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 This paper presents a new floating-point technology: Bounded Floating Point (BFP) that 
constrains inexact floating-point values by adding a new field to the standard floating point 
data structure. This BFP extension to standard floating point identifies the number of 
significant bits of the representation of an infinitely accurate real value, which standard 
floating point cannot. The infinitely accurate real value of the calculated result is bounded 
between a lower bound and an upper bound. Presented herein are multiple demonstrations 
of the BFP software model, which identifies the number of significant bits remaining after a 
calculation and displays only the number of significant decimal digits. These show that BFP 
can be used to pinpoint failure points. This paper analyzes the thin triangle area algorithm 
presented by Kahan and compares it to an earlier algorithm by Heron. BFP is also used to 
demonstrate zero detection and to correctly identify an otherwise unstable matrix. 
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1. Introduction 

Standard floating point has been useful over the years, but 
unknowable error is inherent in the standard system. Though not 
indicated in standard floating point, a calculated result may have 
an insufficient number of significant bits. This paper, which is an 
extension of work originally presented in [1], uses a bounded 
floating-point (BFP) software model that emulates the BFP 
hardware implementation to identify the accurate significant bits 
of a calculated result, thus unmasking standard floating-point 
error. 

2. Background – Standard Floating Point 

2.1.  Standard Floating-Point Format 

Computer memory is limited; thus, real numbers must be 
represented in a finite number of bits. The need to represent a range 
of real numbers within a limited number of bits and to perform 
arithmetic operations on those real numbers, led to the early 
development of, and use of, floating-point arithmetic. The 
formulaic representation employed is reminiscent of scientific 
notation with a sign, an exponent, and a fraction [2]. Through the 
efforts of William Morton Kahan and others, a standard for 
floating point was published in 1985 by the Institute of Electrical 
and Electronics Engineers (IEEE) [3]. The current version is IEEE 
754-2019 - IEEE Standard for Floating-Point Arithmetic [4], 

which has content identical to the international standard ISO/IEC 
60559:2020 [5]. 

The standard floating-point format is shown in Figure 1. The 
sign of the value is represented by a single bit, S. The offset 
exponent is E with a length of e. The significand, T, has a length 
of t. The overall length of the representation is k. 

 
Figure 1: Standard Floating-Point Format 

The IEEE 754-2019 standard defines floating-point formats 
and methods for both base two and base ten. However, this work 
only addresses base two floating point. The formats most 
commonly used require 32 bits or 64 bits of storage, which are 
known as single precision and double precision, respectively. 

The decimal equivalent of the standard representation is shown 
in (1), where S, T, t, and E are defined above and O is the exponent 
offset. For binary floating point, O is nominally 2e-1-1. 

 (-1)S ∙ (1+T/2t) ∙ 2E-O  (1) 

The expression (1) is used in expressing the value of the 
standard floating-point representation in various number bases, 
typically for the display of the value in number base ten. 
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2.2. Standard Floating-Point Representation Error 

Floating-point error is the difference between the 
representation of the actual standard floating-point value and the 
infinitely accurate real value to be represented. It must be clearly 
stated that the IEEE floating point standard does not specify any 
mechnism for indicating nor defining floating-point error. 
Floating-point error is invisible to implementations of the IEEE 
floating-point standard. 

Standard floating-point error occurs because only a limited 
number of real numbers can be expressed with the finite number 
of bits available. 

Because binary floating point represents real numbers with a 
fixed number of bits, numbers that cannot be represented with a 
limited set of powers of two cannot be represented exactly [6]. As 
Goldberg succinctly describes it, “Squeezing infinitely many real 
numbers into a finite number of bits requires an approximate 
representation” [7]. Therefore, there are a finite number of values 
that can be represented with floating point, but an uncountably 
infinite number of values [8] that cannot be exactly represented 
with floating point. For instance, the values 0.1, 0.22, and 
transcendental values, such as π, cannot be accurately represented 
with binary standard floating point, but the values 0.5, 0.125. and 
942.625 can be exactly represented with standard binary floating 
point. Thus, only those real numbers which can be represented 
with a constrained sum of the powers of two can be represented 
with no error. All other representations must have error. 

Therefore, we can define floating-point representation error as 
the difference between the representation value, see (1), and the 
infinitely accurate real value represented. 

2.3. Standard Floating-Point Operational Error 

Accuracy in floating-point computations may be measured or 
described in terms of ulps, which is an acronym for “units in the 
last place.” Kahan originated the term in 1960, and others have 
presented refined definitions [9], [7]. An ulp is expressed as a real 
function of the real value represented. Rounding to the nearest 
value, for instance, can introduce an additional error of no more 
than ±0.5 ulp. 

The real solution to the floating-point error issue is knowing 
the number of significant bits of a computational result. The 
number of significant bits can be known by using BFP. When BFP 
identifies sufficient significant bits, a decision may be made, or an 
opinion may be formed. 

Usually, the error of a single computation is insignificant, with 
the exception being catastrophic cancellation error. However, with 
large, complex floating-point computations, error can accumulate 
and can reduce the significant bits to an unacceptable level [10], 
[11]. Loss of significant bits may be propagated through recursive 
repetition. BFP tracks the current number of significant bits 
through recursion [12], [13]. Examples of such recursive 
calculations are spatial modeling of explosions [14], dynamic 
internal stress [15], weather [16], etc. 

The repetition of such calculations accumulates floating-point 
error. Unfortunately, there are two types of error, rounding and 
cancellation, and these errors are incompatible since rounding 

error is linear and cancellation is exponential. However, just as 
apples and oranges cannot be added by species, they can be added 
by the “genus” fruit. In order to accumulate cancellation and 
rounding errors we must find a similar “genus” before such error 
can be accumulated. This genus in the BFP system is the logarithm 
of the accumulated error stored in the defective bits field D 
(Figure 3), which captures both the accumulated rounding error 
and cancellation error. 

Three operations that must be performed during floating-point 
operations introduce error. These operations are the following: 
alignment, normalization (causing cancellation error), and 
truncation (leading to rounding error). 

Alignment occurs during add operations (which include both 
positive and negative numbers) when one exponent is smaller than 
the other and the significand must be shifted until the exponents 
are equal or “aligned” [17]. 

Cancellation error occurs because the resulting significand 
after a subtraction, including the hidden bit, must lie between 1.0 
and 2.0. If the operands of a subtract have similar values, 
significant bits of the result may be defective, or “cancelled” [2], 
[18]. This is called cancellation error, and when that error is 
significant it is called “catastrophic cancellation” [7]. Jorgensen 
mathematically defines “similar values” [6]. 

Rounding error occurs because nearly all floating-point 
operations develop more bits than can be represented within the 
floating-point format, and the additional bits must be discarded [4]. 
The floating-point standard describes how these discarded bits can 
be used to “round” the resulting value but necessarily must 
introduce error into the resulting representation of the real value 
[2]. 

