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The objective of the metaheuristics, together with obtaining quality results in reasonable
time, is to be able to control the exploration and exploitation balance within the iterative
processes of these methodologies. Large combinatorial problems present ample search space,
so Metaheuristics must efficiently explore this space; and exploits looking in the vicinity of
good solutions previously located. The objective of any metaheuristic process is to achieve
a ”proper” balance between intensive local exploitation and global exploration. In these
processes two extreme situations can occur, on the one hand an imbalance with a bias towards
exploration, which produces a distributed search in the search space, but avoiding convergence,
so the quality of the solutions will be low, the other case is the bias towards exploitation,
which tends to converge prematurely in local optimals, impacting equally on the quality of the
solutions. To make a correct balance of exploration and exploitation, it is necessary to be able
to control adequately the parameters of the Metaheuristics, in order to infer in the movements
taking advantage of the maximum capacity of these. Among the most widely used optimization
techniques to solve large problems are metaheuristics, which allow us to obtain quality results
in a short period of time. In order to facilitate the use of the tools provided by the metaheuristic
optimization techniques, it is necessary to reduce the difficulties in their configuration. For
this reason, the automatic control of parameters eliminates the difficult task of obtaining a
correct configuration. In this work we implemented an autonomous component to the Intelligent
Water Drops algorithm, which allows the control of some parameters dynamically during the
execution of the algorithm, achieving a good exploration-exploitation balance of the search
process. The correct functioning of the proposal is demonstrated by the Set Covering Problem,
which is a classic problem present in the industry, along with this we have made an exhaustive
comparison between the standard algorithm and the autonomous version that we propose, using
the respective statistical tests. The proposal presents promising results, along with facilitating
the implementation of these techniques to industry problems.

1 Introduction

This paper is an extension of work ”An Adaptive Intelligent Water
Drops Algorithm for Set Covering Problem”, originally presented
in 19th International Conference on Computational Science and Its
Applications (ICCSA) [1].

The post-pandemic economic recovery brings with it a num-
ber of challenges for the industry, ranging from rethinking business

models to making good use of every available resource. In this sense,
optimization is an important tool to achieve the desired recovery
[2]–[6].

There are various economic sectors where there are problems
that need to be optimised such as the airport sector where, given
the environmental restrictions, it is becoming increasingly difficult
to build new airports and for this reason it is necessary to optimise
each of the tasks of the current installations [7]–[9]. Another ex-
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ample is the educational sector, in particular the universities where
it is necessary to optimize the use of rooms and the curriculum of
students [10, 11]. In summary, we can find a series of problems that
can be treated through optimization techniques that have a positive
impact on economic recovery.

In this sense the metaheuristics that are supervised heuristics
[12], are a real option to give solution to the industrial optimization
problems since their attraction is that they allow to deliver a high
quality solution that can even be the optimal one in limited compu-
tation times. There is a great variety of metaheuristics which have
been used to solve NP-Hard problems [13]–[16].

In general, metaheuristics have a great amount of parameters,
which allow controlling the high and low level strategies of these,
having direct relation with the performance of the techniques in
the different problems [17], the optimal configuration of parameters
constitutes in itself an optimization problem [18, 19]. The impor-
tance of a good parameter assignment to metaheuristic algorithms
impacts on the quality of solutions, but on the other hand it is not
possible to consider transversal parameters for all the problems to
be solved, since the assignment of values depends directly on the
problem and the instances to be solved [20].

The values that can assume the parameters can have a great
amount of combinations, for that reason we can occupy different
strategies to approach the optimal configuration of parameters, that
according to the literature are divided in two great groups, off-line
configuration and on-line control. The off-line configuration of
parameters corresponds to the determination of the metaheuristic
algorithm outside the run, that is, before its execution begins [21],
while the on-line control dynamically updates the values of the
algorithm during the execution [22].

