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 Many recent studies on autonomous driving have focused on model-based control. A number 
of studies has addressed that simple models such as the Kinematic Bicycle Model are easier 
to design controls for autonomous driving systems. However, such a simple vehicle model 
has a weakness in that it is subject to modeling errors. This is because it does not take into 
account the nonlinear characteristics due to road conditions and driving conditions 
(environmental disturbances: road friction coefficient, large steering, acceleration, sideslip, 
etc.) Therefore, the purpose of this study is to identify vehicles with high accuracy and in 
real time, adapting to environmental disturbances. 
This study propose a vehicle model based on the Kinematic Bicycle Model. The nonlinear 
characteristics of the vehicle are represented by the deviation of the front wheel steering 
angle of the Kinematic Bicycle Model. This deviation is trained and estimated online using 
a three-layer Neural Network. In other words, the AI is adaptive learning of modeling errors 
caused by nonlinear characteristics of the vehicle. 
This paper presents an example of model-based control using model predictive control. 

Keywords:  
Autonomous Driving 
Vehicle Model 
Adaptive Identification 
Modeling Error 
Neural Network 

 

 

1. Introduction 

In recent years, study and development of autonomous driving 
has been conducted in the automobile industry, IT companies, and 
universities in each country. In study on autonomous driving, some 
autonomous driving systems that combine Artificial Intelligence 
(AI) and model-free control methods is proposed [1,2]. However, 
it is considered that such the autonomous driving system is difficult 
to obtain system stability and reliability in unknown environments. 
Therefore, fusion technology of AI technology and model-based 
control has gained much importance in study on autonomous 
driving [3,4]. Model-based control is a control method in which a 
control target is represented by a mathematical model and optimal 
control input is determined based on the model. Model-based 
control is widely used in various industries [5]. It has problem that 
the control performance cannot be exhibited when the model is 
different from the actual dynamics. Additionally, the more 
complex the controlled object, the more complex the model and 
the more the amount of calculation. There is a limit to the number 
of computing units that can be equipped in an autonomous vehicle. 
Therefore, the model used for autonomous driving is required to 
be a simple model with less calculation amount. This paper 

proposes a simple and highly accurate method for vehicle 
identification (partially published in [6]). 

Several studies agree that simple models, such as Kinematic 
Bicycle Model [7] and linear single-track model [8], are easier to 
design controllers for autonomous driving systems [9,10]. These 
vehicle models do not include nonlinear characteristics due to road 
conditions and driving conditions (environmental disturbances: 
road friction coefficient, large steering, acceleration, sideslip, etc.). 
Hence, the accuracy may be deteriorated due to a modeling error 
between the actual vehicle and the vehicle model. In order to 
consider the nonlinear characteristics of the vehicle, vehicle 
models that includes model equations such as tires and suspensions 
in the vehicle model has also been proposed [11,12]. However, 
since these vehicle models include multiple models expressions in 
the vehicle model, the structure of the vehicle model is 
complicated. It is inferred that if these are used in an autonomous 
driving system, it may impose calculated load on the computing 
unit and impair the real-time performance of the system. In other 
words, it is important for the vehicle model used for autonomous 
driving controllers to accurately model the vehicle in real time, 
even if there are environmental disturbances. This paper proposes 
a vehicle model based on the Kinematic Bicycle Model [7] in order 
to represent vehicle behavior simply and with high accuracy. The 
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Kinematic Bicycle Model does not include nonlinear 
characteristics due to acceleration and deceleration or large 
steering, etc. Therefore, an error may occur between the actual 
gravity center position of the vehicle and the gravity center 
position calculated by the vehicle model. The behavior of the 
actual vehicle and the behavior calculated by the model are 
different due to the position error of the center of gravity, and the 
modeling error becomes large. Therefore, this method considers 
the vehicle model in which the center of gravity is fixed at the 
center of the wheelbase of the Kinematic Bicycle Model and the 
modeling error is expressed by the deviation of the front wheel 
steering angle. In addition, this study uses Neural Network to 
adaptively identify vehicle model by training and estimating the 
deviation. This paper verifies the usefulness of the proposed 
method through simulation experiments using vehicle motion 
analysis software (CarSim: Virtual Mechanics). In this study, 
simulations were performed in situations closer to actual driving 
conditions than in [6] (Section 4). Since this method models the 
vehicle while determining the control input in real time, it does not 
exist as a modeling technology alone and must be combined with 
model-based control. This paper shows an example using Model 
Predictive Control (MPC) as an example of model-based control 
to show the usefulness of the method. The method requires 
accurate location information acquisition. Since it is expected that 
the measurement accuracy will improve with the development of 
GNSS (Global Navigation Satellite System) in the future, the 
simulation is performed assuming that accurate position 
information can be obtained.  