Standard floating point provides no means of indicating that a 
result has accumulated error [4]. Therefore, such errors are 
invisible unless they cause a catastrophe. Even then the cause can 
only be traced to floating-point failure with substantial effort, as 
stated by Kahan in the conference article entitled “Desperately 
needed remedies for the undebuggability of large floating-point 
computations in science and engineering” [19]. 

Misuse of floating point and the accumulation of floating-point 
error has been expensive in terms of election outcomes [20], 
financial disruption [21], [22], and even lives lost [23]. 

This computational weakness has been known since the early 
days of computing and continues until today. Even as early as 1948 
Lubken had noted that: “…it is necessary at some intermediate 
stage to provide much greater precision because of large loss of 
relative accuracy during the process of computation” [10]. To this 
day, floating-point error is a known problem. [13], [24], [11]. 

3. Background – Bounded Floating Point (BFP)  

The BFP system is an extension or annex to the standard 
floating point format, which may be implemented in hardware, 
software, or a combination of the two. BFP calculates and saves 
the range of error associated with a standard floating-point value, 
thus retaining and calculating the number of significant bits [25], 
[26]. BFP does not minimize the floating-point error but identifies 
the error inherent within standard floating point. 
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BFP extends the standard floating-point representation by 
adding an error information field identified as the “bound” field B. 
The bound field B contains subfields to retain error information 
provided by prior operations on the represented value, but the field 
of primary importance is the “Defective Bits” field D. This field 
identifies the number of bits in the represented value that are no 
longer of significance, consequently defining the number of bits in 
the result that are significant. The value of D is not an estimate but 
rather is calculated directly from standard floating-point internals 
such as normalization leading zeros and alignment of exponent 
differences. (See Appendix). BFP identifies and reports floating-
point error and has no direct means of reducing that error. Because 
it is a direct calculation, the bound is neither optimistic nor 
pessimistic. However, the conversion between binary significant 
bits and decimal significant digits is not one-to-one and introduces 
a small error of less than 1 decimal ulp on conversion. 

BFP retains the exception features of standard floating point, 
such as detection of infinity, operations with not a number (NaN), 
overflow, underflow, and division by zero. Though zero is a 
special case in the standard, the standard does not detect zero as 
long as any bits remain in the significand. However, BFP exactly 
identifies zero when the significant remaining bits in the 
significand are all zero, as shown in the test results below. 

3.1. Bounded Floating-Point (BFP) Format 

The bound field B, as seen in Figures 2 and 3, is a field added, 
to the format of standard floating point to describe the bounds of 
the error of the represented value. The bound field B contains and 
propagates information about the accuracy of the value that is 
being represented by creating and maintaining a range in which the 
infinitely accurate value represented must reside. 

 
Figure 2: BFP Format 

3.2. Bound Field Specifics 

Figure 3 presents the subdivisions incorporated into the bound 
field format.  

 
Figure 3: Format of Bound Field and Subfields 

The bound field B is of width b. The bound field B consists of 
two fields, the defective bits field D of length d and the 
accumulated rounding error field N of length n. The value of the 
defective bits is the number of bits of the representation that are 
not significant, that have no value. The defective bits field D stores 
the logarithm of the upper bound of the error represented in units 
in the last place (ulps) and, in effect, determines the number of 
significant bits of the result. 

The accumulated rounding error, stored in the N field, is the 
sum of the rounding error in fractions of an ulp. 

The accumulated rounding error field N consists of two fields, 
the rounding error count field C, of width c, and the rounding bits 
field R, of width r. The fraction of an ulp represented in the 
accumulated rounding error is R/2r ulp. 

The decimal equivalent of the BFP representation is shown in 
the expression of (2), which is equivalent to the expression (1) 
above. 

 (-1)S ∙ ((T+2t)/2t) ∙ 2E-O (2) 

The IEEE standard [4] defines “precision” as the capacity of 
the significand plus one (for the hidden bit). This capacity-type 
precision is defined as the maximum number “of significant digits 
that can be represented in a format, or the number of digits to that 
(sic) a result is rounded” [4]. In contrast, BFP identifies the actual 
number of bits that are significant (have meaning). These 
significant bits (SB) are a subset of the IEEE precision, p. The 
BFP’s defective bits field D represents the number of bits of the 
representation that are not significant, where D = t + 1 – SB. In 
IEEE standard representation, the value of D is not known, nor is 
the number of significant bits. 

BFP provides a means of specifying the number of significant 
bits required in a BFP calculation. Additionally, when there are 
fewer significant bits than specified or required, BFP represents 
this condition with the quiet not-a-number representation, 
“qNaN.sig,” indicating excessive loss of significance. 

3.3. Alignment  

For addition and subtraction, when the exponents of the two 
operands are unequal, the significand of the smaller operand must 
be right shifted by the exponent difference. This is known as 
alignment [2], [17], [27], [28]. 

To perform alignment, the significand of the operand with the 
smallest value is right shifted by the exponent difference [26]. 

In standard floating point, the bits that cannot fit within the 
space of the standard floating-point format are used to determine 
the guard bit, the rounding bit, and the sticky bit. 

In BFP, the bits that cannot fit within the space of the BFP 
format are used to calculate the accumulated rounding error field 
N. 

The bits that cannot fit within the space of the BFP format due 
to alignment shift are retained in the RPN field and XPN field of the 
post normalization result configuration of Figure 4. As in standard 
floating-point format, if alignment shifts one or more bits out of 
the range of the arithmetic unit, the sticky bit is set to one. 

3.4. Dominant Bound 

The results of BFP binary functions (functions with two 
operands) retain only the number of significant bits as the aligned 
operand with the least number of significant bits. For BFP this 
means the result having the larger number of defective bits. 

For binary functions the dominant bound is selected from the 
larger of the largest operand bound or the adjusted (aligned) bound 
of the smallest operand. For add (and subtract) operations, the 
binary point of the smaller operand must be aligned by the 
exponent difference [26]. The adjusted bound of the smallest 
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operand is derived by subtracting the exponent difference from the 
smallest operand bound defective bits and shifting the significand 
of the smallest operand to the right by the exponent difference. 
This shift will reduce the number of defective bits in the 
significand of the operand with the smaller value by the exponent 
difference, perhaps even to zero. 

The resulting bound is obtained by accounting for the changes 
to the dominant bound by the effects of normalization and the 
accumulation of rounding error. (See Appendix for more details.) 

3.5. Normalization and Cancellation 

Floating-point results must be normalized to align the binary 
point to values between 1.0 and 2.0 [28]. The result of a floating-
point operation may not meet this requirement and, therefore, may 
require that the result be “normalized” by shifting right or left to 
meet this requirement [27]. The exponent and the associated 
number of defective bits must be adjusted by the amount of this 
shift. Since the most significant bit is always one when the 
normalized value is between 1.0 and 2.0, it need not be stored. It is 
known as the “hidden bit.” 

