

www.astesj.com 561

sharpniZer: A C# Static Code Analysis Tool for Mission Critical Systems

Arooba Shahoor1,*, Rida Shaukat1, Sumaira Sultan Minhas1, Hina Awan1, Kashif Saghar2

1Software Engineering Department, Fatima Jinnah Women’s University, Rawalpindi, 46000, Pakistan

2NESCOM, Centre for Excellence in Science and Technology, Rawalpindi, 46000, Pakistan

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 10 September, 2020
Accepted: 07 October, 2020
Online: 20 November, 2020

 Until recent years, code quality was not given due significance, as long as the system
produced accurate results. Taking into account the implications and recent losses in critical
systems, developers have started making use of static code analysis tools, to assess the
eminence of source code in terms of quality. Static code analysis is conducted before the
system is sent into production. The analysis aims to identify the veiled defects and complex
code structures that result in the decrement of code quality or are likely to become a cause
of malfunction during execution. To address this line of work, this research paper presents
a static code analyzer for C#, named as sharpniZer.
The key purpose of this tool is to verify the compliance of the source code written in C#, in
congruence with the target set of rules defined for analysis as per the accepted industry
standards set particularly for the development of mission-critical systems. sharpniZer
efficiently figures out the lines of source code that hold probable concern appertain to the
category of design rules, usage rules, maintainability rules, inefficient code, complexity,
object model and API rules, logical rules, exception, incomplete code, and naming
conventions. Each violation encountered in source code is ranked by the severity level as:
critical, major, and minor. The tool shall prove to be worthwhile, especially if utilized in
critical systems.

Keywords:
Software Testing
Software Quality
Verification and Validation,
Safety-Critical Programming

1. Introduction

The prevalence of software has raised serious concerns in the
software industry to think of ways in which software quality can
be ensured. How the quality of the software system or the
underlying source code can be quantified may differ from system
to system. However, the system must be optimized and proficient
in terms of parameters including maintainability, testability,
reusability, resource consumption, etc [1].

Most of the aspects of software quality largely depend upon
the skills and expertise of the development team. As the
requirements from enterprises regarding system functionality are
becoming critical, the quality of source code is likely to diminish.
A bad-written code leads to increased resource consumption and
decreased efficiency and productivity [2, 9].

The hidden defects in source code, if not identified and
addressed appropriately, can ultimately lead to unreliable system
behavior during execution. The systems need to be thoroughly

tested for the detection of loopholes left during development. The
extensively used techniques include static code analysis and
dynamic code analysis. However, the practice under consideration
for this work is that of static code analysis.

1.1. Current Scenario

As previously stated, static code analysis has become
indispensable particularly for safety (or mission) critical systems
where there is no room for even trivial bugs at the static or runtime
stage. History testifies several incidents that stress the need of
using code analysis tools. Below we will briefly discuss 3 such
incidents where ignoring trivial coding flaws cost the developers
heavy losses.

1.1.1. The Ariane 5 Explosion

Ariane 5, a heavy-lift launcher, made to launch a 3-ton
payload into orbit, cost a total of 10 years and $8 billion to be
manufactured. On its first launch in July 1996, the rocket soon
diverted from its path of flight due to a diagnostic produced as a
result of a software exception. The exception was caused during

ASTESJ

ISSN: 2415-6698

*Corresponding Author: Arooba Shahoor, arooba.shahoor@gmail.com

Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 561-570 (2020)

www.astesj.com

Second International Virtual Conference on Multidisciplinary Research 2020

https://dx.doi.org/10.25046/aj050668

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj050668

A. Shahoor et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 561-570 (2020)

www.astesj.com 562

a data conversion [11]. Specifically, a 16-bit value of type float
was being converted to a 16-bit signed number, i.e. the value
being converted was much greater and could not be possibly
represented by a 16-bit number, consequently leading to an
operand error [12]. Since it had reached an angle of attack of more
than 20 degrees, the launcher started to disintegrate, and finally
obliterated itself through a self-demolishing method, along with 4
satellites that it carried within itself [13].

1.2. Patriot Missile Error

At the time of gulf war (2 August 1990 – 28 February 1991),
28 American soldiers lost their lives, and yet 100 others severely
wounded when the US missile defense system failed to detect the
Scud missile that the Iraqi forces launched [5]. The root cause of
the failure lies in the conversion of time from integer to floating
value, which consequently resulted in a major shift in the range
gate [6, 28].

1.2.1. AT & T (American Telephone & Telegraph) Network
Goes Down

About 75 million call requests were not answered and
approximately 50 % of the network of AT&T went down on
January 15, 1990, when a bug in a single line of code incurred the
network failure for several hours [7]. Specifically, the problem
occurred where a break statement within a switch case, was nested
within an if clause. Companies linked to its services faced fiscal
setbacks, among which was “American Airlines”, whose
incoming calls were reduced by two-third owing to the network
crash [8, 29].