In summary, there are two aspects of the proposed approach 
that are particularly unique. The first is that the structure of the 
model is simple and easy to identify. In conventional models, 
several parameters must be identified in advance, but only one 
parameter is required in this study in advance. This means that the 
controller design of autonomous driving could be simplified by 
relieving the task of examining cornering stiffness and tire 
parameters in advance. Second, by focusing on the coordinates of 
the center of gravity, the approach can analyze the entire vehicle 
as nonlinear motion. Online learning may be able to respond to 
changes in vehicle mass (due to the number of passengers and 
loads) and road surface. It is notable that the method is robust to 
environmental disturbances and easy to identify. 

This paper sets up the issue in Section 2. Section 2.1 introduces 
the conventional method and Section 2.2 describes our proposed 
identification method in detail. This paper also presents and 
discuss the simulation results in Sections 3 and 4. Section 3 mainly 
considers the effects of acceleration, deceleration and steering on 
the vehicle's nonlinear characteristics, while Section 4 considers 
the situation with road surface changes. And Section 5 concludes 
this paper. 

 
Figure 1: Kinematic Bicycle Model on the XY coordinate 

2. Statements of The Issue 

This section will set the issue for the proposed method. 
Section 2.1 introduces simple two-wheel models and accurate 
nonlinear models to clarify the problem. Section 2.2 details the 
proposed method for solving the problem. 

2.1. Conventional study of vehicle models 
2.1.1. Two-wheel model with simple structure 

Typical vehicle models used for model-based control include 
simple two-wheeled models such as the Kinematic Bicycle Model 
[7] and linear single-track model [8]. These vehicle models are 
based on the assumption that the state quantities are observed 
instantaneously, and some conditions (e.g. constant speed, left and 
right tire characteristics are equal, roll and pitching motions are 
ignored) are set to represent vehicle dynamics in a simplified way. 
These vehicle models have simple structure, and thus the turning 
radius can be easily calculated. Therefore, they can be easily 
introduced to the controller design of autonomous driving systems. 
However, these do not take into account various nonlinear 
characteristics due to environmental disturbances (road friction 
coefficient, large steering, acceleration, etc.), which can cause 
modeling errors between the actual vehicle and vehicle models. 
This paper uses the Kinematic Bicycle Model as an example of the 
simple two-wheel model to test its accuracy. The model diagram 
of the Kinematic Bicycle Model is shown in Figure 1. Equations 
(1-4) show the model equations of the vehicle model. The velocity 
𝑣𝑣[𝑘𝑘 − 1](m/s) and the front wheel steering angle 𝛿𝛿[𝑘𝑘 − 1](rad) 
are inputs, and the center of gravity coordinates of the vehicle 
model (𝑥𝑥�[𝑘𝑘]，𝑦𝑦�[𝑘𝑘]), the direction of the vehicle model 𝜓𝜓�[𝑘𝑘 −
1](rad), and the sideslip angle around the center of gravity 𝛽̂𝛽[𝑘𝑘 −
1](rad) are outputs. (𝑥𝑥[𝑘𝑘 − 1],𝑦𝑦[𝑘𝑘 − 1]) is the coordinates of the 
center of gravity observed one step ago. 