Figure 4 illustrates the format of the post normalization result 
in which HPN is the hidden bit field, TPN is the resulting normalized 
significand (which is placed in the T field of the standard floating 
result of Figure 2), RPN is the most significant bits of the excess 
bits and is the resulting rounding bits field (which is added to the 
accumulated rounding error field N, of Figure 3), and XPN is the 
extended rounding error. XPN serves as the source for the BFP 
“sticky bit,” as used in standard floating point. 

 
Figure 4: Post normalization result configuration 

Normalizing by left shifting shifts information into the least 
significant bits, possibly adding to the unknown bits that already 
exist. In BFP this must be added to the defective bits unless the 
result is known to be “exact.” Exactness is identified by BFP as 
having zero defective bits (e.g. referring to Figure 3, when the 
defective bits field D of the dominant bound is equal to zero.) 

3.6. Zero Detection 

The number of remaining significant bits is the difference 
between number of bits available in the representation (t+1) minus 
the number of defective bits D. The number of bits to be shifted to 
normalize is the number of leading zeros of the result. If all of the 
significant bits are zero, the resulting value must be zero. 

BFP detects this condition and sets all fields of the BFP result 
to zero. 

3.7. Accumulation of Rounding Error and Contribution to 
Defective Bits 

Referring to Figures 2, 3, and 4, the accumulated rounding 
error N is computed by adding the resulting rounding bits RPN of 
Figure 4, to the accumulated rounding error N of Figure 3, 
contributing a fraction of an ulp. If the extended rounding error 
XPN of Figure 4, is not zero, an additional one is added to the 
accumulated rounding error N of Figure 3, functioning as a sticky 
bit. The carries out of the rounding bits field R of Figure 3, add to 

the rounding error count C of Figure 3. The rounding error count 
is the accumulated rounding error in ulps. 

The rounding error count C cannot, however, contribute 
directly to the value of the defective bits field D because of the 
difference of scaling, linear versus exponential. For example, when 
there are 2 defective bits, there must be at least 4 accumulated 
rounding errors to advance the defective bits to 3, and 8 to advance 
to 4, etc. In other words, when the logarithm of the rounding error 
count field C is equal to the defective bits field D, the value of the 
defective bits is increased by one. 

3.8. Resulting Range 

The BFP range relative to zero is defined by a lower bound (3) 
and an upper bound (4), as follows: 

 (-1)S · ((T+2t)/2t) · 2E-O (3) 

 (-1)S · ((T+2t+2D-1)/2t) · 2E-O (4) 

The infinitely accurate real value represented by a BFP value 
is within this range. This is the same as in standard floating point 
except that the term 2D-1 provides the upper bound where the value 
of the defective bits field D is the number of bits that are no longer 
significant. 

4. BFP Solutions to Standard Floating-Point Problems 
Not only does BFP deliver all of the advantages of standard 

floating point, but it also delivers solutions to problems inherent in 
standard floating point. 

4.1. Exact Equality Comparison and True Detection of Zero 

Standard floating point requires additional code to be written 
to decide as to whether a comparison result is within error limits. 
BFP inherently provides this equality comparison.  

Standard floating point cannot provide true zero detection as 
BFP does, which is demonstrated in the square root test of Section 
8 below. 

4.2. Number of Significant Bits  

Standard floating point has no means to indicate the number of 
bits that are significant, but BFP identifies and indicates the 
number of significant bits. Further, BFP allows programmatic 
specification of the required number of significant bits. When the 
required number of significant bits are not available, BFP provides 
notification. 

4.3. Mission Critical Computing 

In some computing applications, such as mission-critical 
computing, computations need to be extremely accurate. But 
standard floating point cannot determine any accuracy loss. In 
contrast, BFP provides calculations – in real time – that can be 
depended upon to have the required number of significant bits. 

4.4. Modeling and Simulation 

Computational modeling and simulation, supported by 
constantly improving processor performance, often requires 
solving large, complex problems during which error may 
accumulate. This error, though not identified in standard floating 
point, is reported when the BFP extension is utilized. 
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4.5. Unstable Matrices 
In numerical computation “stability” implies that small 

changes in the data translate into small changes in the result. 
Significant problems arise when small changes in the data, such as 
rounding error, create substantial error in the results. This occurs 
in matrix calculations, for instance, when solving simultaneous 
linear equations, when the roots may be similar or equal. BFP is 
used in this work to determine when a matrix is invertible, while 
assuring that the requirement for accuracy is met. 

5. Standard Floating-Point Error Mitigation 
5.1. Error Analysis Versus Direct Testing 

Algorithmic error analysis can be used to identify error that 
occurs when using standard floating point. Though it is costly, it is 
commonly used for complex computing in critical systems, the 
failure of which may have severe consequences. In contrast, BFP 
directly, and in real time, tests calculation results, thus removing 
the need for costly error analysis. 

5.2. Software Testing of Floating Point 
Standard floating point problem in that it has no indication of 

accuracy errors is challenging to detect, diagnose, and repair.. BFP 
detects accuracy errors in real time, thus providing a response to 
the plea of “Desperately Needed Remedies for the 
Undebuggability of Large Floating-Point Computations in Science 
and Engineering” [19]. 

5.3. Stress Testing of Floating-Point Software 
Stress testing may also be used to determine error that 

accumulates when using standard floating point. In general, stress 
testing is a form of intense testing used to establish failure points 
or useful operating limits of a given system. It involves testing 
beyond normal operational capability, often to a breaking point, in 
order to observe the performance limits. 

Stress testing, as commonly applied to software, determines 
data value limits (boundary value testing) or performance 
(memory required, response time, latency, throughput, and time 
required to complete the calculation). Chan describes software 
stress testing as a method for accelerating software defect 
discovery and determining failure root cause and assisting problem 
diagnosis [29]. However, determining the accuracy of floating-
point calculations or diagnosing accuracy failures in floating-point 
calculations, in intermediate results, or in final results is 
problematic using standard floating point [19]. In fact, floating-
point errors are invisible in standard floating point, as there is 
nothing within the IEEE Standard that describes or limits floating-
point error. 

BFP provides a new and unique method of stress testing. Stress 
testing floating-point application software using BFP determines 
the accuracy at any point in a calculation, or even at the point of 
failure of a given computation, by executing computations with 
successively higher values of required significant bits and 
analyzing failure points. This reduces the cost of diagnosis and 
repair of floating-point calculation failures [19]. 

5.4. Other Mitigation Techniques 

Other real-time techniques attempt to mitigate error, but only 
do so by increasing the overhead. Some of these techniques have 

the goal of computing results within error bounds, such as interval 
arithmetic [30] and real-time statistical analysis [31], [32]. But 
these require two floating point operations and require the storage 
of two floating point values and, thereby, increase the needed time 
and memory. 