Given the current context of using metaheuristic techniques to
solve the problems of the industry, we must facilitate the use of these
techniques to non-expert users, so the use of autonomous techniques
for the control of parameters, is a great contribution to bring this
type of tools to all users of the industry.

The present work, solves a classic problem of the real world,
as it is it Set Convering Problem (SCP) [23], which has diverse
applications in the industry, using metaheuristic techniques to solve
problems of great dimension. We have used the metaheuristic tech-
nique Intelligent Water Drops (IWD), which is inspired by the phys-
ical behavior of water droplets in a river bed [24], Along with this,
we have incorporated autonomous elements for the on-line control
of its parameters, which has two main components, the first is the
obtaining of external information on the problems to be solved, and
the second is the obtaining of internal information on the behaviour
of the algorithm. With this we can better combine the information
of each problem to be solved, along with the internal behavior of
the algorithm, which generates that our proposal is adapted to the
various problems that are solved.

The work is structured in the following form, in Section 2 what
has been done regarding parameter tuning is presented, in Section 3
the functioning of IWD is explained, while in Section 4 the adaptive
implementation proposed for IWD is detailed, in Section 5 set cov-
ering problem is shown, in Section 6 the corresponding experiments
and statistical analyses are presented, ending in Section 7 with the
conclusions and future work.

2 Parameter Tuning
In this section we will review the various techniques of parameteri-
zation of algorithms in order to find a correct configuration.

The proper selection of parameter values for the algorithms is
not an easy task and has an important impact. Usually a great deal
of time is spent, using previous experiences and expert knowledge
for the correct assignment of values which also constitutes a not
easy task for non-expert users. In consideration of the latter, the
ideal condition from the point of view of the non-expert user is that
he or she should give general information about the problem and
with the least possible interaction receive an adequate response (Fig.
1). This concept, called Autonomous Search, was proposed by [18],
using indicators to determine the best strategy to use.
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Figure 1: Autonomous Search.

The techniques for finding a good configuration for the parame-
ters were initially grouped into two categories: offline configuration
and online control. However, a new proposal is made in [21]: Simple
Generate-Evaluate Methods, Iterative Generate-Evaluate Methods
and High-Level Generate-Evaluate Methods.

2.1 Offline configuration

Finding a convenient parameter configuration previous to the execu-
tion of the algorithm is known as offline configuration.

This is primarily a trial and error process and can consume con-
siderable time in research. The efficiency of this depends mainly
on the insight and knowledge of the researcher or author of the
algorithm. These processes are typically undocumented and are not
reproducible, often driving to an unequal adjustment of different
algorithms.

The following techniques exist within this group:

• F-race is an inspired method of racing algorithms in auto-
matic learning, in particular, races in [25, 26]. This algorithm
was presented in [27] and studied in detail in Birattari’s PhD
thesis [28]. The purpose of these methods is to iteratively
evaluate a set of candidate configurations for a given set of
instances. A set is removed when there is sufficient statistical
evidence and there are survivors within the continuous race.
This method is used after each evaluation of the candidate
configurations, in which nonparametric Friedman two-way
variance analysis [29] determines if there is evidence that at
less than one of the configurations is significantly different
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from the other ones. If the hypothesis is null and there is
no difference, it is rejected; Friedman’s subsequent tests are
applied to remove these candidate configurations that are sig-
nificantly worse than the best. This approach had been used
by the ACO in [30].

• ParamILS was introduced by [31] as a versatile stochastic
local search approach for automatic algorithm configuration.
ParalILS includes methods to optimize the performance of an
algorithmic, deterministic or stochastic object in a particular
class of problems by switching a set of ordinal and/or categor-
ical parameters. This proposal is based on an iterated local
search algorithm that uses a combination of configurations
chosen, a priori or at random, at initialization. The underlying
idea of local search is an iterative ”best first” method, which
uses a variety of random movements to disturb the solution
and avoid getting into local minima. The method always ac-
cepts configurations that improve or match the performance
of the best configuration and restarts the search from a random
configuration under a certain probability. The local search
method moves through the search space by modifying only
one parameter each time[32]. This approach has been used to
configure ACO to solve transportation planning problems in
[33].