𝑥𝑥�[𝑘𝑘] =  𝑥𝑥[𝑘𝑘 − 1] +  𝑣𝑣[𝑘𝑘 − 1]𝛥𝛥𝛥𝛥
∙ cos�𝜓𝜓�[𝑘𝑘 − 1] + 𝛽̂𝛽[𝑘𝑘 − 1]� 

(1) 

𝑦𝑦�[𝑘𝑘]  = 𝑦𝑦[𝑘𝑘 − 1] +  𝑣𝑣[𝑘𝑘 − 1]𝛥𝛥𝛥𝛥
∙ sin�𝜓𝜓�[𝑘𝑘 − 1] + 𝛽̂𝛽[𝑘𝑘 − 1]� 

(2) 

𝜓𝜓�[𝑘𝑘 − 1] =  𝜓𝜓�[𝑘𝑘 − 2] +
 𝑣𝑣[𝑘𝑘 − 2]𝛥𝛥𝛥𝛥

𝑙𝑙𝑟𝑟
sin 𝛽̂𝛽[𝑘𝑘 − 2] (3) 

𝛽̂𝛽[𝑘𝑘 − 1]＝ tan−1 �
𝑙𝑙𝑟𝑟

𝑙𝑙𝑓𝑓 + 𝑙𝑙𝑟𝑟
tan 𝛿𝛿[𝑘𝑘 − 1]� (4) 

here 𝑘𝑘 is the current time, 𝛥𝛥𝛥𝛥 is the sampling time, 𝑙𝑙𝑓𝑓(𝑟𝑟)(m) are the 
distance from the front (rear) wheel axle to the center of gravity, 
and 𝐿𝐿(m) is the wheel base. 

The trajectory of the vehicle model without these nonlinear 
characteristics (Figure 1) is confirmed. In this case, experiments 
and verifications should be performed using actual vehicles, but 
verifications are performed by simulation experiments that are 
easy to analyze and verify and that can accurately acquire the 
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vehicle state. Specifically, this study used the Driving Simulator in 
Figure 2. The Driving Simulator is a Windows PC with a vehicle 
motion numerical analysis software (CarSim) and a game handle 
device (Logitech) connected. The PC used in the simulation are as 
follows: Windows10 64bit, CPU: Intel(R) Core(TM) i7-9700 CPU 
@ 3.00GHz, and installed memory (RAM):8GB. 

 
Figure 2: Driving Simulator 

A simulation course [Slalom] was created on CarSim as shown 
in Figure 3. The driver drove this course between two pylons lined 
up in the course, gradually increasing the velocity as shown in 
Figure 5. The running trajectory at that time is the solid line in 
Figure 4 (Vehicle’s running trajectory). The velocity 𝑣𝑣 obtained as 
the vehicle data at that time is shown in Figure 5, and the front 
wheel steering angle 𝛿𝛿 is shown in Figure 6. The velocity 𝑣𝑣 and 
the front wheel steering angle 𝛿𝛿 are input to the vehicle model (1-
4) and the running trajectory is calculated as shown by the broken 
line in Figure 4 (Equation of Vehicle Model). Figure 7 shows the 
position error between the observed trajectory  (𝑥𝑥,𝑦𝑦)  and the 
trajectory calculated by the vehicle model (𝑥𝑥�,𝑦𝑦�). From Figure 4 
and Figure 7, there is a maximum position error of about 0.15m in 
the running trajectory of the actual vehicle and the running 
trajectory calculated using the vehicle model of (1-4). This is 
thought to be due to the nonlinear characteristics (tire deformation, 
expansion and contraction of suspension, etc.) caused by 
acceleration, deceleration and steering during running. It is 
consider that the front wheel steering angle 𝛿𝛿  and the vehicle 
traveling direction do not match due to the influence of the 
nonlinear characteristic. This deviation affects the modeling error. 
In addition, this simulation is based on the assumption of asphalt 
surface. If it is snow or ice road, the deviation increases further. 
This is because the effect of the road surface is not taken into 
account in this model. 

