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The performance of Simultaneous Clustering and Model Selection Matrix Affinity
(SCAMSMA) and Deep Divergence-Based Clustering (DDC) in clustering wireless mul-
tipaths generated by COST 2100 channel model (C2CM) is compared. Enhancing the
accuracy of clustering multipaths is an open area of research which the clustering ap-
proaches try to improve. Jaccard index is used as the clustering validity metric of the
clustering approaches. The results of the clustering approaches are compared using the
analysis of variance (ANOVA) toolbox of MATLAB and displayed using the box plots. Re-
sults show that the cluster-wise Jaccard index is different between SCAMSMA and DDC for
indoor scenarios, while the membership-wise Jaccard index is not. On the other hand, the
cluster-wise Jaccard index is not different between the clustering approaches for semi-urban
scenarios, while the membership-wise Jaccard index is a little different. The clustering
approaches can be used in indoor scenarios based on accuracy.

1 Introduction

The European Cooperation in Science and Technology (COST)
2100 Channel Model (C2CM) [1]–[4] can reproduce the properties
of multiple-input multiple-output (MIMO) wireless propagation
channels. A multipath component (MPC) is classified based on
the delay (τ), angle of departure (Azimuth of Departure (AoD),
Elevation of Departure (EoD)), and angle of arrival (Azimuth of
Arrival (AoA), Elevation of Arrival (EoA)). Groups of multipath
components with similar delays and angles comprise a multipath
cluster, which characterized C2CM.

Analyzing wireless multipaths is an important problem where
clustering is crucial. The attribute, performance, and efficiency
of the communications system can be studied, understood, and
improved by the generated channel model. The accuracy and cor-
rectness of the channel models significantly affect the precision and
exactness of clustering wireless propagation multipaths. Several
channel models and measurements reveal the clustering of multi-
paths. Inaccurate clustering of the wireless propagation multipaths
leads to incorrect channel models and thereby degradation in perfor-
mance.

Clustering finds the underlying structure of the data. It also

group similar data together [5]–[16]. In our previous works [17]–
[20], Simultaneous Clustering and Model Selection Matrix Affinity
(SCAMSMA) [21] and Divergence-Based Clustering (DDC) [22]
were used to cluster the dataset [23, 24] generated by C2CM. In this
work, the comparison of the clustering accuracy of SCAMSMA and
DDC are presented. The main contributions of this study are (1) the
paper shows the variation in the performance of SCAMSMA and
DDC in clustering the COST 2100 dataset; and (2) SCAMSMA and
DDC have a significant difference in their accuracy in clustering the
wireless multipaths.

The paper is organized in the following way. Section 2 presents
the dataset generated by C2CM. Section 3 describes the clustering
approaches. Section 4 explains the ANOVA used. Section 5 defines
the Jaccard index. Section 6 discusses the ANOVA results. Section 7
concludes the work.

2 COST 2100 Dataset

COST 2100 channel model (C2CM) [1]–[4] can replicate the
stochastic properties of multiple-input multiple-output (MIMO)
wireless propagation channels. Multipath clusters characterize
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C2CM. A multipath component (MPC) is defined by its delay (τ),
angle of departure (AOD) (Azimuth of Departure (AoD), Elevation
of Departure (EoD)), and angle of arrival (AOA) (Azimuth of Ar-
rival (AoA), Elevation of Arrival (EoA)). MPCs with similar delays
and angles are grouped into multipath clusters, as shown in Figure 1.

A channel impulse response (CIR) from the base station (BS) to
mobile station (MS) antennas is characterized by the combination
of MPCs from all the active multipath clusters and is given as

h(t,τ,ΩBS,ΩMS) =∑
k∈K

∑
p

αk,pδ(τ − τk,p)δ(ΩBS −ΩBS
k,p)δ(ΩMS −ΩMS

k,p ) (1)

where K is the set of visible cluster indexes, αk,p is the complex
amplitude of the pth MPC in the kth cluster,ΩBS

k,p is the direction of
departure (AoD, EoD), and ΩMS

k,p is the direction of arrival (AoA,
EoA) of the MPC.