• The other approach to optimization, focused on the sequential
paradigm, includes improving the parameter initial values
by the alternation of experimental design and the parameter
recognition.

In this paradigm, statistical significance takes a preponderant
role, since each new experiment contributes with information
about the performance of the parameters used, which are then
referenced to the new stages.

In the case of a parallel method, different experiments are for-
mulated concurrently (all of them taking the same parameter
nominal values); experiments are then carried out. The param-
eters are calculated and their suitability tested using the data
obtained in all parallel experiments. If the data obtained from
the parallel experiments are inadequate after the parameter
estimation the procedure can be replicated [34, 35].

• In [36], the author used the graphic radial technique. The four
basic metrics are employed for this method: worst case, best
case, average case and average run-time. The region under
the radar plot curve is obtained with these four metrics to set
the best setting.

• The meta-optimization method was initially studied by [37]
and is characterized by using an algorithm to optimize the
parameters of another optimization algorithm, that is, there is
an algorithm at a higher level that optimizes the parameters
of a lower-level algorithm. This method has been used for
covering problems in facility locations in [38], stand manage-
ment in [39], and parameter selection in machine learning in
[40].

2.2 Online configuration

One of the areas of research that has taken great strength in recent
years is the online configuration, as it gives the algorithms the
ability to adapt to the characteristics of a particular instance for
better performance. For this online configuration to be useful,
the exploration and exploitation phases must be clearly identified
because the internal adjustments may be different for each of the
phases. Thus, the online configuration can improve the results when
the algorithms are used in situations very different from those that
were built.

Different techniques exist, and the most simple is to define the
parameter variation rules before executing the algorithm.
One possibility is the use of parameter adaptation, where the param-
eter modification scheme is defined for some behavior statistics of
the algorithm.

• Absolute evidence: An example is the threshold of the dis-
tance between the solutions.

• Relative evidence: Considers that the relative difference in
the performance with parameters of different values adapt to
those with the best behavior.

2.3 Simple Generate-Evualate Methods

In this method the principle of generating and evaluating is used.
Candidate configurations are occupied and then each of the parame-
ters are evaluated to find the best configuration (Figure 2).

Generate Evaluate
Set of candidate 
configurations

 candidate 
configurations

 Start End

Figure 2: Simple Generate-Evualate Methods.

2.4 Iterative Generate-Evualate Methods

Unlike the first method, this one repeatedly performs the generation
and evaluation steps. In this method the historical information al-
lows to guide the generation, so that the search space for parameters
is better explored and is more efficient in large search spaces (Figure
3).
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configurations
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 Start End

Figure 3: Iterative Generate-Evaluate Methods.
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Figure 4: High-Level Generate-Evualate Methods.
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2.5 High-Level Generate-Evualate Methods

This approach generates candidate configurations to then evaluate
them and select the best configuration. The idea is to generate a
set of high quality configurations quickly using few computational
resources and select the best one. The idea is to greatly reduce the
resources used when exploring candidate configurations and use
them to thoroughly evaluate these configurations (Figure 4).

3 Intelligent Water Drops Algorithm
During the year 2007 in [24] he presented the algorithm that is clas-
sified as constructive since it builds a solution from 0. Its inspiration
is based on nature and corresponds to the displacement that water
drops make through the flow of a river and its friction with the earth,
considering that when a drop is moved from one point to another it
displaces earth from the river bed making the friction less and less
which makes the drops increase their speed and in turn incorporate
part of the extracted earth.

