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 Advances in optimizing optical fiber communications have been on the rise these recent 
years due to the increasing demand for larger data bandwidths and overall better efficiency. 
Coherent optics have focused on many kinds of research due to its ability to transport 
greater amounts of information, have better flexibility in network implementations, and 
support different baud rates and modulation techniques. These result in fiber-optic lines to 
provide faster speeds to end-users. Recent literature has looked into further developing 
digital signal processing techniques, while others have focused on fiber material 
optimization. Machine learning is another area of research that has garnered traction due 
to such demands. This survey discusses support vector machine (SVM) and code-aided 
expectation-maximization (CAEM) techniques on how they compensate for nonlinearity in 
coherent fiber optical communications. The study mainly focuses on how these techniques 
impact the performance of the transmissions where they are implemented and how they 
compensate for fiber optic nonlinearity through either the reduction of bit error rates 
(BERs), the improvements in the quality factor, or through a suggested index based on BER, 
power, and distance. Collating the results and based on a distinctive index, SVM is 
preferable in mid-range haul transmissions while CAEM for longer hauls.  
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1. Introduction  

With the growing need to manage, transmit, process, and 
receive large amounts of data, optical fiber transmissions can find 
a niche in today’s network communication age as it can address 
several network traffic issues. Compared to other communication 
methods such as radio wave propagation and other physical 
transmission media like twisted pair and coaxial cables, optical 
fiber transmission can deliver more data, operate more efficiently, 
occupy less space while having more capacity, and be less 
susceptible to interceptions. However, despite these advantages, 
optical communications have its fair share of disadvantages such 
as cost, complexity, and perhaps the most faced issue is phase 
sensitivity [1]. Over recent years, coherent optic fiber 
communications coupled with newly discovered digital signal 
processing techniques have improved and optimized data 
transmissions. One such stride was the shifting from single carrier 

multiplexing to coherent optical orthogonal frequency division 
multiplexing (CO-OFDM), which brought about advantages such 
as inter-symbol interference mitigation and higher bandwidth 
efficiency. However, OFDM's serious disadvantage is the higher 
peak-to-average power ratio (PAPR) that comes with it, which 
results in a phenomenon known as fiber optic nonlinear 
distortion [2]. Digital modulation techniques that are usually 
paired with OFDM, such as Amplitude shift keying (ASK) and 
Phase shift keying (PSK), and Quadrature amplitude modulation 
(QAM), are greatly affected by nonlinear distortions as these can 
significantly increase the BER of the system. Numerous studies 
and innovations such as those in [3]–[5] have risen to try to 
minimize the nonlinearity experienced in this multiplexing 
process such as varying or combining the digital signal processing 
(DSP) techniques applied, optimizing the material that coats the 
fiber optic core to reduce the birefringence and implementing 
neural networks in the transmitter/receiver or both to maximize 
the bandwidth delivered.  
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Just like any other transmission system, coherent optical fiber 
transmissions encounter their fair share of performance drops due 
to several types of induced noise. Amplified spontaneous 
emission (ASE) from inline amplifiers is one of these major 
contributors to linear noise. Laser phase noise from transmitters 
and the local oscillator also put a damper on system performance 
by a relatively significant margin. However, the largest 
contributor and perhaps the most significant cause for concern is 
the nonlinear phase noise (NLPN) caused by an interaction of the 
signal and the ASE mentioned above through the phenomenon 
known as fiber Kerr effect or Kerr induced nonlinearity [6].  

 
 

Figure 1: The effects on a 16-QAM system due to (a) Amplified Spontaneous 
Emission (b) Laser Phase Noise and (c) Nonlinear Phase Noise [7] 

 
For transmissions like quadrature amplitude modulation 

(QAM), which relies heavily on signal amplitude and phase 
shifting in its transmission, noise can significantly impact its 
performance, specifically on its BER. A small amount of noise 
can incorrectly categorize the transmitted data. This error is 
especially apparent in optical transmissions because most 
utilizing the orthogonal frequency division multiplexing scheme 
produces a high peak-to-average power ratio resulting in noise 
that can increase the BER in a transmission medium. 

 
 

Figure 2: (a) 16-QAM constellation with high nonlinear phase noise; (b) with 
reduced noise [8] 

 
Hence, solutions to addressing such nonlinearity are essential. 