The dataset [23, 24] is generated by the C2CM, which consist
of two indoor channel scenarios at 5.3 GHz and six semi-urban
channel scenarios at 285 MHz as follows:

1. Indoor, Band 1 (B1), Line-of-Sight (LOS), Single Link (SL)

2. Indoor, Band 2 (B2), Line-of-Sight, Single Link

3. Semi-Urban, Band 1, Line-of-Sight, Single Link

4. Semi-Urban, Band 2, Line-of-Sight, Single Link

5. Semi-Urban, Band 1, Non-Line-of-Sight (NLOS), Single
Link

6. Semi-Urban, Band 2, Non-Line-of-Sight, Single Link

7. Semi-Urban, Band 1, Line-of-Sight, Multiple Links (ML)

8. Semi-Urban, Band 2, Line-of-Sight, Multiple Links

Each channel scenario has thirty sets of data consisting of
a different number of multipaths and multipath clusters. The
seven features of the datasets are the following: whitened x-
component of AOD (X AOD W), the whitened y-component of
AOD (Y AOD W), the whitened z-component of AOD (Z AOD W),
the whitened x-component of AOA (X AOA W), the whitened y-
component of AOA (Y AOA W), the whitened z-component of
AOA (Z AOA W), and the whitened delay (delay W). The refer-
ence cluster identification of the data is given by refclusID. It serves
as the ground truth in evaluating the performance of the clustering
approach. The power component (rel pow) is not included since it
is not needed in clustering the data.

Figure 1: Generated wireless multipath components grouped as multipath clusters in
C2CM [11]

3 Clustering Approaches

The dataset generated by C2CM is clustered using SCAMSMA and
DDC. SCAMSMA can simultaneously determine the number of
clusters and the membership of the clusters. DDC can solve the
membership of the clusters and the cluster count can be calculated
according to the membership of the multipaths to their clusters. The
clustering approaches are used to cluster images and it is the first
time that they are applied to cluster multipaths.

SCAMSMA [21] begins by formulating an affinity matrix Ccalc
using the self-expression method where a given datasetX can be
represented asXCcalc as follows

min‖Ccalc‖1 s.t. X = XCcalc, diag (Ccalc) = 0 (2)

where ‖ · ‖1 is the `1 norm, which returns the sum of the absolute
values of all elements and diag(·) are the diagonal entries of the
matrix. The solution of (2) corresponds to Ccalc .

Introducing an ideal affinity matrix such thatCideal =
∑K

k=1 zk◦zk

and {zk ∈ {0, 1}M}Kk=1 where zk = 1 if the point belongs to the cluster
otherwise zk = 0 and ◦ represents the vector outer product. By
denotingW = −Ccalc, the clustering problem can be expressed as

min〈W ,Cideal〉, s.t. zk{0, 1}M ,
K∑

k=1

zk = eM , Cideal =

K∑
k=1

zk ◦ zk, rank(Cideal) = K
(3)

where 〈·, ·〉 is the Frobenius inner product, eM is an all one vector
of size R while K is the number of clusters. SCAMSMA simul-
taneously solves the number of clusters and the membership of
clusters.

DDC [22] optimizes a loss function based on information-
theoretic measures. The loss function is defined by
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L =
1
k

k−1∑
i=1

∑
j>i

αT
i Khidα j√

αT
i Khidαiα

T
jKhidα j

+ triu(AAT)

+
1
k

k−1∑
i=1

∑
j>i

mT
i Khidm j√

mT
i Khidmim

T
jKhidm j

(4)

where k is the number of clusters,Khid is the kernel similarity ma-
trix, α is the soft cluster assignment, A is the cluster assignment
matrix, triu(AAT) is the upper triangular of AAT and m is the
simplex corner assignment.

The clusters are represented by their probability density func-
tions. Divergence measures the dissimilarity between clusters. The
divergence builds on two fundamental objectives: the separation
between clusters and the compactness within clusters, as shown in
Figure 2. DDC explicitly exploits knowledge about the geometry of
the output space during the optimization. DDC supports end-to-end
learning, does not require hand-crafted feature design, and does not
need a pre-training phase.

Figure 2: Fundamental objectives of divergence: separation between clusters and
compactness within clusters [22]

4 Analysis of Variance (ANOVA)

One-way ANOVA [25, 26] is used to determine if there is a common
mean of the data from several groups of a factor. The statistical tool
can find out if there are different effects on the response variable
of the different groups of an independent variable. The anova1
function of Statistics and Machine Learning Toolbox of MATLAB
returns the p-value for a balanced one-way ANOVA. The MATLAB
function also displays the box plots of the independent variable.
Lastly, the anova1 function tests the hypothesis that the samples in
the independent variable are drawn from populations with the same
mean against the alternative hypothesis that the population means
are not all the same.