In the Figure 5, we can see how the soil of the river behaves, on
the one hand during the passage of the drop is removed soil from
the bottom of the river and on the other hand is incorporated into
the drop which directly influences the speed that is acquired, this
is demonstrated in that two drops of similar size but with different
speeds at the end of its movement are with different size because
of the soil that is incorporated. This abstraction of the behavior of
water drops in river soil, allows us to build diversified solutions at
the beginning, while during the execution of the algorithm, these
solutions converge to promising search spaces, which allows to
intensify the search.

t

t+1

A B

A B

Figure 5: Water drop removing riverbed soil and adding to its own soil.

This algorithm has been used to solve mainly scheduling prob-
lems: Cooperative Search Path Optimization problem [41], Work
Flow Scheduling Algorithm for Infrastructure as a Service (IaaS)
cloud [42], Capacitated Vehicle Routing Problem [43], Trajectory
Planning of Unmanned Combat Aerial Vehicle (UCAV) is a rather
complicated Global Optimum Problem in UCAV Mission Planning
[44], Method for Optimal Location and Sizing of Distributed Gen-
eration (DG) [45].

This algorithm has an initialization phase where both the static
parameters number of drops, number of iterations, initial soil, initial
speed and constants as, bs, cs, av, bv, cv are initialized and also the
dynamic parameters Speed of drop k and soil value of drop k are
initialized.

Then there is a construction phase where every drop builds a
solution by visiting the nodes. The Eq. 1 is used to determine which
node to visit:

pk
i ( j) =

f (soil(i, j))∑
∀l<VCk f (soil(i, l))

(1)

where soil(i, j) corresponds to the amount of soil between i and
j and is calculated according to the following equation (Equation
2):

f (soil(i, j)) =
1

ε + g(soil(i, j))
(2)

where ε is a small positive value to avoid division by zero.
The function g(soil(i,j) always obtains a positive soil value

(Equation 3):

g(soil(i, j)) =

soil(i, j) if min∀l<VCk soil(i, l) ≥ 0,
soil(i, j) −min∀l<VCk soil(i, l) otherwise

(3)

Once the drop has selected the new node, its velocity should be
updated (equation 4):

velk(t + 1) = velk(t) +
av

bv + cv · soil2(i, j)
(4)

where av, bv and cv correspond to static parameters, and soil(i, j)
represents the amount of soil between i and j.

Next, it is necessary to update the soil after the step of the drop;
for this, we use the following equation 5:

soil(i, j) = (1 − ρ) · soil(i, j) − ρ · ∆soil(i, j) (5)

where ρ is a small positive value between 0 and 1, and ∆soil(i, j)
is the amount of soil removed from paths i and j.

The value of ∆soil(i, j) is obtained with the following equation
(6):

∆soil(i, j) =
as

bs + cs · time(i, j : velk(t + 1))
(6)

where as, bs and cs are static parameters, and time(i, j : velk(t +

1)) is calculated as follows (7):

time(i, j : velk(t + 1)) =
HUD(i, j)
velk(t + 1)

(7)

where HUD is a heuristic that measures the degree of undesir-
ability of the drop to jump from one node to another.

The Reinforcement phase is responsible for updating the global
soil with the best drop of the iteration, and the following equation is
used (8):

soil(i, j) = (1 + piwd) · soil(i, j) − piwd ·
1

q(T IB)
(8)

where piwd is a small positive value between 0 and 1, and q(T IB)
is the fitness value.

The best solution for each iteration is compared with the best
global solution and updated according to the following equation (9):

T T B =

T IB if q(T IB) < q(T T B)
T T B otherwise

(9)

Finally, the Termination phase is responsible for the completion
of the algorithm process when the stop condition is met, which can
be the number of iterations.
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In 6 the original algorithm of the metaheuristics is shown.

Figure 6: Intelligent Water Drops Algorithm.

4 Adaptative Intelligent Water Drops
The configuration of initial parameters is a costly task, carried
out by an expert user and performed prior to the execution of the
algorithm. We can reduce the cost of this task based on the concepts
from Autonomous Search [18], which obtains information from
two different sources, internal, corresponding to the operation of
the algorithm and external, corresponding to the problem we are
solving. The use of these data sources allows us to compare the
quality of the solution in the current iteration ( fIB) with the quality
of the best found solution ( fT B).