In this work, two important techniques that work to that end 
analyze SVM and CAEM on how they affect optical fiber 
transmissions regarding their overall performance and fiber optic 
nonlinearity compensation. Performance comparison was made 
between the two using parameters of the different studies. In 
particular, the emphasis was on the use of coherent optical 
orthogonal frequency division multiplexing (CO-OFDM) or 
polarization division multiplexing using a 16-ary QAM (16-QAM) 
signal with varying fiber lengths and variables. The authors also 
propose a comparative index to fairly evaluate the two techniques 
based on the bit error rate (BER), power, and transmission 

distance. This paper is organized then as follows. Section 1 is 
followed by discussing the methods and a proposed comparative 
index in Section 2. Results and their discussions were done in 
Section 3, and recommendations given in Section 4. 

2. Nonlinearity Compensation and Comparative 
Methodology 

2.1. 16-QAM Least-Squares SVM Nonlinearity Equalizer 
 

A 16-QAM CO-OFDM coupled with an SVM nonlinear 
equalizer is proposed in [2]. The optical fiber link is composed of 
multiple 100 km standard single-mode fiber (SSMF). Attenuation 
in the link is accounted for and compensated using Erbium-doped 
fiber amplifiers (EDFA). The ASE contributed by the EDFA is 
considered as white Gaussian noise. Inputs to the digital 
modulator are generated from a pseudo-random binary sequence 
(PRBS) module, which then undergoes the QAM modulation. An 
inverse fast-Fourier transform module is utilized to convert the 
time domain signal generated to an equivalent frequency domain. 
In this case, the pulses of the signal are kept ideal for simplifying 
the simulation. To maximize linear conversion between the 
OFDM signal and the optical field, the OFDM signal's in-phase 
and quadrature segments are used by a pair of Mach-Zehnder 
modulators (MZM). Both MZM operates via push-pull 
configuration and is configured to be biased at the minimum 
transmission point to remove the chirp phenomenon effectively. 
Once the optical signal reaches the receiver after traversing N-
span amplifiers, it is converted into an electrical signal by a 90⁰ 
photoreceiver. Noise due to the laser linewidth's imperfections is 
disregarded as the study aims to isolate fiber nonlinearities due to 
other noise [2]. The signal then undergoes the normal decryption 
process before being fed into the machine learning algorithm, 
after which it is fully demodulated, and the error rate is calculated. 

 

 
 

Figure 3: 16-QAM CO-OFDM SVM-NLE Diagram [2] 

Support vector machines are powerful classifying tools yet can 
only be used as binary classifiers. Due to this restriction, this 
study's approach combines multiple two-class SVMs for a multi-
class model to be used. Since the study uses 16-QAM as its 
modulation technique, the signal is divided into sixteen (16) 
individual clusters in a constellation wherein each cluster 
represents data in a unique binary form [9]. For a single two-class 
SVM classifier, N pairs of vectors (𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘), k=1,…,N where 𝑥𝑥𝑘𝑘 
and yk are the input and output patterns, respectively undergo 
training to obtain the hyperplane. yk is the labeling function where 
yk ∈ {1, -1}. Through this training process, possible noise in the 
constellation is distributed efficiently and accurately. Based on 
the training data present, SVM aims to construct a classifier f(x) 
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𝑓𝑓(𝑥𝑥) = sign[(𝑊𝑊𝑇𝑇Φ(𝑋𝑋𝑖𝑖) + 𝑏𝑏)] 

                  = sign ��𝛼𝛼𝑘𝑘𝑦𝑦𝑘𝑘𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑘𝑘) + 𝑏𝑏
𝑁𝑁

𝑘𝑘

� 
(1) 

where 𝑤𝑤 is the weight, 𝛼𝛼𝑘𝑘 is the support vector, 𝑏𝑏 is the bias term, 
and Φ(𝑋𝑋𝑖𝑖)  is the mapping function. The training process 
determines the weight, support vector, and bias terms used for the 
constructed classifier. For more complex data to be accurately 
separated, a mapping function is used to transform the training 
data xk into a higher dimension.  The SVM also utilizes a Kernel 
trick to help nonlinear decisions in mapping low complexity 
computations. The approach focused on this survey utilizes a 
radial basis function kernel in which only dot products are needed. 
K(xi,kj) ≡ exp (-ỿSVM||xi - xj||2)), ỿSVM > 0, with ỿSVM as the Kernel 
function. 