Parallel computation with higher precision standard floating 
point [33] can also be used to mitigate error. In addition to 
substantially increasing overhead, only the probability of error is 
reduced. There is no indication of that amount of error, whereas 
BFP identifies the remaining significant bits. 

6. Software Model Solutions Using BFP 

This work presents a software model of the BFP hardware 
system as described in detail in [25], [26]. When using standard 
floating point, there are certain problem areas that are prone to 
floating-point error. This work provides results from computations 
using BFP compared to computations using standard floating point 
in three of these well-known floating-point problem areas. 

6.1. 80-Bit BFP 

The BFP software model used in the following examples is 
configured by the field sizes of the BFP data structure, which is an 
80-bit BFP configuration. The sign, exponent, and significand 
fields of the BFP format are identical to the corresponding fields 
in the standard 64-bit floating-point format. This permits 
conversion from 64-bit standard floating point to 80-bit BFP with 
a single instruction that stores the standard floating-point value 
directly into the corresponding fields of the BFP structure. 

The BFP model contains the basic operations BFPAdd, 
BFPSub, BFPMult, BFPDiv, and BFPSqrt. 

The following experiments were conducted on an ACER 
Aspire PC with an Intel Core i5 7th gen processor, using GNU 
Compiler Collection (GCC) version “(i686-posix-dwarf-rev0, 
Built by MinGW-W64 project) 8.1.0” [34]. 

6.2. Significant digits 

In computers, binary floating-point calculations are performed 
with a collection of binary bits. But to be useful in the scientific 
and engineering world, outputs from, and inputs to, the human 
interface must be in decimal digits. In other words, the calculated 
results must be displayed in decimal digits, and decimal 
information must be suppled to the processing unit. However, there 
is no direct mapping between binary floating-point values and the 
decimal representation of these values [35]. The fixed number of 
binary bits available in the double-precision (64-bit) floating-point 
format can represent a range of decimal values with as few as 15 
or as many as 17 decimal digits [13]. 

External representations of BFP results, as shown below in 
Tables 1-14, are constrained to the actual number of significant 
decimal digits of the real number represented; i. e. only the digits 
having significance are displayed. This contrasts with standard 
floating point in which decimal digits of unknown significance are 
displayed, which results, at times, in the display of multiple 
incorrect digits (digits without significance). The display of these 
insiginifcant decimal digits obtained by the use of standard floating 
point is shown in the Tables 1-14 below. 
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6.3. Significant Bits 

The number of significant bits is identified by the binary BFP 
representation of an infinitely accurate real value. The number of 
significant bits, SB, is calculated as the total bits available, p, minus 
the number of defective bits, D, as shown in (5)  

 SB = p – D (5) 

where p = t + 1. 

BFP provides a default value for the required number of 
significant bits. Alternatively, a special command can specify the 
required number of significant bits. Whether the BFP default value 
is applied or the commanded value is applied, the required number 
of significant bits may not be generated in a calculation. In this 
case, a special not-a-number code “qNaN.sig” is produced, which 
is visible when externally displayed. 

6.4. Modeling Overview 

The following demonstrations address three problems 
presented above, which are floating-point error diagnosis, true 
detection of zero, and unstable matrices. The first utilizes Kahan’s 
thin triangle problem where the area of a thin triangle is diminished 
until a specified number of significant bits is not met. The second 
is an illustration of zero detection by BFP, which uses an 
expression that mathematically evaluates to zero; however, 
standard floating point does not generate zero. The third 
demonstration solves for a matrix determinate identifying that the 
matrix is unstable. 

7. Modeling Stress Testing - The Heron and Kahan Thin 
Triangle Problems 

7.1. The Thin Triangle 

Knowing the length of three sides of a triangle (Figure 5) is 
sufficient to determine the area of the triangle without knowledge 
of the angles [36]. Work from early in the first millenium CE, 
attributed to Heron, produced an area formula that has become 
known as “Heron’s Formula.” In 2014, Kahan produced an 
improved area formula. 

The thin triangle problem considered here is from 
“Miscalculating area and angles of a needle-like triangle.” [37]. 
This work extends the 1976 work of Pat H. Sterbenz who 
suggested a method to make Heron’s Formula more accurate [38]. 
In that work Sterbenz states: 

“However, we can produce a good solution for the problem 
if we assume that A, B, and C are given exactly as numbers in 
(floating point).” (Emphasis added) 

However, when using standard floating point, A, B, or C may 
not be exact. And standard floating point does not provide any 
indication that A or B or C is exact. But BFP establishes exactness, 
where a representation is exact if and only if the dominate bound 

defective bits field D is zero; this indicates that there are no 
insignificant bits in the representation. Using the BFP extension of 
standard floating point, this work shows when A or B or C is not 
exact. 

In the tests shown below, values were chosen to reflect a thin 
triangle in which one side of the triangle, side C, is one half the 
length of the base A and in which the other side of the triangle, side 
B, is equal to the length of side C plus delta (δ). By injecting 1 ulp 
error in any one of the values, the values are no longer exact. In the 
tests below, a 1 ulp error was injected into A. And the injection of 
this small error into only one of the values causes the equation to 
produce a result that does not meet the required significant digits 
for a specified δ and a required number of significant digits. 

In the examples, the value for A was increased by 1 ulp of error 
by adding one to the significand. For the equivalent result, in BFP 
the defective bits D value was set to 1 indicating that there is 1 ulp 
of error. 

In the tests below, the area of the triangle is influenced by the 
value for δ. When δ is zero, the area of the triangle is zero. 

Tables 1-14 present stress test results for Heron’s and Kahan’s 
area algorithms for thin triangles, A=2.0 + 1 binary ulp, C=1.0 and 
B= C+ δ, with decreasing values of δ and increasing values of the 
required number of significant digits. Results are presented for 64-
bit (double precision) and 128-bit (quad precision) standard 
floating point and 80-bit BFP. Each test is conducted until the 
particular algorithm fails to provide the required number of 
signicant digits, at which point BFP displays “qNaN.sig.” Tables 
6, 7, and 14 present results for when δ is sufficiently small that the 
areas are significantly zero as detected by BFP. 

The second row of each table (excluding Tables 6, 7, and 14) 
shows the results for the required significant digits immediately 
prior to the failure point (one decimal ulp prior to not meeting the 
required number of significant digits as determined by the BFP 
calculations). The third row of each table lists the results at the 
failure point, where BFP shows that the required number of 
significant digits has not been met. 

The BFP output conversion routine only displays those digits 
known to be correct to + or – 1 in the last digit presented. 

7.2. Heron’s Formula 

Heron’s formula is shown in (6): 

Area = SQRT(S(S-A)(S-B)(S-C)) (6) 

where S= (A + B + C)/2. 