The general scheme for obtaining information to guide the
adjustment of parameters is presented in Figure 7.

Figure 7: Information required for the proposal.

The internal information source considers the performance of

the algorithm. In our proposal, we collect the number of iterations
in which no improvement in the quality of the solutions is detected.
The external information source comes from the data corresponding
to the instance of the problem we are solving. We consider the
number of columns and the density of the instance, which allows
us to differentiate them. A weight is assigned to the columns of the
instance that allows us to assign importance to them, multiplying it
by the density, given in the Figure 8).

Figure 8: Standard description of the benchmark OR-library.

The algorithm has two initial parameters to which we assign
values, these correspond to the Soil and Initial Speed (S oilInitial and
VelocityInitial respectively).

In the first case we assign the value considering the number of
columns of the instance and its density, which is done as follows:

To determine the first value we consider information of the
instance considering on one hand the number of columns available
and on the other hand the density that is presented. This value is
obtained in the following way:

S oilInitial = S oilInitial · nColumn · Density (10)

Where S oilInitial = 1, nColumn corresponds to the number of
columns in the instance group and Density corresponds to the per-
centage of nonzeros in the matrix.

VelocityInitial = 15 (11)

For the case of the initial speed VelocityInitial the value is de-
termined by a series of 10 previous executions of the original
algorithm.

For the adaptation, in this work, it is considered the quality of
the solution for which a weight is calculated that will allow us to
update the local velocity, avoiding that the solution remains trapped
in an optimal local. This percentage will be calculated by compar-
ing the solution delivered in each iteration with the best solution
obtained.

It has been experimentally determined that a low initial drop
velocity impacts the convergence of solutions, making it more pro-
nounced. This characteristic is taken into account in the parameter
configuration.
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Initial soil and velocity parameters update rule is given by the
following equation:

Percentage = ( fIB · 100)/ fT B (12)

where fIB is the best solution obtained at the current iteration,
and fT B is the best global solution found.

S oilInitial = S oilInitial · Percentage (13)

where S oilInitial is the available initial soil at the current iteration
and Percentage is the percentage difference between fIB and fT B.

VelocityInitial = VelocityInitial · Percentage · β (14)

where VelocityInitial is the available initial velocity at current
iteration and β is a random number in the interval [0, 1].

Figure 9 shows the proposed adaptation for the local soil param-
eter, aiming to improve the metaheuristic performance.

End

Update Best 
Solution

Begin

Find Better
Solution?

Compare with
best solution

Update local
soil

Iteration = 

N

N Y

Y

Update local
velocity

Figure 9: Parameter adaptation proposal.

At each iteration the improvement of the best solution found is
evaluated. If an improvement is detected, the previous best solution
found is replaced. Otherwise, a counter for not improved iterations
is increased. An α value is set for the maximum number of itera-
tions without improvement. If the counter is equal compared with
the α parameter, the percentage difference of the current solution
compared to the best solution is obtained and used to increase the
local soil for the next iteration.

To obtain the value for the α parameter we perform 10 exe-
cutions of the standard algorithm for each instance. The elapsed
iteration number until a fitness improvement was evaluated. The
analysis of this number allows us to determine the value for the α
parameter to 5. A greater α value causes the fitness improvement
probability to decrease, and the computation cost increases. The re-
sults of this analysis is shown in Figure 10, the column % represents
the occurence percentage for each α, and %Acum column shows

the accumulated percentage for each α. Figure 11 shows the fitness
change for two instances.