 

Figure 3: Simulation course［Slalom］ 

 

Figure 4: Driving trajectory 

 
Figure 5: Velocity 𝑣𝑣 

 
Figure 6: Front wheel steering angle 𝛿𝛿 

 
Figure 7: Position error 

2.1.2. Example of non-linear vehicle models that accurately 
represents vehicle behavior 

 As shown in 2.1.1, simplifying the vehicle behavior may 
increase the modeling error. Hence, there are several conventional 
studies that use nonlinear vehicle models to represent the nonlinear 
motion of vehicles in detail. In literature [13], an autonomous 
driving system combined with a nonlinear vehicle model and MPC 
is proposed. The nonlinear model is a combination of two-wheel 
model and nonlinear tire model. This literature shows good results 
even on compacted snow surface with a low coefficient of friction. 
In this literature, two tire models were prepared beforehand, one 
for asphalt and the other for compacted snow, and were tested on 
each surface. In other words, the experiment is based on the 
assumption that the road friction coefficient is known. This means 
that the road friction coefficient, which changes from time to time, 
must be known.  

To solve these problems, a combination of adaptive Model 
Predictive Control and tire-stiffness estimator [14] has been 
proposed [15]. This method estimates the tire stiffness from the 
tire-stiffness estimator. It is able to estimate tire stiffness in 
situations where the road surface changes and select the optimal 
road friction coefficient and tire parameters. However, the 
relationship between the chosen parameters and tire stiffness must 
be known. In order to find out the relationship between the two, it 
is necessary to conduct field tests or using a testbench beforehand, 
which may change depending on the degree of tire wear and other 
factors such as ageing. In addition, these literatures focused only 
on tire nonlinearity and did not mention nonlinear vehicle motion 
due to changes in vehicle mass (due to the number of passengers 
and loads.), suspension, body stiffness and other effects. These 
nonlinear motions can also lead to modeling errors. This paper 
proposes a vehicle model for online learning of nonlinear 
characteristics of the vehicle by focusing on the change of the 
vehicle's center of gravity position. By focusing on the change of 
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the center of gravity, it is possible to model not only the tires but 
also the nonlinear characteristics of the entire vehicle. 
Furthermore, online learning eliminates the hassle of pre-testing 
and allows you to deal with disturbances such as vehicle mass that 
change with each drive 

2.2. Vehicle Model to Estimate Modeling Error 

As described in Section 2.1.1, due to the nonlinear 
characteristics of automobiles, deviation occurs between the front 
wheel steering angle 𝛿𝛿  and the actual running direction of the 
vehicle. The actual direction of travel of the vehicle is defined as 
the front tire steering angle 𝛿̂𝛿. Here, the front wheel tire steering 
angle 𝛿̂𝛿 is an angle that includes nonlinear characteristics due to 
environmental disturbances and vehicle dynamics. The front wheel 
steering angle 𝛿𝛿 is the angle that the front wheels are facing, which 
can be calculated by the steering wheel angle 𝛿𝛿𝑆𝑆𝑆𝑆 . In order to 
accurately represent the behavior of the vehicle, it is necessary to 
include in the vehicle model the deviation between the direction 
the front wheels are facing and the direction the vehicle is actually 
going, in other words, the deviation between the front wheel 
steering angle 𝛿𝛿 and the front wheel tire steering angle 𝛿̂𝛿. However, 
it is difficult to directly observe and theoretically obtain the 
deviation. Therefore, this deviation is named the modeling error 𝛼𝛼� 
and is defined as the front tire steering angle 𝛿̂𝛿 as (5). 