The Heron stress test determines, for a specific triangle, where 
(6) fails for a specific number of required significant digits. For 
each of the triangles in the test reported in Tables 1-7 (using a given 
value of δ for each triangle), the required number of significant 
digits is increased until BFP indicates by qNaN.sig that (6) cannot 
be solved for the specific triangle while achieving the specified 
number of required significant digits. 

In Tables 1-7 standard floating-point results for Heron’s area 
algorithms for each required number of significant digits, 14, 13, 
...7 are benchmarked against BFP results. Heron’s area formula (6) 
was solved for successively smaller values of δ until the BFP 
calculation indicated (by qNaN.sig) that the required number of 
significant digits was not met. 
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Table 3, for example, shows that for δ =0.0001, a 10-digit result 
is obtained successfully, but requiring 11 significant digits fails. 

7.3. Kahan’s Formula 

In 2014, Professor William M. Kahan demonstrated that the 
Heron formula yielded inaccurate results when computed with a 
modern computer using floating point. Kahan contributed (7), 
which provides more accurate results for the area of thin triangles 
than (6) [37]. 

Area = SQRT(A+(B+C))(C-(A-B))(C+(A-B))(A+(B-C)))/4     (7) 

 where A ≥ B ≥ C 

The stress tests of Tables 8-14 determine, for a specific 
triangle, where (7) fails for a specific number of required 
significant digits. For each of the triangles (using a given value of 
δ for each triangle), the required number of significant digits is 
increased until BFP indicates by a qNaN.sig that (7) cannot be 
solved for the specific triangle while achieving the specified 
number of required significant digits. 

Tables 8-14 list the standard floating-point computations 
benchmarked against the BFP computations of (7) for thin 

triangles for the required significant digits, which present results 
similar to the Heron solutions of (6).  

For example, Table 10 shows that for δ =0.0001, an 11-digit 
result is obtained successfully, but requiring 12 significant digits 
fails. This demonstrates that the Kahan algorithm (7) provides 
more significant digits than does the Heron algorithm (6) as shown 
in Table 3 (described above).  

Double precision (64-bit) floating point can represent up to 15 
significant decimal digits. BFP computations with inexact values 
shows that neither (6) or (7) is capable of producing a thin triangle 
area result accurate to 15 significant digits, as shown Tables 1-14. 

7.4. Stress Tests Summary 

In summary, Tables 1-14 show that BFP identifies the failure 
point at the largest number of significant digits for a given δ that 
does not meet the required number of significant digits. BFP 
identifies the smallest δ that retains the required number of 
significant bits. And BFP identifies when the area of a thin triangle 
is significantly zero when standard floating point does not. 

Table 1: Stress Test One of Heron’s Formula for Area of Thin Triangle 

For δ =0.01, A=2.0 + 1 ulp, B=1.01, C=1.0 
Significant Digits Required Area Using Double Precision Area Using Quad Precision Area Using BFP 

11 0.10012367040315583000000 0.10012367040315691503050  0.100123670403 
12 0.10012367040315583000000 0.10012367040315691503050  0.100123670403 
13 0.10012367040315583000000 0.10012367040315691503050  qNaN.sig 
14 0.10012367040315583000000 0.10012367040315691503050  qNaN.sig 

Table 2: Stress Test Two of Heron’s Formula for Area of Thin Triangle 

For δ = 0.001, A=2.0 + 1 ulp, B=1.001, C=1.0 
Significant Digits Required Area Using Double Precision Area Using Quad Precision Area Using BFP 

10 0.03162672524840082900000 0.03162672524839554108590  0.031626725248 
11 0.03162672524840082900000 0.03162672524839554108590  0.031626725248 
12 0.03162672524840082900000 0.03162672524839554108590  qNaN.sig 
13 0.03162672524840082900000 0.03162672524839554108590  qNaN.sig 

Table 3: Stress Test Three of Heron’s Formula for Area of Thin Triangle 

For δ = 0.0001, A=2.0 + 1 ulp, B=1.0001, C=1.0 
Significant Digits Required Area Using Double Precision Area Using Quad Precision Area Using BFP 

9 0.01000012498670694800000 0.01000012498671860350864  0.01000012498 
10 0.01000012498670694800000 0.01000012498671860350864  0.01000012498 
11 0.01000012498670694800000 0.01000012498671860350864  qNaN.sig 
12 0.01000012498670694800000 0.01000012498671860350864  qNaN.sig 

Table 4: Stress Test Four of Heron’s Formula for Area of Thin Triangle 

For δ = 0.00001, A=2.0 + 1 ulp, B=1.00001, C=1.0 
Significant Digits Required Area Using Double Precision Area Using Quad Precision Area Using BFP 
8 0.00316228161305403100000 0.00316228161297345549598  0.00316228161 
9 0.00316228161305403100000 0.00316228161297345549598  0.00316228161 
10 0.00316228161305403100000 0.00316228161297345549598  qNaN.sig 
11 0.00316228161305403100000 0.00316228161297345549598  qNaN.sig 

Table 5: Stress Test Five of Heron’s Formula for Area of Thin Triangle 

For δ = 0.000001, A=2.0 + 1 ulp, B=1.000001, C=1.0 
Significant Digits Required Area Using Double Precision Area Using Quad Precision Area Using BFP 

7 0.00100000012506975620000 0.00100000012499986718749  0.0010000001 
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8 0.00100000012506975620000 0.00100000012499986718749  0.0010000001 
9 0.00100000012506975620000 0.00100000012499986718749  qNaN.sig 
10 0.00100000012506975620000 0.00100000012499986718749  qNaN.sig 

Table 6: Stress Test Six of Heron’s Formula for Area of Thin Triangle 

For δ=0.0000001, A=2.0 + 1 ulp, B=1.0000001, C=1.0 
Significant Digits Required Area Using Double Precision Area Using Quad Precision Area Using BFP 

7 0.00031622777041308547000 0.00031622776996968458842 0.0 
8 0.00031622777041308547000 0.00031622776996968458842 0.0 
9 0.00031622777041308547000 0.00031622776996968458842 0.0 
10 0.00031622777041308547000 0.00031622776996968458842 0.0 

Table 7: Stress Test Seven of Heron’s Formula for Area of Thin Triangle 

For δ=0.00000001, A=2.0 + 1 ulp, B=1.00000001, C=1.0 
Significant Digits Required Area Using Double Precision Area Using Quad Precision Area Using BFP 
1  0.00009999999982112643300  0.00010000000012499999867  0.0 
2  0.00009999999982112643300  0.00010000000012499999867  0.0 
3  0.00009999999982112643300  0.00010000000012499999867  0.0 
4  0.00009999999982112643300  0.00010000000012499999867  0.0 
5  0.00009999999982112643300  0.00010000000012499999867  0.0 
6  0.00009999999982112643300  0.00010000000012499999867  0.0 
7  0.00009999999982112643300  0.00010000000012499999867  0.0 
8  0.00009999999982112643300  0.00010000000012499999867  0.0 