The incidents mentioned above, stress upon the need and
significance of thorough analysis of the code before the runtime
state. This paper presents a static code analysis tool for C#, named
as sharpniZer. The rest of the paper is organized as follows: part
B of this section will delineate the basic aim and purpose of the
utilization of static code analyzers in the software development
process. Section 2 reveals the solution proposed in this paper i.e.
a static code analyzer for C# that is designed to detect such
seemingly non-destructive but critical bugs usually ignored in the
development of mission-critical systems. This section will also
discuss the categories in which the rules implemented by the
proposed analyzer can be generally segregated. Part 2 of section
2 will present the methodology adopted for the development of
the tool. It also indicates the flow of the application. Section 3
outlines the system features and characteristics of sharpniZer.
Each module is briefly presented; the figures attached to each
module shall assist the reader in gaining better insight into the
tool. Section 4 gives a comparison of the proposed tool with other
existing tools in a tabular format. The textual summary of the
comparative analysis is given in section 5. Section 6 presents the
direction of future work i.e. discussion of the ways the tool can be
extended or modified, to cater to the rapidly changing market
needs. Section 7 concludes the research presented in the paper.

1.3. The Goal of Static Code Analyzers

Static code analysis chiefly focuses on examining the source
code, without actually executing it, to help ensure that the code is
abiding by the established coding standards. This helps recognize
such flaws and code constructs that may decrease code quality, or

in the worst-case scenario, incur a costly disaster month or years
later. The article an overview on the Static Code Analysis
approach in Software Development [30] talks about and
objectives for developers to introduce static code analyzers in the
testing phase of the development life cycle and here we
summarize six of those factors

• Saves time and money

Reviewing code manually can take up much time, in
comparison to which automated static code analyzers are much
faster. These analyzers can take large sets of known bugs
(common as well as uncommon) and combine them with special
algorithms to track them anywhere in the code in hand, which
enables the bugs to be detected in a matter of seconds which
would otherwise take hours or even days.

• In-Depth Analysis

With manual testing, it is highly likely to overlook some code
executions paths, which is not the case in automated testing.
Automated testing is performed as we build our code, so we can
get an in-depth analysis of where potential issues might lie, under
the rules applied by the user.

• Accuracy

It is always possible for manual reviews to be inaccurate or
error-prone. This is another aspect where code analyzers come in
handy. They can specify exactly where and when the error occurs
without any ambiguity. Issues such as stack overflows or race
conditions, that only show up when code goes into production, are
hard to figure out if not resolved beforehand (through static code
analysis) since the scenarios are less likely to be able to be
recreated.

• Ease of use

A clear benefit the analyzers provide is their ease of access
and usability. These analyzers come in stand-alone as well as
integrated form, you can easily integrate analyzers with your code
editing tool. Moreover, everything is performed automatically by
the analyzer, it does not require any profound or in-depth
knowledge or expertise on the part of the user.

• Comprehensive Feedback/Overview

At the end of the analysis, the user is provided with a detailed
overview of the code and the violations (often with
visualizations), which helps the user to get to the action and work
on fixing the violations there and then.

• Uniform Code

Code analyzers analyze the code against set coding standards,
which means by introducing a particular code analyzer for code
testing, the corporate is enforcing the use of best coding practices
which will consequently set a uniform coding practice among all
coders and programmers. This will facilitate developers in an
easier and quicker understanding of each other’s code.

2. Proposed solution

Taking into account the concerns about the quality of code
and recognizing that the cause of recent losses associated with the
critical systems is the lack of appropriate code analysis, a static

http://www.astesj.com/

A. Shahoor et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 561-570 (2020)

www.astesj.com 563

code analysis tool, named as sharpniZer, has been developed.
sharpniZer efficiently analyzes the source code written in C#
against the target set of (150) rules defined for analysis as per
accepted industry standards. As soon as the analysis completes,
the user is presented with the results of the analysis in multiple
forms so that the user can easily gain a thorough insight into the
quality of the code at hand.

Before diving into the implementation of the tools, let us first
present the 10 categories in which the selected 150 rules are
divided. The rules have been accumulated from multiple industry-
wide accepted standards such as MISRA, JPL, CERT, CWE, etc.
The rationale behind the selection of these 150 rules is the
frequency of their violations along with their pertinence in the
development of mission-critical systems.

2.1. Description of categories of rules

1. Usage Rules: This is the category of rules that ensures the
proper utilization of the .Net Framework and correct usage of
the common types provided by it. Failure in complying with
these rules may have diverse repercussions; they can be
complexity, maintainability, or performance issues.