Since there are more than two unique data sets to classify 
from in a 16-QAM constellation, the study employed a one versus 
rest rule, wherein a received data point would classify in a 
particular cluster if and only if it is accepted by that cluster and is 
rejected by the rest, if two or more clusters accept the data point 
then it is considered noise. 

 
 

Figure 4: Implementation of a 4-level SVM to classify a 16-QAM 
constellation [10] 

To further increase the SVM classification accuracy in noisier 
environments, the study opted to implement a least-square variant 
of the SVM studied in [11]. Least-Square SVM (LS-SVM) 
provides a more optimized solution using the following: 

 

min (
1
2
𝑤𝑤𝑇𝑇𝑤𝑤 + 𝐶𝐶�𝜉𝜉𝑖𝑖)

𝑁𝑁

𝑖𝑖=1

 

constrained by 
 

yi(𝑤𝑤𝑇𝑇𝜙𝜙(𝑋𝑋𝑖𝑖) + 𝑏𝑏) ≥ 1 −  𝜉𝜉𝑖𝑖  

 
(2) 

 
 
 

(3) 

where 𝜉𝜉 is termed as the slack variable which shows the error 
term which must satisfy the condition 𝜉𝜉𝑖𝑖 ≥ 0. C is known as the 
regularization parameter. 

After the CD compensation process, both I and Q segments 
of the signal are fed into the LS-SVM in which the classifier is 
formed through a two-stage process of training and testing [2], 
[11]. 

1. Training 
• Arrange label 𝑦𝑦𝑘𝑘 , in-phase I and quadrature Q to format the 

SVM packet. 
• Select the RBF Kernel function and scale I, Q to [0,1] 

• Use cross-validation to determine the optimal C and ỿSVM 
values. 

• C and ỿSVM values to train the SVM. 
 

2. Testing 
• Insert testing symbol. 
• Compare predicted labels to transmitted symbols to 

determine and evaluate the BER. 

2.2. Code-Aided Expectation Maximization 

A wavelength-division multiplexing (WDM) and 
polarization division multiplexing (PolDM) system is considered 
in [12]. Nine simultaneously transmitting channels with the 
middle channel being the main focus of the study utilizes 16-
QAM modulation with a 32 GBaud symbol rate. The optic signal 
goes through a 2640 km distance consisting of 33 spans of 80 km 
each. Dispersion-compensating fiber (DCF) is not utilized in the 
study; however, the same standard single-mode fiber (SSMF) is 
used for the fiber cable, and an erbium-doped fiber amplifier 
(EDFA) is employed to counteract fiber loss. The signal 
undergoes a chromatic dispersion compensation followed by a 
polarization demultiplexing at the receiver. A frequency 
estimation (FE) acts on the sampled signal to estimate the 
frequency with a margin of accuracy equal to or better than 4 MHz. 
A Viterbi algorithm compensates for any leftover frequency that 
utilizes an FIR filter length with phase averaging. 

Due to noise correlating over time, traditional white noise 
assumption methods of demodulation are often suboptimal. The 
study in [12] partially compensates impairments done by both 
inter-channel and intra-channel nonlinear effects by exploiting the 
correlation of the phase noise through the use of CAEM. The 
phase noise correlation is dealt with by using a regularizer in the 
utility function of the algorithm. The CAEM describes as follows: 

 

 
 

Figure 5: 16-QAM PDM CAEM Algorithm Diagram [12] 
1. 𝑟𝑟𝑖𝑖[𝑘𝑘]  will be set as the 𝑘𝑘 th symbol after phase noise 

compensation in the 𝑖𝑖th iteration between the EM and forward 
error correction (FEC) process �𝑟𝑟𝑖𝑖[𝑘𝑘] = 𝑦𝑦[𝑘𝑘]𝑒𝑒−𝑗𝑗𝜙𝜙�𝑖𝑖[𝑘𝑘]� . 
𝜙𝜙�0[𝑘𝑘] = 0 and 𝑟𝑟0[𝑘𝑘] = 𝑦𝑦[𝑘𝑘] are set as initial values. 