One-way ANOVA is a simple, special case of the linear model
which can be expressed as

yi j = α j + εi j (5)

where

yi j is an observation, i represents the observation number, and j
represents a different group of the predictor variable y. All yi j are
independent.

α j represents the population mean for the jth group.
εi j is the random error, independent and normally distributed,

with zero mean and constant variance.
The equality of column means for the data in matrix y is tested

using the MATLAB function anova1(y), where each column is a
different group and has the same number of observations.

ANOVA tests the hypothesis that all group means are equal
versus the alternative hypothesis that at least one group is different
from the others as follows:

H0 : α1 = α2 = . . . = αk

H1 : not all group means are equal
(6)

ANOVA tests for the difference in the group means by partition-
ing the total variation in the data into two components: variation of
group means from the overall mean and variation of observations in
each group from their group mean estimates. It means that ANOVA
partitions the total sum of squares (S S T ) into sum of squares due
to between-groups effect (S S R) and sum of squared errors (S S E)
given by

∑
i

∑
j

(yi j − y..)
2

︸               ︷︷               ︸
S S T

=
∑

j

n j(y. j − y..)
2

︸             ︷︷             ︸
S S R

+
∑

i

∑
j

(yi j − y. j)
2

︸                ︷︷                ︸
S S E

(7)

where n j is the sample size for the jth group, j = 1, 2, ..., k.
ANOVA compares the variation between groups to the variation

within groups. If the ratio of within-group variation to between-
group variation is significantly high, then the group means are
significantly different from each other. This ratio can be measured
using a test statistic that has an F-distribution with (k − 1, N − k)
degrees of freedom where

F =

S S R
k−1
S S E
N−k

=
MS R
MS E

∼ Fk−1,N−k (8)

where MS R is the mean squared treatment, MS E is the mean
squared error, k is the number of groups, and N is the total number
of observations. If the p-value for the F-statistic is smaller than the
significance level (0.05), then the test rejects the null hypothesis
that all group means are equal and concludes that at least one of the
group means is different from the others. The p-value is derived by
anova1 from the cumulative distribution function (CDF) of the F-
distribution. The p-value is correct, if εi j are independent, normally
distributed, and have constant variance.

5 Clustering Validity Index
The performance of a clustering approach is measured using a clus-
tering validity index. The study uses the Jaccard index, which com-
pares the similarity between the reference data and the calculated
data. For the number of clusters, the Jaccard index is calculated as
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η =
|C11|

|C11 +C10 +C01|
∈ [0, 1] (9)

where | · | refers to cardinality, Ck ∈ C, K = |C | is the number of
multipath clusters, C11 is the number of clusters that are present in
the calculated clusters that are also present in the reference clusters,
C10 is the number of clusters that are present in the calculated clus-
ters but not present in the reference clusters, and C01 is the number
of clusters that are present in the reference clusters but not present
in the calculated clusters. For the membership of the clusters, the
Jaccard index is calculated as

η =
M11

M11 + M01 + M10
∈ [0, 1] (10)

where M11 is the number of members that are present in the calcu-
lated clusters that are also present in the reference clusters, M10 is
the number of members that are present in the calculated clusters
but not present in the reference clusters, and M01 is the number of
members that are present in the reference clusters but not present
in the calculated clusters. A Jaccard index of one means that the
calculated multipath clusters are the same as the reference multipath
clusters, or the membership of the calculated multipath clusters is
the same as the membership of the reference multipath clusters.
A zero Jaccard index, on the other hand, means that there are no
calculated multipath clusters that are equal to the reference multi-
path clusters, or there is no membership of the calculated multipath
clusters that are equal to the membership of the reference multipath
clusters.

6 Result and Discussion
The clustering accuracy of SCAMSMA and DDC are shown in
Table 1 for the indoor scenarios and Table 2 for the semi-urban
scenarios. The performance of the clustering approaches in both
indoor and semi-urban scenarios are based on the number of clusters
and the membership of clusters. The means of the Jaccard indices
are compared using ANOVA. The ANOVA is illustrated using box
plots. The box plots and p-values are generated using the anova1
one-way approach function of MATLAB. The box plots display the
range of Jaccard indices and can be used to visualize the means.
Values of p < 0.05 indicate that the means of SCAMSMA and DDC
are significantly different.