𝛿̂𝛿[𝑘𝑘 − 1] ＝ 𝛿𝛿[𝑘𝑘 − 1] + 𝛼𝛼�[𝑘𝑘 − 1] (5) 

𝛽̂𝛽[𝑘𝑘 − 1]＝ tan−1 �
𝑙𝑙𝑟𝑟

𝑙𝑙𝑓𝑓 + 𝑙𝑙𝑟𝑟
tan 𝛿̂𝛿[𝑘𝑘 − 1]� (6) 

Since the front wheel tire steering angle 𝛿̂𝛿  is defined as the 
actual direction in which the vehicle is traveling, (4) is modified as 
in (6). In other words, our proposed vehicle model is (1-3,5,6). The 
vehicle model is as shown in the Figure 8. The vehicle model needs 
to identify the distance from the front (rear) wheel axle to the 
center of gravity 𝑙𝑙𝑓𝑓(𝑟𝑟) . The position of the vehicle's center of 
gravity changes from moment to moment during driving. This is 
because acceleration, deceleration and large steering causes 
nonlinear motion in the vehicle, including the tires and suspensions. 
It is difficult to determine the exact position of the vehicle's center 
of gravity. Therefore, in this study, the position of the center of 
gravity of the vehicle is fixed at the center of the wheelbase 
(𝑙𝑙𝑓𝑓(𝑟𝑟) = 𝐿𝐿/2), and the identification error of the center of gravity 
position is corrected by 𝛼𝛼�. 

 
Figure 8: Vehicle model including modeling error 𝛼𝛼� 

Here, a method for estimating the modeling error 𝛼𝛼�  is 
described. Since the modeling error 𝛼𝛼�  is the parameter 

representing nonlinear motion due to acceleration and 
deceleration, steering, and road surface changes, it has nonlinearity 
and is expected to change from moment to moment. Therefore, this 
study proposes the method for estimating the model error 𝛼𝛼� in real 
time while deriving the control input by model-based control. 

This paper considers the system that uses MPC to derive the 
front wheel steering angle 𝛿𝛿 and velocity 𝑣𝑣 that are control inputs. 
MPC is a control law that derives the optimal control input while 
predicting its future behavior using a predictive model 
representing the dynamics of a control object. MPC solves an 
open-loop optimal control problem from the current time to finite 
horizon for each control period. MPC is an attractive method for 
controlling autonomous vehicles because it can consider the 
dynamics and constraints of the controlled object and the ability to 
adapt to driving scenarios [16-18]. Figure 9 shows the system 
configuration.  

 
Figure 9: Block diagram of the proposed system 

This system uses a Neural Network to train online the 
nonlinear characteristics of a vehicle that cannot be considered in 
the vehicle model. The trained Neural Network is used to control 
the vehicle while estimating the unknown parameters of the 
vehicle model. Figure 10 shows the flowchart of this system. 

 
Figure 10: Flowchart of the adaptive identification method for vehicle 

http://www.astesj.com/


Y. Yamauchi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 710-717 (2020) 

www.astesj.com     714 

The control goal of MPC is to derive the control input that 
matches the output with the target trajectory. The control objective 
is to derive the control input (𝛿𝛿[𝑘𝑘] and 𝑣𝑣[𝑘𝑘]) that matches the 
output (𝑥𝑥[𝑘𝑘 + 1]，𝑦𝑦[𝑘𝑘 + 1])  with the target trajectory (𝑥𝑥𝑟𝑟[𝑘𝑘 +
1],𝑦𝑦𝑟𝑟[𝑘𝑘 + 1]). This system derives control inputs that minimize 
the cost function (7). 

𝐽𝐽�𝜹𝜹(𝑘𝑘),𝒗𝒗(𝑘𝑘)� = �[(𝑥𝑥�[𝑘𝑘 + 𝑖𝑖] − 𝑥𝑥𝑟𝑟[𝑘𝑘 + 𝑖𝑖])2
𝐻𝐻

𝑖𝑖=1
+ (𝑦𝑦�[𝑘𝑘 + 𝑖𝑖] − 𝑦𝑦𝑟𝑟[𝑘𝑘 + 𝑖𝑖])2] 

(7) 