2. The log-likelihood-ratio (LLR) is computed for each bit based 
on 𝑟𝑟𝑖𝑖[𝑘𝑘]. Let 𝑠𝑠𝑙𝑙 be the 𝑙𝑙th bit. The LLR is defined as follows 
if M-ary modulation is utilized. 
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LLR(𝑠𝑠𝑙𝑙) = log
𝑝𝑝(𝑠𝑠𝑙𝑙 = 0 | 𝑟𝑟𝑖𝑖[𝑘𝑘] )
𝑝𝑝(𝑠𝑠𝑙𝑙 = 1 | 𝑟𝑟𝑖𝑖[𝑘𝑘] )

 (7) 

𝑙𝑙 = (𝑘𝑘 − 1)log2𝑀𝑀 + 1, … , 𝑘𝑘log2𝑀𝑀 
 

(8) 

It is assumed that the residual noise in 𝑟𝑟𝑖𝑖[𝑘𝑘] patterns itself in 
a circularly symmetric zero-mean white Gaussian distribution. 
Constellation points whose labels are 𝑠𝑠𝑙𝑙 = 0 are defined in the set 
𝑋𝑋𝑙𝑙0 and likewise for 𝑋𝑋𝑙𝑙1. 
 
3. An updated log-likelihood ratio LLR𝑜𝑜(𝑠𝑠𝑙𝑙)  is obtained by 

decoding a soft-input-soft-output (SISO) FEC based on the 
initial LLR(𝑠𝑠𝑙𝑙) . LLR𝑜𝑜(𝑠𝑠𝑙𝑙)  bits are then converted to 
probabilities. Assuming a constellation point, 𝑎𝑎 ∈ 𝐶𝐶  is 
labeled as a logarithmic bit sequence 𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3,…,𝑎𝑎𝑙𝑙𝑙𝑙𝑙𝑙2𝑀𝑀 we 
obtain: 

 
𝑝𝑝�𝑥𝑥[𝑘𝑘] = 𝑎𝑎�𝑦𝑦[𝑘𝑘],𝜙𝜙�𝑖𝑖[𝑘𝑘]� 
 (9) 
    =  � 𝑝𝑝�𝑠𝑠(𝑘𝑘−1)𝑙𝑙𝑙𝑙𝑙𝑙2𝑀𝑀+𝑚𝑚 =  𝑎𝑎𝑚𝑚�

𝑚𝑚=1,…,𝑙𝑙𝑙𝑙𝑙𝑙2𝑀𝑀

 

 

4. The utility function 𝐸𝐸�𝜙𝜙,𝜙𝜙�𝑖𝑖� is then setup – Expectation Step. 
 

𝐸𝐸�𝜙𝜙,𝜙𝜙�𝑖𝑖�
=  𝛼𝛼𝛼𝛼(𝜙𝜙) + (1 − 𝛼𝛼)

∗  ��𝑝𝑝�𝑥𝑥[𝑘𝑘] = 𝑎𝑎�𝑦𝑦[𝑘𝑘],𝜙𝜙�𝑖𝑖[𝑘𝑘]�
𝑎𝑎 ∈𝐶𝐶

𝑁𝑁

𝑘𝑘=1

∗ 

log𝑝𝑝(𝑦𝑦[𝑘𝑘]|𝑥𝑥[𝑘𝑘] = 𝑎𝑎,𝜙𝜙[𝑘𝑘]) 

(10) 

where N is the total number of symbols, 𝛼𝛼  is the BER 
optimization weight with 𝛼𝛼 ∈ [0,1]  The regularizer function 
𝜁𝜁(𝜙𝜙) is described as follows: 
 

𝜁𝜁(𝜙𝜙) =  �((
𝑁𝑁

𝑘𝑘=3

 𝜙𝜙[𝑘𝑘] −  𝑤𝑤1𝜙𝜙[𝑘𝑘 − 1]

−  𝑤𝑤2𝜙𝜙[𝑘𝑘 − 2]))2 

(11) 

where 𝑤𝑤1  and 𝑤𝑤2  are the noise AR analysis weights. The 
expression 𝑝𝑝(𝑦𝑦[𝑘𝑘]|𝑥𝑥[𝑘𝑘] = 𝑎𝑎,𝜙𝜙[𝑘𝑘]) is computed as follows: 
 

𝑝𝑝(𝑦𝑦[𝑘𝑘]|𝑥𝑥[𝑘𝑘] = 𝑎𝑎,𝜙𝜙[𝑘𝑘])

=
1

𝜎𝜎√2𝜋𝜋2 exp�−
�𝑦𝑦[𝑘𝑘] − 𝑎𝑎𝑒𝑒𝑗𝑗𝑗𝑗[𝑘𝑘]�

2

2𝜎𝜎2
� 

(12) 

in which 𝜎𝜎2  is the noise variance that can be empirically 
computed with the aid of the training data. 
 