a Occurrences % % Acum a Occurrences % % Acum
1 41 59% 59% 1 33 40% 40%
2 10 14% 74% 2 21 26% 66%
3 6 9% 83% 3 8 10% 76%
4 4 6% 88% 4 3 4% 79%
5 1 1% 90% 5 7 9% 88%
6 2 3% 93% 6 1 1% 89%
7 0 0% 93% 7 4 5% 94%
8 0 0% 93% 8 3 4% 98%
9 1 1% 94% 9 0 0% 98%
10 1 1% 96% 10 0 0% 98%
11 1 1% 97% 11 0 0% 98%
12 0 0% 97% 12 1 1% 99%
13 1 1% 99% 13 1 1% 100%
14 0 0% 99% 14 0 0% 100%
15 0 0% 99% 15 0 0% 100%
16 1 1% 100% 16 0 0% 100%
17 0 0% 100% 17 0 0% 100%
18 0 0% 100% 18 0 0% 100%
19 0 0% 100% 19 0 0% 100%
20 0 0% 100% 20 0 0% 100%
20+ 0 0% 100% 20+ 0 0% 100%

Figure 10: Experiments to determine the alpha value.
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Figure 11: Chart of fitness change based on the number of iterations.

After a series of tests, we show the convergence for different
initial velocities in Figure 12. When the velocity is low, the conver-
gence shows to be premature. For this case, the initial velocity was
adjusted, multiplying it by a β value in range [0, 1].
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Figure 12: Convergence chart of different velocities.

5 Problem to solve
SCP is defined as a binary matrix (A) of size m-rows and n-columns,
where ai, j ∈ {0, 1} is the value of each cell in the matrix A; i and j
are of the size m-rows and n-columns, respectively:

A =


a1,1 a1,2 ... a1,n
a2,1 a2,2 ... a2,n
... ... ... ...

am,1 am,2 ... am,n

 (15)

Defining column j satisfies a row i, if ai j is equal to 1, which is a
contrary case if ai j is equal to 0. In addition, an associated cost c ∈ C
is incurred, where C = {c1, c2, ...cn}, together with i = 1, 2, ...,m and
j = 1, 2, ..., n, which are the sets of rows and columns, respectively.

The problem has an objective of minimizing the cost of the
subset S ⊆ J, with the constraint that all rows i ∈ I are covered
by at least one column j ∈ J. When column j is in the subset of
solution S , this is equal to 1 and is 0 otherwise.

The SCP can be defined as follows:

Min Z =

n∑
j=1

c jx j (16)

Subject to
n∑

j=1

ai jx j ≥ 1 ∀i ∈ I (17)

x j ∈ {0, 1} ∀ j ∈ J (18)

6 Experiments

6.1 Benchmark Instances

In order to validate the proposed approach, the 9 sets of the Beasleys
library were used, executing 55 instances that are known and that
allow a finished experimental evaluation (Figure 8).

The proposed algorithm was built using Java Language and was
executed on an Intel(R) Core(TM) i7-6700 CPU with a speed of
3.40 GHz, with 16GB of memory and using a 64-bit Windows 10
operating system.

6.2 Parameter Setting

As far as the configuration of the parameters used by this algorithm
is concerned, IWD, as it is generally known, is a very difficult task
that requires a great use of resources. Our approach takes care of
working two of the most important parameters in IWD operation
which are the initial soil and the initial speed, IntSoil and InitVe-
locity respectively. To verify the impact of these two parameters, a
series of experiments with different values for the selected param-
eters were carried out. The idea is to adapt these two parameters
dynamically in order to use the quality of the solution as an indicator
of change. The action occurs if the best overall solution does not
change after a defined number of iterations.

The parameters used for the different experiments are shown in
the following Figure 13.

Figure 13: Experimental parameters.

6.3 Experimental results

The results obtained with the adaptive test are shown in the tables
14 to 22 and the comparison between the original and adaptive
algorithm is shown in the Figure 23.-.