Table 1: Jaccard index means of SCAMSMA and DDC in indoor scenarios

Clustering Indoor Indoor
Approach Number of Clusters Membership of Clusters

SCAMSMA 0.6261 0.7444
DDC 0.7499 0.8054

Table 2: Jaccard index means of SCAMSMA and DDC in semi-urban scenarios

Clustering Semi-Urban Semi-Urban
Approach Number of Clusters Membership of Clusters

SCAMSMA 0.0112 0.1615
DDC 0.0102 0.2172

The box plots of the Jaccard indices of the number of clusters
of SCAMSMA and DDC for the indoor scenarios are shown in
Figure 3. The p-value is 0.0388, which indicates that there is a
significant difference in the means of the clustering accuracies. This
difference can be seen in the figure where the box plot of DDC
is higher than that of SCAMSMA. DDC is more accurate than
SCAMSMA in clustering multipaths by 19.77%.

Figure 4 presents the box plots of the Jaccard indices of the
membership of clusters of SCAMSMA and DDC for the indoor
scenarios. The p-value is 0.0996, which attests that there is no
significant difference in the means of the Jaccard indices. This
difference can be visualized in the figure where the box plots are
almost on the same level (∼ 0.8). DDC has higher accuracy in
clustering multipaths than SCAMSMA by only 8.19%.

The box plots of the Jaccard indices of the number of clusters of
SCAMSMA and DDC for the semi-urban scenarios are illustrated

Figure 3: Box plots of the Jaccard indices for the number of clusters in indoor
scenarios of SCAMSMA in box plot 1 and DDC in box plot 2

Figure 4: Box plots of the Jaccard indices for the membership of clusters in indoor
scenarios of SCAMSMA in box plot 1 and DDC in box plot 2
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in Figure 5. The p-value is 0.7419, which suggests that the means of
SCAMSMA and DDC are similar (0.0112 vs. 0.0102). The figure
indicates that the box plots are on the same level near the horizontal
axis (∼ 0). SCAMSMA is more accurate this time by 9.80%.

Figure 6 displays the box plots of the Jaccard indices of the
membership of clusters of SCAMSMA and DDC for the semi-urban
scenarios. The p-value is 0.0139, which proves that the means
of SCAMSMA and 3CAM-SCAMSMA are significantly different.
The figure shows that the box plot of DDC is higher than that of
SCAMSMA. DDC has a higher clustering accuracy of 34.49%.

DDC shows consistency in its clustering performance due to
higher accuracy of clustering multipaths in all channel scenarios
except for the membership of clusters in semi-urban scenarios where
SCAMSMA has a slight clustering advantage of 0.0012. Also, the
means of SCAMSMA and DDC are significantly different since the

Figure 5: Box plots of the Jaccard indices for the number of clusters in semi-urban
scenarios of SCAMSMA in box plot 1 and DDC in box plot 2

Figure 6: Box plots of the Jaccard indices for the membership of clusters in semi-
urban scenarios of SCAMSMA in box plot 1 and DDC in box plot 2

p-values are less than 0.05 except in the membership of clusters
in semi-urban scenarios. Lastly, the clustering approaches can be
used in indoor scenarios but not in semi-urban scenarios based on
accuracy which is validated by the measurements done in indoor
environment [27].

7 Conclusion
This work presents the comparison of the clustering accuracy of
SCAMSMA and DDC in clustering wireless propagation multi-
paths generated by C2CM. Jaccard index is used as the performance
metric of the clustering approaches. Results show that there is
a significant difference in the cluster-wise Jaccard index between
SCAMSMA and DDC for indoor scenarios while the membership-
wise Jaccard index is not different. On the other hand, the cluster-
wise Jaccard index is not different between the clustering approaches
for semiurban scenarios while the membership-wise Jaccard index
is a little different. The clustering approaches can be used in indoor
scenarios based on accuracy. However, a better multipath cluster-
ing method should be used for semi-urban scenarios. For future
work, the results will be compared with other clustering approaches
to determine the best performance in terms of clustering wireless
multipaths in indoor and semi-urban environments.
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