Table 8: Stress Test One of Kahan’s Formula for Area of Thin Triangle 

For δ=0.01, A=2.0 + 1 ulp, B=1.01, C=1.0 
Significant Digits Required Area Using Double Precision Area Using Quad Precision Area Using BFP 

12 0.10012367040315807000000 0.10012367040315691503050  0.1001236704031 
13 0.10012367040315807000000 0.10012367040315691503050  0.1001236704031 
14 0.10012367040315807000000 0.10012367040315691503050  qNaN.sig 
15 0.10012367040315807000000 0.10012367040315691503050  qNaN.sig 

Table 9: Stress Test Two of Kahan’s Formula for Area of Thin Triangle 

For δ=0.001, A=2.0 + 1 ulp, B=1.001, C=1.0 
Significant Digits Required Area Using Double Precision Area Using Quad Precision Area Using BFP 

11 0.03162672524839731100000 0.03162672524839554108590  0.0316267252483 
12 0.03162672524839731100000 0.03162672524839554108590  0.0316267252483 
13 0.03162672524839731100000 0.03162672524839554108590  qNaN.sig 
14 0.03162672524839731100000 0.03162672524839554108590  qNaN.sig 

Table 10: Stress Test Three of Kahan’s Formula for Area of Thin Triangle 

For δ=0.0001, A=2.0 + 1 ulp, B=1.0001, C=1.0 
Significant Digits Required Area Using Double Precision Area Using Quad Precision Area Using BFP 

10 0.01000012498672915600000 0.01000012498671860350864 0.010000124986 
11 0.01000012498672915600000 0.01000012498671860350864 0.010000124986 
12 0.01000012498672915600000 0.01000012498671860350864  qNaN.sig 
13 0.01000012498672915600000 0.01000012498671860350864  qNaN.sig 

Table 11: Stress Test Four of Kahan’s Formula for Area of Thin Triangle 

For δ=0.00001, A=2.0 + 1 ulp, B=1.00001, C=1.0 
Significant Digits Required Area Using Double Precision Area Using Quad Precision Area Using BFP 

9 0.00316228161301892240000 0.00316228161297345549598  0.003162281612 
10 0.00316228161301892240000 0.00316228161297345549598  0.003162281612 
11 0.00316228161301892240000 0.00316228161297345549598  qNaN.sig 
12 0.00316228161301892240000 0.00316228161297345549598  qNaN.sig 

Table 12: Stress Test Five of Kahan’s Formula for Area of Thin Triangle 

For δ=0.000001, A=2.0 + 1 ulp, B=1.000001, C=1.0 
Significant Digits Required Area Using Double Precision Area Using Quad Precision Area Using BFP 
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8 0.00100000012506975620000 0.00100000012499986718749  0.00100000012 
9 0.00100000012506975620000 0.00100000012499986718749  0.00100000012 
10 0.00100000012506975620000 0.00100000012499986718749  qNaN.sig 
11 0.00100000012506975620000 0.00100000012499986718749  qNaN.sig 

Table 13: Stress Test Six of Kahan’s Formula for Area of Thin Triangle 

For δ=0.0000001, A=2.0 + 1 ulp, B=1.0000001, C=1.0 
Significant Digits Required Area Using Double Precision Area Using Quad Precision Area Using BFP 

7 0.00031622777041308547000 0.00031622776996968458842  0.00031622777 
8 0.00031622777041308547000 0.00031622776996968458842  0.00031622777 
9 0.00031622777041308547000 0.00031622776996968458842  qNaN.sig 
10 0.00031622777041308547000 0.00031622776996968458842  qNaN.sig 

Table 14: Stress Test Seven of Kahan’s Formula for Area of Thin Triangle 

For δ=0.00000001, A=2.0 + 1 ulp, B=1.00000001, C=1.0 
Significant Digits Required Area Using Double Precision Area Using Quad Precision Area Using BFP 

1 0.00010000000093134947000 0.00010000000012499999867 0.0 
2 0.00010000000093134947000 0.00010000000012499999867 0.0 
3 0.00010000000093134947000 0.00010000000012499999867 0.0 
4 0.00010000000093134947000 0.00010000000012499999867 0.0 
5 0.00010000000093134947000 0.00010000000012499999867 0.0 
6 0.00010000000093134947000 0.00010000000012499999867 0.0 
7 0.00010000000093134947000 0.00010000000012499999867 0.0 
8 0.00010000000093134947000 0.00010000000012499999867 0.0 

Table 15: Zero Detection – Standard Floating point (SFP) vs. Bounded floating point (BFP) 

Function GCC 64-bit Floating Point GCC 128-bit Floating Point 80-bit BFP 
sqrt(pi*pi)-pi 2.27682456e-017  -1.2246467991e-16  0.0 
sqrt(pi)*sqrt(pi)-pi -1.96457434e-016 -1.2246467991e-16  0.0 

8. Modeling Square Root Problem – Zero Detection  
Zero detection is important because standard floating point 

does not always accurately identify when the result of a subtraction 
is a zero. 

In standard floating point, even a one ulp error may cause a 
significantly erroneous result. Standard floating point does not 
reliably provide zero as a result when subtracting significantly 
equal values. For example, when subtracting two values 
representing infinitely accurate numbers, if a one ulp error has 
been introduced into one of the floating-point values, the floating-
point subtraction result will not be zero. Detection of this condition 
requires external testing of the comparison result. In contrast, BFP 
provides zero detection by detecting whether the significant bits of 
a comparison result are equal to zero. Using the software model, 
we examine a simple expression that should evaluate exactly to 
zero. Standard floating point does not solve this simple calculation 
correctly but BFP does. 

Table 15 demonstrates BFP’s zero detection capability as 
compared to the results of calculating the same expression (that 
mathematically equates to zero) in standard double capacity 
precision (64-bit) and quad capacity precision (128-bit) floating 
point [13]. 

9. Modeling Unstable Matrices 

BFP can be used to determine if a determinant is significantly 
zero. Thus, BFP can be used to identify an unstable matrix, as 
shown in Table 16. 

Common matrix expressions require the application of the 
inverse of a matrix. The inverse of matrix A is denoted as A-1. The 
inverse of a matrix may be calculated only if the determinant of 
that matrix (|A|) is not equal to zero. Thus, it is important to know 
if the determinant is zero. But standard floating point may not 
properly yield zero because of floating-point error. To address this 
problem, many supplementary methods have been developed to 
determine if a matrix is invertible. Because these supplementary 
methods are otherwise unnecessary for the computation of the 
equation, they add unnecessary overhead in terms of computation 
time and memory space. Moreover, requiring the addition of code 
to enable these methods makes the code more complex and more 
prone to error. 