This category contains rules such as “Dispose() & Close():
Always invoke them if offered, declare where needed.” and “Do
not omit access modifiers”.

The former rule recognizes the problem that Class instances
often have possession of unmanaged resources, such as database
connections. Not disposing of these resources implicitly or
explicitly after they are no longer needed, may lead to memory
leakage. Similarly, not closing SQL connections after utilizing
them, may result in a lack of connections available in case of
connecting to the database again.

2. Design Rules: Every programmer or developer is unique and
has his style when it comes to coding or implementing logic.
Therefore, it is imperative that some standard of coding style
is maintained that will be followed by all the developers.
Design rules will thus outline certain guidelines for the way
logic is to be implemented.

As an example, consider the following rule: “‘out’ and ‘ref’
parameters should not be used”. ‘Out’ and ‘ref’ are required when
variables have to be passed by reference. This requires above-
average experience and skills in working with pointers and more
than one return value as well as an understanding of the difference
in the concepts of ‘out’ and ‘ref’. Not all developers are expected
to be of the same competency, and therefore to bring all
developers to a level playing field, it is recommended to rather
shun the use of out and ref.

3. Object Model and API Design Rules: These are the rules that
are geared towards object-oriented features such as
inheritance, encapsulation, etc. An example rule for this
category is: “Always prefer interfaces over abstract classes.”
Since interfaces are not coupled with other modules, it can be
independently tested, unlike abstract classes, that can be only
tested during integration testing. Moreover, since in C# a
class can inherit from one only class but multiple interfaces,
it is highly recommended to prefer interfaces when the
developer has a choice between them and abstract classes.

4. Exceptions: Exceptions are yet another part of the code that
needs to be catered for with much caution. Consider the
following rule: “If re-throwing an exception, preserve the
original call stack by omitting the exception argument from
the throw statement”.

This rule guides and warns us about the case when we want
to re-throw an exception. It tells us that if we re-throw the
exception with the exception (ex) argument, the compiler will not
consider it a “re-throw” of the original exception rather it will
consider it as a new exception that occurred where the throw (ex)
statement was written. Likewise, many such guidelines need to be
considered when using exceptions in our code.

5. Complexity Rules: These rules deal with common coding
practices that may seem harmless at the time of
implementation but in the long run result in what has become
known as spaghetti code, where the flow of control is hard to
keep track of. Particularly for critical systems, spaghetti code
proves to be extremely risky, since in such systems one can’t
afford to overlook the validation and verification of every
possible path of the control flow [4].

An example rule for this category is “Continue statement
should not be used” or “go to statement should not be used”. Since
goto and continue statements provide an alternative way to exit
from control structures, for large code files, it becomes inevitably
difficult to keep track of and verify all the paths of the control
flow.

6. Inefficient code: Rules of this category cater to the coding
practices that negatively affect the performance of the system
that may either be the result of greater time or memory
consumption.

For example, a rule for this category of issues is “Avoid string
concatenation in loop”. Since string is an immutable type, every
time a string is concatenated using ‘+’ or using ‘Concat()’, a new
memory location is reserved for the newly formed string. If the
number of iterations is unknown or is very large, such practice
would highly deteriorate the performance of the system due to
unnecessary consumptions of memory.

7. Incomplete code: As is suggestive of the title, rules that fall
in this category cater to the sections of code that give the
impression that some part of code is left out, be it
intentionally or mistakenly. Such coding faults, above all
things, raise the issues about the understandability of code
[10].

As an example, to this category of rules, consider this rule:
“Ensure that a 'switch' includes cases for all 'enum' constants”, this
rule suggests that if a switch statement is based on a variable of
type enum, then leaving any of the constants in its cases would be
considered as a coding error. To avoid this blunder as well as to
enhance the understanding of the switch statement, it is advised to
handle all constants of the enum.

8. Logical errors: Rules in this category cater to situations when
the coder might feel that the logic or the approach used for
implementing a code section is correct, but actually, that code
section ends up serving some other purpose, as opposed to
the one the coder had for it in mind. Such blunders result in

http://www.astesj.com/

A. Shahoor et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 561-570 (2020)

www.astesj.com 564

unexpected results, confusion in the understanding of the
code, or redundancy and decreased performance [3].

Example rules for such scenarios are as follows: “Do not
perform self-assignment” or “Do not compare identical
expressions”. Looking at these rules, it is obvious that they
prevent redundancy overhead by warning the user not to waste
time and memory on something that will have no effect or use
whatsoever. Therefore, such an implementation should be
regarded as a coding error.