Instances ZBKS Zmin Zavg RPD
4.1 429 440 467.18 2.56
4.2 512 551 612.88 7.62
4.3 516 545 614.84 5.62
4.4 494 510 565.88 3.24
4.5 512 533 586.84 4.10
4.6 560 589 576.26 5.18
4.7 430 451 492.28 4.88
4.8 492 517 564.26 5.08
4.9 641 728 809.2 13.57
4.10 514 540 581.4 5.06

Figure 14: Results of Group 4.

www.astesj.com 140

http://www.astesj.com


B. Crawford et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 134-145 (2021)

Instances ZBKS Zmin Zavg RPD
5.1 253 270 301.1 6.72
5.2 302 333 366.36 10.26
5.3 226 234 254.72 3.54
5.4 242 259 278.38 7.02
5.5 211 222 245.22 5.21
5.6 213 234 246.56 9.86
5.7 293 319 353.2 8.87
5.8 288 309 340.4 7.29
5.9 279 293 320.42 5.02
5.10 265 288 306.88 8.68

Figure 15: Results of Group 5.

Instances ZBKS Zmin Zavg RPD
6.1 138 149 176.96 7.97
6.2 146 162 202.66 10.96
6.3 145 149 200.1 2.76
6.4 131 136 157.26 3.82
6.5 161 183 218.34 13.66

Figure 16: Results of Group 6.

Instances ZBKS Zmin Zavg RPD
A.1 253 287 334.74 13.44
A.2 252 276 330.3 9.52
A.3 232 251 296.4 8.19
A.4 234 277 315.48 18.38
A.5 236 255 295.64 8.05

Figure 17: Results of Group A.

Instances ZBKS Zmin Zavg RPD
B.1 69 79 113.52 14.49
B.2 76 96 130.84 26.32
B.3 80 89 141.92 11.25
B.4 79 90 145.16 13.92
B.5 72 81 121.38 12.50

Figure 18: Results of Group B.

Instances ZBKS Zmin Zavg RPD
C.1 227 258 347.48 13.66
C.2 219 248 344.98 13.24
C.3 243 278 371.94 14.40
C.4 219 258 335.32 17.81
C.5 215 245 346.7 13.95

Figure 19: Results of Group C.

Instances ZBKS Zmin Zavg RPD
D.1 60 77 134.72 28.33
D.2 66 81 149.44 22.73
D.3 72 89 179 23.61
D.4 62 75 162.26 20.97

Figure 20: Results of Group D.

Instances ZBKS Zmin Zavg RPD
E.1 29 44 91.84 51.72
E.2 30 49 137 63.33
E.3 27 41 104.42 51.85
E.4 28 37 103.5 32.14
E.5 28 39 110.76 39.29

Figure 21: Results of Group E.

Instances ZBKS Zmin Zavg RPD
F.1 14 21 50.68 50.00
F.2 15 22 39.3 46.67
F.3 14 21 40.38 50.00
F.4 14 19 38.78 35.71
F.5 13 17 42.8 30.77

Figure 22: Results of Group F.

6.4 Statistical Analysis

Figure 24 shows a general scheme of the existing statistical tech-
niques, where in this study the statistical analysis included the
different tests:

• Kolmogorov-Smirnov-Lilliefors [46] is used to establish the
independence of the samples.

• Wilcoxon’s Signed Rank [47] is used to verify that the IWD
algorithm with AD is better than the Standard IWD algorithm.

Both statistical tests considered a significance level of 0.05, so
that values lower than 0.05 indicate that the null hypothesis cannot
be assumed, i.e., H0 is rejected.
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Figure 23: Results IWDS T D AND IWDAD.

Two or more Samples

Non - normal Samples

Independents Related

Friedman TestKruskal – Wallis Test

Two SamplesOne Sample

 Chi - Cuadrado Test Binomial Test  Rachas Test Independents Related

Wilcoxon - Mann - Whitney Wilcoxon

Figure 24: Statistical techniques.

For the determination of data independence the following hy-
pothesis is used:

H0 = The data follow a normal distribution.
H1 = The data do not follow a normal distribution.