𝐻𝐻 is the prediction horizon. The prediction model (Vehicle Model 
and Neural Network in the Figure 9) predicts the vehicle trajectory 
(𝑥𝑥�[𝑘𝑘 + 𝑖𝑖]，𝑦𝑦�[𝑘𝑘 + 𝑖𝑖]), 1 ≤ 𝑖𝑖 ≤ 𝐻𝐻. Since the trajectory depends on 
the future input, the input sequence  𝑣𝑣[𝑘𝑘 + 𝑖𝑖], 𝛿𝛿[𝑘𝑘 + 𝑖𝑖], 0 ≤ 𝑖𝑖 ≤
𝐻𝐻 − 1  are derived so that the predicted trajectory (𝑥𝑥�[𝑘𝑘 + 𝑖𝑖]，
𝑦𝑦�[𝑘𝑘 + 𝑖𝑖]), 1 ≤ 𝑖𝑖 ≤ 𝐻𝐻  approaches the target trajectory (𝑥𝑥𝑟𝑟[𝑘𝑘 +
𝑖𝑖],𝑦𝑦𝑟𝑟[𝑘𝑘 + 𝑖𝑖]), 1 ≤ 𝑖𝑖 ≤ 𝐻𝐻 of the obtained input sequence, only the 
first 𝑣𝑣[𝑘𝑘], 𝛿𝛿[𝑘𝑘] are used as the actual inputs. 

From here, the Neural Network that trains and estimates the 
modeling error 𝛼𝛼� is described. From Figure 4 to Figure 6, it can be 
confirmed that the position error (modeling error) increases as the 
velocity 𝑣𝑣 increases and the front wheel steering angle 𝛿𝛿 increases. 
In other words, the position error is considered to depend on the 
velocity 𝑣𝑣  and the front wheel steering angle 𝛿𝛿 . The parameter 
required to correct this position error is the modeling error 𝛼𝛼�. This 
modeling error 𝛼𝛼� is considered to include nonlinearity. This study 
uses a 3-layer Neural Network with 2 inputs and 1 output for 
estimation. This is because the nonlinear system is modeled with 
high accuracy and the load on the computer memory is reduced as 
much as possible. The relationship between the input and output of 
the Neural Network is shown in (8-10). In this paper, 𝐼𝐼1 and 𝐼𝐼2 are 
inputs, 𝑐𝑐1-𝑐𝑐4 are thresholds, and 𝑤𝑤1 and 𝑤𝑤2 are weighting factors. 
The input value of the hidden layers are 𝑠𝑠1-𝑠𝑠4, and the sigmoid 
function is used for the output value ℎ1-ℎ4 of the hidden layers. 
Akaike's Information Criterion (AIC) is used to determine the 
number of hidden layers. The input 𝐼𝐼 is the front wheel steering 
angle 𝛿𝛿  and the velocity 𝑣𝑣 , and the output 𝑂𝑂  represents the 
modeling error 𝛼𝛼�.  

𝑠𝑠𝑖𝑖[𝑘𝑘′ − 1] = �𝑤𝑤1𝑗𝑗𝑗𝑗  [𝑘𝑘′ − 1]・𝐼𝐼𝑗𝑗[𝑘𝑘′ − 1]
2

𝑗𝑗=1
+ 𝑐𝑐𝑖𝑖[𝑘𝑘′ − 1] 

(8) 

ℎ𝑖𝑖[𝑘𝑘′ − 1] =
1

1 + exp (−𝑠𝑠𝑖𝑖[𝑘𝑘′ − 1])
 (9) 

𝛼𝛼�[𝑘𝑘′ − 1] = �𝑤𝑤2𝑖𝑖1[𝑘𝑘′ − 1]・ℎ𝑖𝑖[𝑘𝑘′ − 1]
4

𝑖𝑖=1

 (10) 

 The observed values of the position coordinates are given to 
the Neural Network as instruction signal, and online training is 
performed so as to minimize the cost function (11).  