5. The vector 𝜙𝜙�𝑖𝑖,1 is calculated assuming the below conditions - 

Maximization step: 
 

𝜙𝜙�𝑖𝑖,𝑗𝑗 = arg𝑚𝑚𝑚𝑚𝑚𝑚�
𝜙𝜙

𝐸𝐸�𝜙𝜙,𝜙𝜙�𝑖𝑖� (13) 

where 𝜙𝜙�𝑖𝑖,𝑗𝑗 is the estimated phase noise between FEC and EM in 
the 𝑖𝑖th iteration and the estimated noise between the E and M steps 
in the 𝑗𝑗th iteration. To numerically compute for 𝜙𝜙�𝑖𝑖,1 a gradient-
ascent method is used. 

6. The utility function is recomputed, however instead of using 
(step 3), the following is used. 
 

𝑝𝑝�𝑥𝑥[𝑘𝑘] = 𝑎𝑎�𝑦𝑦[𝑘𝑘],𝜙𝜙�𝑖𝑖,𝑗𝑗[𝑘𝑘]� 
              

=
1

𝜎𝜎√2𝜋𝜋2 exp�−
�𝑦𝑦[𝑘𝑘] − 𝑎𝑎𝑒𝑒𝑗𝑗𝜙𝜙�𝑖𝑖,𝑗𝑗[𝑘𝑘]�

2

2𝜎𝜎2
�  

 

(14) 

7. Step 6 is repeated until 𝜙𝜙�𝑖𝑖,𝑗𝑗  converges after which 𝜙𝜙�𝑖𝑖+1 =
 𝜙𝜙�𝑖𝑖,𝑗𝑗 is set. 

8. Steps 1 to 7 are repeated until 𝜙𝜙�𝑖𝑖  converges, and 𝜙𝜙� =  𝜙𝜙�𝑖𝑖 
being the final phase noise is estimated. 

2.3. Simulation Parameters 

The following tables show the parameters and conditions of each 
approach. 

Table 1: Least-Square SVM Parameters 

Multiplexing CO-OFDM 
Distance up to 1200 km 
Amplifier EDFA 
Noise Figure 6 dB 
Fiber SSMF 
Span Length 100 km 

Attenuation Coeff 4.605 x 10-5 m-1 * 

Dispersion Coeff 17 ps/(nm · km) 

Nonlinear Coeff - 

EDFA Emission Factor - 
Symbol rate 40 Gbaud 
Tx & LO Linewidth - 
Modulation 16-QAM 
Sampling rate - 

 

Table 2: Code-Aided EM Parameters 

Multiplexing PDM 

Distance 2640 km 

Amplifier EDFA 

Noise Figure - 

Fiber SSMF 

Span Length 80 km 

Attenuation Coeff 4.8354 x 10-5 m-1 

Dispersion Coeff 17.025 ps/(nm · km) 

Nonlinear Coeff 1.3 (W · km)-1 

EDFA Emission Factor 1.7741 

Symbol rate 32 Gbaud 

Tx & LO Linewidth 100 kHz 

Modulation 16 QAM 
Sampling rate 1 sample/symbol 

 

3. Comparative Index, Results, and Discussions 

The tables below show the results of each study’s approach. 
Since comparison is to be done using the BER, findings with Q-
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factor results were converted to their equivalent BER using the 
following [13]: 

BER =  
1
2

erfc �
𝑄𝑄
√2
� ≈  

1
𝑄𝑄√2𝜋𝜋

𝑒𝑒−
𝑄𝑄2
2  (15) 

Q(dB) = 10log10(Q2) = 20log10(Q) (16) 

where Q is the Q-factor and erfc () is the complementary error 
function. Since the (erfc) used in calculating BER is approximated, 
any BER values computed will be approximations. To ensure the 
calculations' high accuracy, BER values are displayed, having 
values up to seven decimal places. 