9. Maintainability Rules: This category of rules chosen for our
system is the one that deals with the issue of maintainability.
These rules ensure that the size of the code or modules and
values used within, do not exceed a particular limit, for better
performance and efficiency of the system. One example of
this category is “Avoid creating files that contain many lines
of code”. Very large files will not only create problems of
maintainability but will lead to many other issues such as:

● Merge conflicts; if more than one developer needs to work on
the code at the same time.

● Network traffic; if the system uses a version control system
to which the entire file needs to be transmitted for every small
change.

● Poor organization of code; since large file size might be the
result of appending everything to the same file, rather than
building related things separately in respective files.

10. Naming Conventions: This category outlines the conventions
set for naming code files and identifiers. The identifiers
include properties, variables, methods, fields, parameters,
namespaces, interfaces, and classes. Certain guidelines for
naming have a much more critical purpose than mere
consistency, take for example this rule: “Avoid using the
same name for a field and a variable”. Since the field is just
a local variable of the class, declaring any other local variable
with the same name as the field will cause confusion between
the two, therefore it is strongly recommended to use different
names for fields and variables in general [16].

2.2. Implementation Details

The tool, sharpniZer, is developed in WinForm on .NET
Framework of Visual Studio. For development, Waterfall model
is chosen, whereas the implementation language is C#. The
implementation process and logic is discussed in detail below:

In creating the analyzer, we made use of SDK called Roslyn,
which provides the user with useful API’s used for C# code
parsing and analysis of language constructs. An analyzer created
with the Roslyn SDK, inherits Microsoft's CodeAnalysis base
class. Given a file as a string, Roslyn can parse it and create a
syntax tree from it, using the CSharpSyntaxTree Class of the
Microsoft.CodeAnalysis package. It can then access the root of
the syntax tree using the following statement.

var root = (CompilationUnitSyntax)tree.GetRoot();

Once we get the root of the syntax tree, it is fairly easy to
access the descendant elements (declarations, expression, etc.) in
the code. Microsoft.CodeAnalysis library enables us to access
various elements of a node. For e.g

Microsoft.CodeAnalysis.CSharp. Syntax enables us to access any
type of declaration in C# code.

To show how our analyzer detects the different categories of
problems and how checks are implemented, we will present the
snippets of code demonstrating the implementation of 2 of the 150
rules implemented by sharpniZer.

Rule: Do not assign to local variable in return statement

When the assignment is made to a variable in a return
statement, the variable goes out of scope and the value assigned
is never read. Hence resulting in code redundancy. Redundant
source code is one that is bloated, less reliable, and difficult to
maintain. Any expert programmer would agree that the harder it
is to maintain the code, the more likely it is to contain bugs.

Moreover, in a highly knitted team setting where multiple
developers are involved, any such code written by a programmer
will create much confusion for another to read or understand,
resulting in a great deal of wasted time and mental energy. In the
following section, we present and explain the snippets from our
program which detects and warns about such redundant
assignment statements in C# code.

First, all the method declarations in the code are stored in a
list.

 IEnumerable<MethodDeclarationSyntax>
methodsdecroot.DescendantNodes().OfType<MethodDeclarati
onSyntax>();

Next, all the variable declarations within each method are stored.
foreach (var method in methodsdec) {
 foreach (var VarDec in
method.DescendantNodes().OfType<VariableDeclaratorSyntax>
()) {
 VarDecsList.Add(VarDec.Identifier.ToString());
 }

Then, all the return statements within each method are looped
through.
 foreach (var returnStatement in
method.DescendantNodes().OfType<ReturnStatementSyntax>()
) {

After which we loop through all the assignment expressions
within each method are looped through.
 foreach (var assignment in
method.DescendantNodes().OfType<AssignmentExpressionSyn
tax>()) {

The following code then checks if any of the assignments are
made to the variables declared within the method (local variables)
and is done in a return statement.
 if (returnStatement.Contains(assignment) &&
VarDecsList.Contains(assignment.Left.ToString())) {

http://www.astesj.com/

A. Shahoor et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 561-570 (2020)

www.astesj.com 565

If so, then the line number of that particular assignment is added
to the warnings list
 warnings = "Do not assign to local variable in return statement";
 lineno = assignment.GetLine()+1;
 WarningsList.Add(lineno + "@" + warnings + "@" + level);

In the above example, the rule was implemented by working
on merely syntactic level. However, if the rule to be implemented
requires some more information about the nodes/syntaxes (such
as types, members, namespaces and variables which names and
other expressions refer to), we have to be able to retrieve the
symbols of the expressions or declarations.

We can retrieve symbols once we have the semantic model
for the syntax tree. The method
SemanticModel.GetDeclaredSymbol() is used to get the symbol
of a given declaration syntax, whereas
SemanticModel.GetSymbolInfo() returns the symbol of an
expression syntax. The implementation of the second rule
presented here makes use of this.