𝐼𝐼＝ � {(𝑥𝑥�[𝑘𝑘′] − 𝑥𝑥[𝑘𝑘′])2 + (𝑦𝑦�[𝑘𝑘′] − 𝑦𝑦[𝑘𝑘′])2}
𝑘𝑘

𝑘𝑘′=𝑘𝑘−𝑊𝑊

 (11) 

(𝑥𝑥�,𝑦𝑦�) represents the position coordinates of the vehicle model, and 
(𝑥𝑥, 𝑦𝑦) represents the position coordinates of the actual vehicle. 𝑊𝑊 
represents the window width. This neural network is trained so that 
the position coordinates of the vehicle model (𝑥𝑥�[𝑘𝑘′],𝑦𝑦�[𝑘𝑘′]) from 
𝑘𝑘  to 𝑊𝑊  match the position coordinates of the actual vehicle 
(𝑥𝑥[𝑘𝑘′],𝑦𝑦[𝑘𝑘′]). Altogether, the parameter 𝛼𝛼�, which represents the 
nonlinear properties, is estimated from the position coordinates. 

     By training and estimating the modeling error due to the 
nonlinear characteristics online, the behavior of the vehicle can be 
accurately represented in situations such as acceleration and 
deceleration, large steering and road surface changes. Because the 
vehicle is identified in real time, it may be able to respond to 
changes in vehicle weight, such as changes in the number of 
passengers. Furthermore, our identification method only uses the 
wheelbase 𝐿𝐿 as the setting parameter of vehicle model. This means 
that different types of vehicles can be identified by only changing 
the wheelbase 𝐿𝐿. Conventional vehicle models have set parameters 
(e.g., cornering stiffness, vehicle mass, etc.), which vary for each 
vehicle. The key feature of this method is that there is only one 
configuration parameter. 

3. Simulation of Fixed Road Surface 

In this section, a simulation comparing the Kinematic Bicycle 
Model (1-4) with the proposed model (1-3,5,6) is described. As in 
Section 2, the simulation was performed using CarSim installed in 
the Driving Simulator. It verified whether the center of gravity 
coordinates of the proposed vehicle model (𝑥𝑥�, 𝑦𝑦�)  matches the 
center of gravity coordinates of the actual vehicle (𝑥𝑥,𝑦𝑦) .The 
Kinematics Bicycle Model (1-4) and the proposed vehicle model  
(1-3,5,6) were given the velocity 𝑣𝑣 and front wheel steering angle 
𝛿𝛿  as inputs, and the trajectory was calculated. The accuracy is 
checked by comparing the calculated trajectory with the actual 
vehicle trajectory. The input data and the actual vehicle trajectory 
are obtained by driving the simulation course shown in Figure 3, 
which was created in the Driving Simulator (Figure 2) as a driving 
course with acceleration, deceleration, and steering. This study 
assumes that the 27 degree of freedom vehicle model in CarSim is 
the actual vehicle. This simulation assumes a dry asphalt surface 
(surface friction coefficient 𝜇𝜇 ＝ 0.85) and drive a B-Class 
hatchback vehicle (Figure 12).  

The driver repeatedly accelerated and decelerated between 
the two pylons in the course [Slalom] shown in Figure 3. Figure 
13 and Figure 14 show the 𝑣𝑣 and 𝛿𝛿.The solid line in Figure 15 
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shows the running trajectory. In this paper, the trajectory is used 
as the actual vehicle trajectory. The dashed lines in Figure 15 
show the trajectory when the velocity 𝑣𝑣 ( Figure 13) and the front 
wheel steering angle 𝛿𝛿  (Figure14) were given as inputs to the 
proposed model. The front wheel tire steering angle 𝛿̂𝛿 is shown in 
Figure 16. The calculated position error between the calculated 
trajectory and the actual vehicle trajectory is shown in Figure 17 
and the estimated modeling error 𝛼𝛼�  is shown in Figure 18. As 
shown in Figure 17, the maximum positional error is 0.05m, 
which is considered to be within the practical range.  