3.1. Proposed Index 

The authors proposed an index (17), which is a measure of 
how well each technique compares to others depending on the 
application. The index in Table 8 is calculated as follows: 

𝑀𝑀 =  
BER

Power × Distance
 (17) 

Table 3: Quality Factor (dB) for 1000 km and 1200 km fiber length at differing 
Launch Powers [2] 

Launce 
Power 

Distance (km) 

1000 1200 

-3 dBm 9.50 8.90 

-4 dBm 10.20 9.55 
-5 dBm 10.40 9.95 

-6 dBm 10.30 9.90 

-7 dBm 10.00 9.60 

-8 dBm 9.50 9.10 

-9 dBm 8.90 8.50 
 

Table 4: BER for 1000 km and 1200 km fiber length at differing Launch 
Powers. 

Launce 
Power 

Distance (km) 

1000 1200 

-3 dBm 0.0015509 0.0029533 

-4 dBm 0.0006563 0.0014644 

-5 dBm 0.0005011 0.0009053 

-6 dBm 0.0005743 0.0009635 

-7 dBm 0.0008500 0.0013820 

-8 dBm 0.0015509 0.0024036 

-9 dBm 0.0029533 0.0043513 
 

Table 5: BER at Launch Power = -6 dBm for different fiber lengths 

Distance (km) Launch Power Q-factor (dB)  
BER  

400 -6 dBm 11.50 0.0000909 
600 -6 dBm 11.25 0.0001389 
800 -6 dBm 10.90 0.0002423 

1000 -6 dBm 10.30 0.0005743 
1200 -6 dBm 9.90 0.0009635 

 

3.2. LS-SVM Results  
The BER values in Table 3 are extrapolated from the graphical 

results in [2], while BER values in Tables 4 and 5 are calculated 
estimates from the data of [2] using (15) and (16).  

3.3. CAEM Results 
The Q-Factor values in Table 6 are extrapolated from the 

graphical results in [12]. BER values are calculated estimates 
using (15) and (16) based on the Q-Factor.  

Table 6: Q-Factor (dB) and BER as a function of Launch Power at 2640 km 
fiber length 

 
Launce Power Distance (km) Q-Factor (dB) BER 

-2 dBm 2640 4.6 0.0555459 
-1 dBm 2640 8.5 0.0043514 
0 dBm 2640 11.4 0.0001081 
1 dBm 2640 13.1 0.0000033 
2 dBm 2640 6.9 0.0155732 

 

3.4. Comparative Results 

Table 7 shows BER values attained from the different studies 
under highly similar conditions, thus making it possible to 
compare their results. LS-SVM can be compared under a -6 dBm 
launch power at 1200 km fiber length while CAEM has results at 
0 dBm launch power with a 2640 km fiber length. 

Table 7: BER values under similar attributes 

Algorithm Distance 
(km) 

Fiber 
Link 

Launch 
Power BER 

LS-SVM 1200 - -6 dBm 0.0009635 

CAEM 2640 - 0 dBm 0.0001081 

Table 8: Results Based on the Proposed Index 

Algorithm BER Power   
(Watts) 

Distance 
(km) Index 

LS-SVM 0.0009635 0.0002512 1200 0.0031963 
CAEM 0.0001081 0.0010000 2640 0.0000409 

Low index values mean better overall performance for the 
algorithm. As shown in Table 8, the LS-SVM can be applied well 
in midrange haul and low complexity applications, whereas 
CAEM for long haul and high complexity optical networks.  The 
index provided in (17) for measuring and comparing the 
performance in the studies [12], [2] is thus proposed for 
nonlinearity compensation performance comparisons. 
Nonetheless, it also recognized that multiple values should be 
considered and further simulated to get graphical representations 
of the results. 

4. Recommendations 

Based on the results, LS-SVM provides nonlinearity 
compensation in a CO-OFDM 16-QAM system, but for longer 
fiber lengths, CAEM provides a significantly lower BER value. 
These outcomes make CAEM a preferred choice when it comes 
to long haul optical transmissions. Complexity wise it is 
recommended to utilize LS-SVM. CAEM is preferred despite the 
higher complexity due to its significantly lower index. One 
potential future work is to verify the results in an experimental 
setup. 
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