Rule: “Use throw instead of throw e (e for exception) whenever
rethrowing the exception”

Throw statements are used so that if, during the execution of
a software program, an unexpected condition occurs, the system
is unable to process the next statement and instead throws an
‘exception’ error that specifies the line where the problem
occurred, along with the line the throw statement was specified at.
Now, when that exception is caught, we can choose to re-throw it.
However, when re-throwing the exception, most programmers
make the mistake of using the throw statement with the exception
object (e); doing so will make the stack trace information within
the exception restart at the current location, such that it will then
point to the line where exception was thrown, rather than where
the problem, causing the exception, occurred.

Though it might not seem like a critical issue per se, any
programmer would acknowledge that incorrect stack trace
information can lead to much confusion and thereby potential
disruption of any logic that would be based on it. Below we
present our code implementation that would detect such
statements (if any) within C# source code.

First, all the catch clauses in the code are stored through the
descendants of the root node (as in the previous example).

IEnumerable<CatchClauseSyntax> catchcaluses =
root.DescendantNodes().OfType<CatchClauseSyntax>().ToList(
);

Next, the throw statements within a catch clause are stored.
foreach (var catchclause in catchcaluses) {
 var throws = catchclause.DescendantNodes(n => n ==
catchclause ||
!n.IsKind(SyntaxKind.CatchClause)).OfType<ThrowStatementS
yntax>() .Where(t => t.Expression != null);

Then, all the throw statements, that were saved in the list, are
looped through, to get the expression symbol of each throw.

 foreach (var @throw in throws) {
 var thrown =
model.GetSymbolInfo(@throw.Expression).Symbol as
ILocalSymbol;

If the expression symbol matches the exception identifier, it
means the throw statement specifies the exception, which violates
the rule. Hence the line number of that throw statement is added
to the warnings list.
 if (Equals(thrown, exceptionIdentifier)) {
 warnings = MessageFormat;
 lineno = (@throw.GetLine()+1).ToString();
 mylist.Add(lineno + "@" + warnings + "@" + level);
 }

3. System features and usage

Upon launching the tool, the user is asked to browse a .CS
file or folder containing.CS files. Once the files are loaded, users
can select the categories of rules upon which the analysis is to be
conducted. The tool allows users to selectively enable the
categories of rules (by default, all categories of rules are enabled).
The analysis result presents the defiance and violations in source
code in congruence with the underlying set of rules. An analysis
summary is presented in the form of a dashboard, presenting the
results in tabular form. The graphical representation adds to the
visualization of analysis and assists users in gaining deeper insight
into the results. An overview of the flow of the analysis process
of sharpniZer can be seen in Figure 1.

Figure 1: Methodology for conducting analysis

The above mentioned features of the system will now be
elaborated per module below

3.1. Browsing C# file or project folder

User may CHOOSE C# file(s) to be analyzed in two ways:

Using the “Choose C# File” file option: allowing the user to
choose any code file with the extension of .CS. After the file is
selected, the content of the file will be displayed to the user in the
Analyze tab (Figure 4). Clicking the Start Analysis button in the
Analyze tab will start the analysis of the selected file.

http://www.astesj.com/

A. Shahoor et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 561-570 (2020)

www.astesj.com 566

Figure 2: Home page of sharpniZer

Figure 3: Selection of files for analysis

Figure 4. Analysis progress

Using “Choose C# Project” option: The user may choose any
folder containing .CS files in the folder itself or its subfolders. If
the user wants to deselect a file within that folder, they can click

on that file’s name in the “Files for Analysis” list (Figure 3), that
file will be removed from the list of the files to be analyzed. The
selected files will be analyzed sequentially and the progress of the
analysis for each file will be displayed (Figure 4).
3.2. Select categories of rules for conducting analysis

Users can select or deselect any of the 10 categories of coding
standard rules provided. The available categories can be seen in
Figure 5.

Figure 5. Selection of categories

3.3. Viewing analysis results

As soon as the analysis of the selected files(s) finishes, the
tool switches to Results tab (Figure 6), which displays the result
of the analysis. The analysis result specifies the filename(s), line
no. at which the violation has been encountered, the violated rule,
and the severity of the violation.