However, if the software is written in BFP, this calculation is 
made directly during the solving of the equation. In solving the 
linear equation, Ax=b, the inverse of the A matrix is multiplied by 
the b vector. This produces a new vector, which is the solution to 
the equation. When BFP calculates the determinant, it identifies – 
during the calculation – if the determinant is zero. Thus, BFP 
efficiently identifies whether the equation can be solved, without 
requiring additional code as the supplementary methods do. 

Table 16: Comparison of Determinant Calculation of an Unstable Matrix 

Matrix Standard 64-bit Floating Point Standard 128-bit Floating Point 80-bit BFP 

cavity01 4.9359402474e-045  4.9359402474e-45  0.0 

http://www.astesj.com/


A.A. Jorgensen et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 519-531 (2021) 

www.astesj.com     528 

Table 16 presents the comparison of the calculations of the 
determinant of an unstable matrix using 64-bit standard floating 
point, 128-bit standard floating point, and 80-bit BFP. The 
determinant is calculated using the upper triangle method, 
Gaussian Elimination [39]. 

The matrix selected, cavity01, is from the Matrix Market [40]. 
It was located searching the Matrix Market with the term 
“unstable.”1 The matrix selected is a sparce 317x317 matrix with 
7,327 entries. 

Table 16 shows that both 64-bit and 128-bit standard floating 
point provide a non-zero value for the determinant, where BFP 
does return zero, because at some point in the calculation the 
significant bits were all zero. Thus, using BFP identifies the 
problem efficiently during the calculation. Using standard floating 
point requires the incorporation of one of the supplementary 
methods into the code to prevent division by zero. Consequently, 
BFP directly determines if a matrix is not invertible. 

Moreover, when the matrix is properly invertible, using BFP 
provides the accuracy of the result. The use of BFP identifies how 
many significant digits are in the result. In an example, a 
requirement is that the accuracy must be more than three 
significant digits. Even if the matrix is valid, there may be less than 
three significant digits remaining in the results, which BFP 
identifies. 

Consequently, when BFP is used during matrix calculations, it 
not only determines if the matrix is invertible, but it also assures 
that the requirement for accuracy is met. 

10. Summary 

BFP adds a field to the standard floating point format in which 
error may be accumulated. The upper bound of that error is stored 
as the logarithm of that bound. 

BFP makes floating-point error quantifiable and visible. It 
allows exact equality comparison. It provides notification when 
insufficient significant digits have been retained during floating-
point computations. When implemented in hardware it affords 
real-time fail-safe calculations for mission critical applications. 

Though designed for hardware implementation, a software 
model emulating the BFP functions was used in this paper. The 
BFP software model has been applied to three problems as follows:  
the failure of standard floating point to exactly detect zero in the 
presence of floating-point error, the failure of standard floating 
point to identify the number of significant digits (if any) of a result, 
and the lack of the ability to diagnose standard floating point 
accuracy errors. 

This paper shows that BFP solves these problems by 
calculating and propagating the number of significant bits as 
described by the BFP algorithms presented. Three examples have 
been used, which are a precision stress test, true floating point zero 
detection, and detection of an unstable matrix. 

 
1 This particular matrix is available in compressed form from 
ftp://math.nist.gov/pub/MatrixMarket2/SPARSKIT/drivcav_old/cavity01.mtx.gz, 
accessed 4 August 2020. 

The precision stress test of an algorithm increases the required 
precision for that algorithm under specific parameters until that 
required precision cannot be met. The algorithm parameters may 
be adjusted as well to determine the operational envelope for that 
algorithm for a given required precision. 

Standard floating point does not return precisely zero when 
significantly similar, yet different numbers are subtracted. An 
example is provided where an expression clearly evaluates to zero, 
yet standard floating point does not return zero but BFP does return 
zero. Using this property of BFP, we evaluate the determinant of a 
matrix known to be unstable and note that BFP evaluates the 
determinant as zero. 

Properly implemented in hardware, BFP will reduce the time 
and cost of the development of scientific and engineer calculation 
software and will provide run-time detection of floating-point 
error. This hardware implementation has begun using Verilog 
HDL. 

11. Appendix – Post Revision Result Format 

11.1. Bound Description 

Definitions are from, or amended from, [26]. 

An 80-bit model was chosen to allow for using 64-bit standard 
floating point and a 16-bit bound field B. Table 17 specifies 
subfield widths for a 80-bit BFP model. 

Table 17: 80-Bit Model Field Widths 

Subfield Widths 
#define r 4 
#define d 6 
#define c d 
#define n (c+r) 
#define b (d+n) 

11.2. Notation Used 

Each algorithm is preceded by a list of definitions of the 
variables (for example, Op1Exp) used in the algorithm. Each 
definition (for example, first operand exponent) is followed by an 
alphanumeric identifier (for example, 51A). That identifier refers 
to the patent reference number of [26]. Further, a letter (E, B, D, 
N, R, or C) may follow the identifier definition (for example, first 
operand exponent E). This refers to a specific portion of the data 
format identified in Figures 1 and 3. 

11.3. Dominant Bound 

The dominant bound (DominantBound) is the larger of the 
largest operand bound (HiOpBound) and the adjusted bound of the 
smallest operand (AdjBoundLoOp). This is the bound of the 
operand with the least number of significant bits. 

The dominant bound (DominantBound) is determined from the 
first operand bound (Op1Bound), the second operand bound 
(Op2Bound), the exponent difference (ExpDelt), and the condition 
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(Op2Larger) in which the magnitude of the second operand (Op2) 
is greater than the magnitude of the first operand (Op2). 

11.4. Finding the Exponent Difference 

The exponent difference (ExpDelt) is the magnitude of the 
difference between the first operand exponent (Op1Exp) and the 
second operand exponent (Op2Exp). 

The exponent difference (ExpDelt) is determined from the first 
operand (Op1Exp) and the second operand (Op2Exp), as in 
Algorithm 1. 

Algorithm 1: Finding Exponent Difference 
Result: Exponent Difference 
Op1 := first operand, 201; 
Op2 := second operand, 202; 
Op1Exp := first operand exponent E, 51A; 
Op2Exp := second operand exponent E, 51B; 
ExpDelt := exponent difference, 321; 
Op2Larger := second operand > first operand, 302; 
SmallerExp := smallest exponent E, 51E; 
LargerExp := largest exponent E, 51D; 
 
begin 
 Op2Larger := |Op2| > |Op1| 

if Op2Larger then 
  LargerExp := Op2Exp;  

SmallerExp := Op1Exp; 
  else    
  LargerExp := Op1Exp; 

SmallerExp := Op2Exp; 
  end 

ExpDelt := LargerExp – SmallerExp 
end 

11.5. Finding the Dominant Bound 

As shown in Algorithm 2, the dominant bound (DomBound) is 
derived from the first operand bound B (Op1Bound), the second 
operand bound B (Op2Bound), the exponent difference (ExpDelt), 
and the second operand larger (Op2Larger).  