 

Figure 12: B-Class hatchback vehicle in CarSim 

 
Figure 13: Velocity 𝑣𝑣 （ input）  

 
Figure 14: Front wheel steering angle 𝛿𝛿 （ input）  

 
Figure 15: Driving trajectory［Slalom］ 

 
Figure 16: Front wheel steering angle 𝛿𝛿 and front wheel tire steering angle 𝛿̂𝛿 

 
Figure 17: Position error  

 
Figure 18: Modeling error 𝛼𝛼� 

The results show that the behavior of the vehicle can be 
identified with high accuracy. This means that the proposed model 
(1-3,5,6) can contribute to the controller design of autonomous 
driving systems using model-based control. However, at this stage, 
this study has only validated a single driver driving a B-Class 
hatchback in CarSim several times around the track in a 
simulation experiment and have obtained good results. In order to 
prove the effectiveness of the proposed method, it is necessary to 
conduct similar tests on various courses and vehicle models, and 
this is a subject for future study. 

4. Simulation of Road Surface Change 

This section presents additional examples of situations that 
more closely resemble actual driving situations in order to verify 
the usefulness of the proposed model. As in Section 3, the 
experiments were conducted using the Driving Simulator shown 
in Figure 2. The course used is shown in Figure 19. This course 
was designed to simulate a mirror burn. Mirror burn is a 
phenomenon in which the surface of the road is polished by the 
traffic and becomes very slippery at a part of the intersection. This 
course was driven by the vehicle (B-class hatchback) in CarSim. 
This course is designed to have surface friction coefficient μ=0.2 
at the center of the intersection and μ=0.5 outside the center of the 
intersection. This simulation assumes driving on the left side of 
the road because it is based on Japanese roads. The trajectory of 
the vehicle on this course is treated as the center of gravity 
coordinates of the actual vehicle(𝑥𝑥, 𝑦𝑦) . In addition to vehicle 
dynamics, this simulation allows us to verify whether the vehicle 
can adapt to changing road conditions. The trajectory of the 
vehicle (𝑥𝑥[𝑘𝑘]，𝑦𝑦[𝑘𝑘]) while driving on the course is shown by the 
solid line in Figure 22. The dotted lines in Figure 20 to Figure 25 
indicate the boundary of the surface friction coefficient. Figure 20 
and Figure 21 show the 𝑣𝑣 and 𝛿𝛿.The solid line in Figure 22 shows 
the running trajectory. In this paper, the trajectory is used as the 
actual vehicle trajectory. The dashed lines in Figure 22 show the 
trajectory when the 𝑣𝑣 (Figure 20) and 𝛿𝛿 (Figure 21) were given as 
inputs to the proposed model. The front wheel tire steering angle 
𝛿̂𝛿 is shown in Figure 23. The calculated position error between the 
calculated trajectory and the actual vehicle trajectory is shown in 
Figure 24 and the estimated modeling error 𝛼𝛼� is shown in Figure 
25. As shown in Figure 24, the maximum positional error is 0.01m, 
which indicates that the proposed model is able to adapt to the 
changes in the road surface. 
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Figure 19: Simulation course ［Mirror Burn］ 

 
Figure 20: Velocity 𝑣𝑣 （Input） 

 
Figure 21: Front wheel steering angle 𝛿𝛿 （ Input）  

 
Figure 22: Vehicle’s driving trajectory ［Mirror Burn］ 

 
Figure 23: Front wheel steering angle 𝛿𝛿 and front wheel tire steering angle 𝛿̂𝛿 

 
Figure 24: Position Error 

 
Figure 25: Modeling Error 𝛼𝛼� 

5. Conclusion 

The purpose of this paper is to identify an autonomous vehicle 
with high accuracy in real time. This paper proposed a simple 
vehicle model that represents the error in the center of gravity 
between the actual vehicle and the vehicle model as the deviation 
𝛼𝛼� of the front wheel steering angle. This paper also proposed the 
method to estimate the 𝛼𝛼� in real time using neural network, and 
simulation experiments using CarSim showed the usefulness of 
the method in situations that require acceleration and deceleration, 
large steering, and road surface changes. The authors emphasize 
that the method can represent the nonlinear characteristics of the 
vehicle as it is learning online and that the only parameter to be 
identified in advance is the wheelbase. In other words, this study 
can eliminate the process of identifying multiple parameters 
beforehand and contribute to the design of control controllers that 
is robust to ever-changing environmental disturbances. 
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