Figure 6: Analysis result

3.4. Viewing Dashboard

The Dashboard presents the analysis summary. The
numerical/tabular form of the results allows the user to gain
deeper insight into the outcome (Figure 7). It also allows the user
to generate an analysis report in a .pdf file that can be
saved/downloaded and shared with team members (Figure 8).

http://www.astesj.com/

A. Shahoor et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 561-570 (2020)

www.astesj.com 567

Dashboard presents the following content:

● Total File(s) Selected

● Total Lines of Code

● Total number of violation(s)

● Number of violation(s) per file

● Category Violation(s) for all file(s)

● Category of violation(s) per file

● Severity of violation(s) for all file(s)

● Severity of Violation(s) per file

Figure 7: Dashboard

Figure 8: Analysis Report

3.5. Visual representation of Analysis Result

The Visual representation of results is often considered to be
more comprehensive and elaborate, therefore, sharpniZer
generates graphs by utilizing the numerical values of analysis
results (Figure 9). The graphs can be generated for total violations,

as well as for each file (if the analysis is conducted upon multiple
files).

● The bar chart represents the total violations per category of
rules chosen.

● The pie chart represents the total violations of rules per
severity level.

Figure 9: Graphical representation of analysis results

4. Review and Comparison of the Existing Tools with
sharpnizer

Below we provide a review of other existing 9 tools that
analyze code written in C# (a detailed comparison of C# code
analyzers could be found in our previously published review
article Probing into code analysis tools: A comparison of C#
supporting static code analyzers [27]).

The 9 tools chosen for comparison in this research were
selected based on their overall ranking resulting from numerous
surveys combined with the fact that prior literature has proved
these tools to be the most popular among researchers. The
majority of the values for our evaluation are attained by gathering
information from surveys and public reviews of users. Rest are
procured by self-executing the tools and observing the
performance in light of the mentioned 10 parameters.

Table I defines the parameters taken into consideration for
comparison. These parameters were selected based on the survey
of the code analyzer features most commonly considered by
companies when selecting one to assess their mission-critical
systems. Table II AND III present the value for each tool against
these parameters. Whilst keeping the comparison authentic and
unbiased, Tables II and III manifests the benefits sharpniZer has
over some other quite decently known tools in use today.

5. Results

From the results of the comparative analysis presented in
Tables 1 and Table 2, we can see that sharpniZer’s installation
process and usability is easier than some of the tools available.
Though the number of rules implemented is yet lower than most
in comparison, it supersedes many in providing customization of
rules’ selection, categorizing the nature of violations and covering
a wide spectrum of the coding standards. In addition, unlike some
of the contemporary tools, sharpniZer does not require code to be
compiled first to perform analysis.

http://www.astesj.com/

A. Shahoor et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 561-570 (2020)

www.astesj.com 568

Table 1: Comparison Parameter

S. No. Parameter Definition

1 Usability How user-friendly is the tool for a layman (scalable from easy to hard)
(The classification was done based on the pubic reviews of the users of the tools listed and
those of our client) [13]-[26]

2 Installation How convenient is the process of installation/integration of the application (scalable from easy
to hard) (Classification was done based on published surveys and our client’s reviews) [13]-
[26]

3 No of Defined Rules The number of rules/metrics defined within the tool, so that the tool might assess compliance
of these rules, during the analysis of codes.

4 No. Of Categories of
Defined Rules

Number of types of coding standard violations defined by the tools

5 Requires compiled code Does the tool require the code to be compiled before it can perform analysis on it?

6 Graphical representation Does the tool display the graphical representation of the analysis result?

7 Selection of Desired
Categories of Rules to be

Applied

Does the tool allow the user to select specific categories of rules to check the code compliance
with?

8 Severity categorization
based on the nature of the

violation (Blocker, critical,
major, minor)

Does the tool specify the severity of violations in results (minor, major, or critical)?

9 No. of Standards for Code
Compliance

Number of coding standards with which the tool checks the compliance of the code at hand

10 Is the Tool Optimized for
Mission Critical Systems?

Does the tool predominantly check the compliance with rules defined for the development of
mission-critical systems?

Table 2: Comparative Analysis

S. No. Tool Usability Installation No of Defined
Rules

No. of
Categories of
Defined Rules

Requires
Compiled

Code?

1. Ndepend Normal [13, 14] Easy [13, 26] More Than 150
Default Code

Rules

14 No

2. PVS-Studio Hard [23, 25] Easy [23, 25] 450 Diagnosis
Rules

29 No [23]

3. Resharper Easy [21, 26] Easy [21, 26] 1700+ Code
Inspections

 10 No [21]

4. Fxcop Easy For GUI, Hard for
Command Line [19, 25]

Easy [19, 25] More Than 200 9 Yes

http://www.astesj.com/

A. Shahoor et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 561-570 (2020)

www.astesj.com 569

5. Visual Code Grepper Easy [18, 26] Easy [17, 26] Unknown 3 No

6. Nitriq Easy [20, 25] Difficult [20,
25]

Over 40 Pre-
Written Rules

Defined

Unspecified Yes

7. Parasoft Dot Test Easy [23, 26] Untested/
Not Reviewed

Above 400 20 No

8. Coverity Scan Hard [16, 25] Easy [16, 25] Unknown 30 No

9. sharpniZer Easy Easy 150 10 No

Table 3: Comparative Analysis

S.No. Tool Graphical
Representation

Selection of Desired
Categories of Rules

to be Applied

Severity Categorization
Based on Nature of
Violation (Blocker,

Critical, Major, Minor)

No. of
Standards
for Code

Compliance

Is the Tool
Optimized
for Mission

Critical
Systems?