Algorithm 2: Finding the Dominant Bound 
Result: Dominant Bound 
Op1Bound := the first operand bound B, 52A; 
Op2Bound := the second operand bound B, 52B; 
LoOpBound := smallest operand bound B, 52D; 
HiOpBound := largest operand bound B, 52E; 
LoOpBoundeBadBits := smallest operand bound 
                                         defective bits D, 54A; 
AdjLoOpBoundBadBits := adjusted smallest operand bound 
                                           defective bits D, 54B; 
ClampedBadBits := clamped defective bits D, 54G; 
LoOpBoundAccRE := smallest operand bound accumulated 
                                      rounding error N, 55A; 
AdjBoundLoOp := adjusted bound B of the smallest 
                                operand, 52F; 
HiOpBoundLargest := largest operand bound B is  
                                      greatest, 431; 

DominantBound := dominant bound, the bound of the 
                                 operand with the least number of 
                                 significant bits after alignment, 52H; 
begin 
 Op2Larger := |Op2| > |Op1| 

if Op2Larger then 
 

  LoOpBound := Op1Bound;  
  HiOpBound := Op2Bound;  
  else    
  LoOpBound := Op2Bound; 

HiOpBound := Op1Bound 
 

  end    
 AdjLoOpBoundBadBits  

           := LoOpBoundeBadBits – ExpDelt 
if AdjLoOpBoundBadBits < 0  then 

 

  AdjLoOpBoundBadBits := 0;  
  end    
 AdjLoOpBoundBadBitsE              

          := ClampedBadBits |&| LoOpBoundAccRE; 
HiOpBoundLargest := HiOpBound  
             > AdjBoundLoOp; 
 if HiOpBoundLargest  then 

  DominantBound := HiOpBound; 
  else    
  DominantBound := AdjBoundLoOp;  
  end    
end    

Where ‘|&|’ is the field concatenation operator.  

11.6. Result Bound Calculation 

The resulting bound of a calculation is determined by one of 
two mutually exclusive calculations, the bound calculation 
algorithm of Algorithm 3 or the bound rounding algorithm of 
Algorithm 4. When there is a subtract operation and the operands 
are sufficiently similar, the intermediate result has leading zeros (is 
not normalized). Under this condition the bound calculation 
algorithm determines the bound of the result. Otherwise, the bound 
rounding algorithm determines the result. 

In any case, exact operands produce an exact result [6]. 

Operations other than add or subtract return the dominant 
bound.  

11.7. Bound Cancellation Algorithm 

The result bound B (ResultBound) is determined from either 
the cancellation adjusted bound B  (AdjCaryBound) or the carry 
adjusted bound B (AdjCaryBound). The result bound B requires 
the dominant bound (DominantBound), the significand capacity 
(SigCap), and the number of leading zeros (LeadZeros). 

Algorithm 3 accounts for compensating errors. 

Algorithm 3: Bound Cancellation 
Result: Result Bound from Cancellation 
Cancellation := cancellation detected, 620; 
DomBadBits := dominant bound defective bits D, 54C; 
LeadZeros := number of leading zeros prior to  

http://www.astesj.com/


A.A. Jorgensen et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 519-531 (2021) 

www.astesj.com     530 

                      normalization, 711; 
SigCap := significand capacity, the number of bits in the 
                  significand (t+1), includes hidden bit H, 805; 
AdjBadBits := adjusted defective bits D, 54D; 
MaxedBadBits := max defective bits detected, 617; 
ResultBadBits := resulting defective bits D, 54H; 
DomAccRE := dominant bound accumulated rounding  
                        error N, 55B; 
CancAdjBound := cancellation adjusted bound B, 52J; 
ResultBound := result bound B, 52C; 
 
if Cancellation then 
 AdjBadBits := DomBadBits + LeadZeros; 

MaxedBadBits := SigCap <= AdjBadBits; 
   if MaxedBadBits then   
  ResultBadBits := SigCap;  
  else    
  ResultBadBits := AdjBadBits; 
  end 

CancAdjBound := ResultBadBits |&| DomAccRE 
ResultBound := CancAdjBound 

end 

11.8. Bound Rounding Algorithm 

The adjusted value of R is added to the dominate bound to 
provide the adjusted bound.  When the logarithm of C is equal to 
D, 1 is added to D and C is set to zero in the resulting bound. 

There is an externally applied limit, Required Significant Bits, 
which is defaulted and programmable. On external representation, 
when the available significant bits value (t+1-D) is less than or 
equal to the Required Significant Bits, “sNaN.sig” is displayed. A 
special command is provided that tests for this condition of an 
individual BFP value to produce a signaling exception sNaN.sig, 
which can be detected and serviced like any other hardware 
exception such as sqrt(-1) or x/0. 

When there are significant bits and they are all zero, the value 
represented is truly zero and the resulting value is set to all zeros. 
(Zero has no significant bits/digits). This is true zero detection 
unavailable with standard floating point nor Interval Arithmetic 
(IA). 

Algorithm 4: Bound Rounding 
Result: Result Bound from Rounding 
NormalizedRE := normalized rounding error R, 57A; 
StickyBit := significand excess, logical OR of all bits of the  
                     normalized extension X, 741; 
RESum  := rounding error sum B, 52K; 
RESumCount := updated accumulated rounding error  
                            extension count C from the rounding  
                            error sum B, 54K; 
RESumFraction := updated accumulated rounding error 
                                rounding bits R from the rounding  
                                error sum B, 57B; 
Log2RESum := rounding count logarithm, 61; 
LogOvrflw := log count overflow, 651; 
AdjBadBits := incremented defective bits D, 54E; 
MaxBadBits := max defective bits, 662; 

LimAdjBadBits := clamped incremented defective  
                              bits D, 54J; 
AdjBadBitsBnd := defective bits adjusted bound B, 52L; 
AdjCaryBound := carry adjusted bound B, 52M; 
 
if not Cancellation then 
 RESum := DominantBound + NormalizedRE + StickyBit; 

Log2RESum := Log2(RESumCount); 
CntOvrflw := Log2RESum >= DomBadBits; 
AdjBadBits := LogOvrflw + DomBadBits; 
MaxBadBits := AdjBadBits >= SigCap; 

   if MaxBadBits then   
  LimAdjBadBits := SigCap; 
  else    
  LimAdjBadBits := AdjBadBits; 
  end 

AdjBadBitsBnd := LimAdjBadBits |&| RESumFraction 
   if LogOvrflw then   
  AdjCaryBound := AdjBadBitsBnd; 
  else    
  AdjCaryBound := RESum; 
  end 

ResultBound := AdjCaryBound 
end    
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