

The analytical solution of problem (22) is ( ) ( ) .11 




 −−= xexxU  
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Example 2 [41] 

Consider one-dimensional TPBVPs  
 

( ) ( ) ( ),cos4sin323
2

2
xxxxxxxxU

x

U
+





 +−−=+

∂

∂  (23) 

The analytical solution of problem (23) is ( ) ( ).sin12 xxxU 




 −=   

Example 3 [42] 

Consider one-dimensional TPBVPs  
 

( ) ,1
2

2
−=+

∂

∂ xU
x

U  (24) 

The analytical solution of problem (24) is 

( ) ( ) ( )
( ) ( ) .1sin
1sin

1cos1cos −
−

+= xxxU
 

All results of GS, KSOR and 4EGKSOR iterative methods in 
solving these three examples are stated in Tables 1, 2 and 3 and 
illustrated in Figure 4, 5, and 6 respectively. Table 4 shows that 
the reduction percentage of KSOR and 4EGKSOR iterative 
methods which compared with GS method for three examples 
considered. 
 
Table 1: Numerical results based on comparison criteria considered for Problem 

1. 

n Method Iter Time MaxNorm 

256 
GS 82043.0 7.92 4.0343e-07 

KSOR 769.0 0.75 2.4866e-07 
4EGKSOR 364.0 0.17 2.3889e-07 

512 
GS 292276.0 16.23 2.5291e-06 

KSOR 1526.0 1.67 6.7370e-08 
4EGKSOR 759.0 0.44 8.0806e-08 

1024 
GS 1025489.0 76.67 1.0346e-05 

KSOR 2853.0 3.19 2.5732e-08 
4EGKSOR 1295.0 0.78 4.7925e-08 

2048 
GS 3527433.0 409.03 4.1443e-05 

KSOR 5792.0 6.63 1.7614e-08 
4EGKSOR 2545.0 1.50 5.9857e-08 

4096 
GS 11811519.0 2359.09 1.6579e-04 

KSOR 10221.0 10.41 9.8302e-08 
4EGKSOR 5369.0 3.13 7.2651e-08 

Table 2: Numerical results based on comparison criteria considered for Problem 
2. 

n Method Iter Time MaxNorm 

256 
GS 92156.0 19.79 9.0029e-07 

KSOR 796.0 0.81 1.5811e-06 
4EGKSOR 414.0 0.30 1.5584e-06 

512 
GS 329819.0 58.89 2.4116e-06 

KSOR 1559.0 1.69 3.7928e-07 
4EGKSOR 756.0 0.39 4.0320e-07 

1024 
GS 1164082.0 257.58 1.1096e-05 

KSOR 3073.0 3.56 1.0466e-07 
4EGKSOR 1450.0 0.82 6.2177e-08 

2048 GS 4035615.0 1345.67 4.4746e-05 

KSOR 6145.0 7.18 3.8252e-08 
4EGKSOR 2826.0 1.71 4.3353e-08 

4096 
GS 13659733.0 2913.87 1.7907e-04 

KSOR 11571.0 11.03 5.2215e-08 
4EGKSOR 5181.0 3.06 1.0216e-07 

Table 3: Numerical results based on comparison criteria considered for Problem 
3. 

n Method Iter Time MaxNorm 

256 
GS 89973.0 19.88 5.4091e-07 

KSOR 782.0 0.37 1.9062e-07 
4EGKSOR 381.0 0.17 2.0338e-07 

512 
GS 318924.0 60.80 2.9059e-06 

KSOR 1537.0 0.89 5.2948e-08 
4EGKSOR 724.0 0.40 2.5886e-08 

1024 
GS 1111808.0 256.86 1.1810e-05 

KSOR 3057.0 1.82 1.5546e-08 
4EGKSOR 1387.0 0.79 6.1722e-08 

2048 
GS 3791677.0 1260.25 4.7285e-05 

KSOR 5734.0 3.43 2.5772e-08 
4EGKSOR 2753.0 1.75 8.8766e-08 

4096 
GS 12544476.0 2681.69 1.8915e-04 

KSOR 10655.0 5.78 1.0642e-07 
4EGKSOR 5463.0 3.21 1.1934e-07 

Table 4: Reduction percentage for the KSOR and 4EGKSOR in term of the 
iteration and time. 

n Method Iter MaxNorm 
Problem 1 Iter 99.06-99.84 99.56-99.95 

Time 89.71-99.56 97.29-99.87 
Problem 2 Iter 99.14-99.92 99.55-99.96 

Time 95.91-99.62 98.48-99.89 
Problem 3 Iter 99.13-99.92 99.57-99.96 

Time 98.13-99.92 99.14-99.96 
 

 
Figure 4: Comparison of three iterative methods based on error over the solution 

domain of Problem 1 at n = 4096. 

All results are presented in Tables 1 to 4, the KSOR method 
gives reduced iteration and speeds up its execution time as 
compared with GS iterative method. Then, in terms of a reduction 
percentage, the KSOR iteration in Example 1 has significantly 
reduced number of iterations approximately by 99.06-99.84% and 
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speed up by 89.71-99.56%. For Examples 2 and 3 also give the 
pattern as same as Example 1 in which KSOR iteration is better 
than GS iteration. However, the 4EGKSOR iteration gives 
tremendously improved either in the number of iterations or 
execution time which are 99.56-99.95% and 97.29-99.87% for 
Example 1, 99.55-99.96% and 98.48-99.89% for Example 2 and 
99.57-99.96% and 99.14-99.96% for Example 3 respectively. In 
conclusion, it shows that the KSOR iteration has greatly reduced 
its number of iterations and execution time as compared to the GS 
iteration. It means that the 4EGKSOR iteration has the least 
amount compared to GS and KSOR iterations in terms of the 
number of iterations and execution time. In addition to these 
findings, for the maximum norm, KSOR and 4EGKSOR iterative 
methods show a good agreement and become close to their 
analytical solution compared to GS iterative method, see in 
Figures 4, 5 and 6. 

  
Figure 5: Comparison of three iterative methods based on error over the solution 

domain of Problem 2 at n = 4096. 

 
Figure 6: Comparison of three iterative methods based on error over the solution 

domain of Problem 3 at n = 4096. 

5. Conclusions 

The formulation of GS, KSOR and 4EGKSOR iterative methods 
have been successfully derived by using two newly established 
RKFD discretization schemes for solving TPBVPs. Then, the 
generated large-scale and sparse linear system based on two 
newly established RKFD approximation equations have been 
solved by using three iterative methods in which all results were 
recorded. Based on the implementation of these three iterative 
methods, the 4EGKSOR iterative method has tremendously 
reduced the iteration and Time as compared with GS and KSOR 
methods. Therefore, the combination of the KSOR block 
technique with the standard EG iterative method can reduce 
iteration and Time compared to the KSOR point approach. For 

further study, this paper can be extended to perform the use of the 
newly established RKFD discretization scheme for solving the 
multi-dimensional boundary value problems by using the two-
step iteration family [43,44], and the half-sweep [45,46] and 
quarter-sweep [47,48] iteration families. 
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