1. Ndepend Yes [14] Yes Yes [13] Unspecified No

2. PVS-Studio No [24] No No 3 Yes[24]

3. Resharper No [21] No No Unspecified No

4. Fxcop No Yes No 1 No

5. Visual Code
Grepper

Yes [26] No Yes 2 Yes [18]

6. Nitriq Yes [20] Yes No Unspecified No

7. Parasoft
DotTEST

Yes [24] Yes Yes 3 Yes

8. Coverity Scan Untested/
Not Reviewed

No No 2[15] Yes [15]

9. sharpniZer Yes Yes Yes 5 Yes

Due to successful realization of chief requirements for testing
static code of mission-critical systems, sharpniZer is currently
employed by NESCOM (a military research organization of
Pakistan) to test the software (written in C#), embedded in some
of the mission-critical and ammunition systems developed by the
organization.

6. Future Work

The proposed tool currently encompasses 150 coding rules,
obtained from standards (established for the development of
mission-critical systems) such as MISRA, CERT, CWE, and JPL
and also from Microsoft. The rules list can be extended to cover
more rules and standards. Moreover, custom rules can be made

http://www.astesj.com/

A. Shahoor et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 561-570 (2020)

www.astesj.com 570

part of the tool that will allow users to define their own rules
through a query language.

Refactoring is yet another feature that can be incorporated
into the system. Through Refactoring, the violation will
automatically be corrected in the code as the user clicks on the
violated rule in the Results tab. Also, the tool can be expanded to
cater to source codes of other languages along with C#

7. Conclusion

This paper discusses the burgeoning issue of overlooked bugs
in static code of critical systems, and proposes a static code
analysis tool, sharpniZer, that analyzes the code specifically
written in the C#, and precisely identifies all the discrepancies and
deficiencies in the source code as per the coding standards set for
the development of mission-critical systems, enhancing the
overall efficiency and reliability of the code.

Conflict of Interest

The authors declare no conflict of interest.

Acknowledgment

This research paper is a product of the effort of 5 authors, the
references to whom are specified at the beginning of the article.
All authors have read and agreed to the published version of the
manuscript. The detailed roles of each were as follows:

Conceptualization: Rida Shaukat and Arooba Shahoor Data
curation: Arooba Shahoor Writing—original draft preparation:
Rida Shaukat Writing—review and editing: Dr. Sumaira Sultan
Minhas Supervision, Ms. Hina Awan Funding acquisition: Dr.
Kashif Saghar.

References

[1] A. Costin, "Lua Code: Security Overview and Practical Approaches to Static
Analysis," 2017 IEEE Security and Privacy Workshops (SPW), San Jose,
CA, 132-142, 2017.

[2] S. A. Fatima, S. Bibi and R. Hanif, "Comparative study on static code
analysis tools for C/C++," 2018 15th International Bhurban Conference on
Applied Sciences and Technology (IBCAST), Islamabad, 465-469, 2018.

[3] T. Delev and D. Gjorgjevikj, "Static analysis of source code written by
novice programmers," 2017 IEEE Global Engineering Education
Conference (EDUCON), Athens, 825-830, 2017. DOI:
10.1109/TII.2016.2604760

[4] A. S. Novikov, A. N. Ivutin, A. G. Troshina and S. N. Vasiliev, "The
approach to finding errors in program code based on static analysis
methodology," 2017 6th Mediterranean Conference on Embedded
Computing (MECO), Bar, 1-4, 2017.

[5] “The Patriot Missile Failure,” Soundwaves, 2016. http://www-
users.math.umn.edu/~arnold/disasters/patriot.html.

[6] “Lethal Software Defects: Patriot Missile Failure « Barr Code,” Barr Code,
2014. https://embeddedgurus.com/barr-code/2014/03/lethal-software-
defects-patriot-missile-failure/.

[7] “AT&T Corp. (American Telephone & Telegraph),” Ad Age, 15-Sep-2003.
http://adage.com/article/adage-encyclopedia/t-corp-american-telephone-
telegraph/98327/.