Given the P values obtained in the tests, the hypothesis is re-
jected. That is, the data do not follow a normal distribution.

H0 IWDSTD IWDAD

4.1 IWDSTD - 4.30- 18

IWDAD >0.05 -

5.1 IWDSTD - 6.45- 18

IWDAD >0.05 -

6.1 IWDSTD - 2.15- 18

IWDAD >0.05 -

A.1 IWDSTD - 2.15- 18

IWDAD >0.05 -

B.1 IWDSTD - 1.55- 16

IWDAD >0.05 -

C.1 IWDSTD - 9.88- 16

IWDAD >0.05 -

D.1 IWDSTD - 1.46- 16

IWDAD >0.05 -

E.1 IWDSTD - >0.05
IWDAD 3.27- 07 -

F.1 IWDSTD - >0.05
IWDAD 1.33- 09 -

Figure 25: Statistical Analysis Results.

When it is obtained that the data does not follow a normal
distribution, the Wilcoxon-Mann-Whitney [47] test is applied. This
test is applied to verify that the version with AD is better, where the
hypotheses are as follows:

H0 = Standard IWD algorithm ≥ IWD algorithm with AD
H1 = Standard IWD algorithm < IWD algorithm with AD

To obtain the p-values we use the programming language R,
where obtaining a p-value < 0.05 implies rejecting H0, and accept-
ing H1. The AD version is statistically better than the standard
version, which extends to each instance of the benchmark (Figure
25. In addition, what is indicated by the statistical tests supports
what has been obtained through verification by RPD.

The results of each instance can be seen graphically in the figure
26 to 30. IWD algorithm with AD has better results in all instances
except for instances E and F.
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Figure 26: Instances 4.1 and 5.1.
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Figure 27: Instances 6.1 and A.1.
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Figure 28: Instances B.1 and C.1.
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Figure 29: Instances D.1 and E.1.

7 Conclusion
In this work, we have presented an adaptive version of the Intel-
ligent Water Drops algorithm, which is a tool that facilitates the
use of metaheuristic techniques to non-expert users, reducing the

difficulties in the configuration of parameters when implementing
a metaheuristic in a real problem, a situation that will become in-
creasingly common in the scenario of recovery from the economic
crisis in post-pandemic times.
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Figure 30: Instance F.1.

The adaptive element incorporated, obtains the necessary infor-
mation to make decisions, based on external sources, coming from
the problem and internal sources, typical of the normal functioning
of the Intelligent Water Drops algorithm. With the correct combi-
nation of this information, it was possible to improve the balance
of the exploration and exploitation of the search space of most of
the solved instances, for Set Covering Problem, where the improve-
ment was in average of 13.04%. In addition, the difference obtained
by our adaptive proposal is significant in 77,78% of the compared
instances, compared to the corresponding statistical comparisons.

The adaptive configuration is an interesting focus of future work,
since there are a large number of static parameters that can be self-
adjusting, in order to improve the performance of implementations,
in order to decrease the influence of the off-line configuration in the
performance when solving diverse instances. Along with this, it is
necessary to replicate the implementation developed in this work,
for other NP-Hard problems, validating the correct functioning of
the incorporated adaptive components. Moreover, in the face of
the growing line of research concerning the interaction between
metaheuristics and machine learning techniques, a wide range of
machine learning possibilities is presented in the decision making of
the values to be taken by the adaptive parameters, adding to this, the
option of choosing between different ways of calculating parameters
according to internal and external information.

Conflict of Interest The authors declare no conflict of interest.

Acknowledgment Felipe Cisternas-Caneo and Marcelo
Becerra-Rozas are supported by Grant DI Investigación
Interdisciplinaria del Pregrado/VRIEA/PUCV/039.324/2020.
Broderick Crawford is supported by Grant CONI-
CYT/FONDECYT/REGULAR/1171243. Ricardo Soto is sup-
ported by Grant CONICYT/FONDECYT/REGULAR/1190129.
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