[8] “AT&T's History of Invention and Breakups,” The New York Times, 13-
Feb-2016. https://www.nytimes.com/interactive/2016/02/12/technology/att-
history.html.

[9] R. Kirkov and G. Agre, “Source Code Analysis – An Overview”,
Cybernetics and Information Technologies, 10(2), 2014.

[10] R. Plosch, H. Gruber, C. Korner and M. Saft, "A Method for Continuous
Code Quality Management Using Static Analysis," 2010 Seventh
International Conference on the Quality of Information and Communications
Technology, Porto, 370-375, 2010.

[11] “The Explosion of the Ariane 5,” Soundwaves. “The Patriot Missile Failure,”
Soundwaves, 2019. http://www-
users.math.umn.edu/~arnold/disasters/patriot.html

[12] “ARIANE 5 Failure - Full Report,” Safeware: System Safety and Computers,
2018. http://sunnyday.mit.edu/nasa-class/Ariane5-report.html

[13] “NDepend In Review,” NDepend In Review - CraigTP's Blog, 2018.
https://blog.craigtp.co.uk/Post/2017/12/17/NDepend_In_Review.

[14] C. N. D. W. www.ndepend.com, “NDepend Reviews 2018 | G2,” G2 Crowd,
01-Sep-2018. https://www.g2.com/products/ndepend/reviews

[15] “27. Coverity Scan,” 27. Coverity Scan - Python Developer's Guide, 2019.
https://devguide.python.org/coverity/.

[16] Synopsys, “Coverity Reviews 2018 | G2,” G2 Crowd, 22-Jul-2018.
https://www.g2.com/products/coverity/reviews.

[17] Algaith, P. Nunes, F. Jose, I. Gashi, and M. Vieira, “Finding SQL Injection
and Cross Site Scripting Vulnerabilities with Diverse Static Analysis Tools,”
2018 14th European Dependable Computing Conference (EDCC), 2018.

[18] Nccgroup, “nccgroup/VCG,” GitHub, 03-May-2016.
https://github.com/nccgroup/VCG.

[19] FxCop, 2017. https://msdn.microsoft.com/en-
us/library/bb429476(v=vs.80).aspx.

[20] M. Valdez, “Home,” Home, 2017. http://marcel.bowlitz.com/.
[21] “Nitriq Code Analysis for .Net,” Home : Nitriq Code Analysis for .Net, 2017.

http://www.nitriq.com/.
[22] “ReSharper: Visual Studio Extension for .NET Developers by JetBrains,”

JetBrains, 2017. https://www.jetbrains.com/resharper/
[23] “Service Virtualization, API Testing, Development Testing,” Parasoft, 2017.

https://www.parasoft.com/.
[24] “PVS-Studio: Static Code Analyzer for C, C and C#,” PVS-Studio: Static

Code Analyzer for C, C and C#. https://www.viva64.com/.
[25] J. Novak, A. Krajnc and R. Žontar, "Taxonomy of static code analysis tools,"

In The 33rd International Convention MIPRO, 418-422. IEEE, 2010.
[26] H. Prähofer, F. Angerer, R. Ramler and F. Grillenberger, "Static Code

Analysis of IEC 61131-3 Programs: Comprehensive Tool Support and
Experiences from Large-Scale Industrial Application," in IEEE Transactions
on Industrial Informatics, 13(1), 37-47, Feb. 2017. DOI:
10.1109/TII.2016.2604760

[27] R. Shaukat, A. Shahoor and A. Urooj, "Probing into code analysis tools: A
comparison of C# supporting static code analyzers," 2018 15th International
Bhurban Conference on Applied Sciences and Technology (IBCAST),
Islamabad, 2018, 455-464, doi: 10.1109/IBCAST.2018.8312264.

[28] E. Ogheneovo, “Software Dysfunction: Why Do Software Fail?. Journal of
Computer and Communications, 02(06), 25-35, 2014.
DOI:10.4236/jcc.2014.26004

[29] M. Faizan & P. Dhirendra. “software testing, fault, loss and remedies. 6. 553-
568, 2019. DOI: 10.1109/52.382180

[30] I. Gomes, et al. “An overview on the Static Code Analysis approach in
Software Development.” 2009.

http://www.astesj.com/

	1.1. Current Scenario
	1.2. Patriot Missile Error
	1.3. The Goal of Static Code Analyzers
	2. Proposed solution
	2.1. Description of categories of rules
	2.2. Implementation Details

	3. System features and usage
	3.1. Browsing C# file or project folder
	3.2. Select categories of rules for conducting analysis
	3.3. Viewing analysis results
	3.4. Viewing Dashboard
	3.5. Visual representation of Analysis Result

	4. Review and Comparison of the Existing Tools with sharpnizer
	5. Results
	6. Future Work

