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 Fault-tolerant applications are created by replicating the software or hardware component 
in a distributed system. Communications are normally carried out over an Ethernet network 
to interact with the distributed/replicated system, ensuring atomic multicast properties. 
However, there are situations in which it is not possible to guarantee that the replicas 
process the same data set in the same order. This occurrence will lead to inconsistency in 
the data set produced by the replicas, that is, the determinism of the applications is not 
guaranteed. 
To avoid these inconsistencies, a set of Function Blocks has been proposed which, taking 
advantage of the inherent properties of Ethernet, can guarantee the synchronism and 
determinism of the real-time application. This paper presents this set of Function Blocks, 
focusing our action on the development of reliable distributed systems in real-time. This 
demonstrates that the developed Function Blocks can guarantee the determinism of the 
replicas and, as such, that the messages sent are processed, in the same order and 
according to the time in which they were made available. 
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1. Introduction 

Fault-tolerance or replication is implemented, in most cases, by 
replication of one or more critical components, by replication of 
the hardware, the software or both. Therefore, regardless of the 
approach used, the main objective is to ensure that if one of the 
replicas fails, the remaining replicas will continue to function and 
therefore mask the existence of the failed replica before the 
remaining application, making it as transparent as possible. So, we 
must consider a fault-tolerant distributed system as an 
interconnection of several unitary components that, in each call of 
an event, process data, generating new events and/or data. On the 
other hand, event and data, generated on a different replica, located 
to different nodes, must be synchronized to assure that the replicas 
receive the same set of data in the same order. All replicas must 
have the same perception of the data and this perception will be 
obtained through a multicast protocol.  

To support the Distributed Computer Controller System 
(DCCS) in real-time and reliably replicated over Commercial Off-
The-Shelf components (COTS), it is essential to provide a simple 
and transparent programming model. So, programmers should be 
unaware of implementation problems and the details of 
distribution and replication. However, it is important that the 
replication mechanism allows us to develop a generic and 
transparent approach without concerns the inherent requirements 
of the distributed system and the replication issues. Therefore, to 
overcome the problems inherent to the development of 
distributed/replicated systems, we opted for the use of a framework 
that guarantees not only the required abstraction capacity but also 
the ability to carry out the distribution and replication of real-time 
systems as well as, ensure determinism. Thus, taking as a starting 
point the new standard IEC 61499 [1], we opted for the use of an 
application that allows perform the development of distributed 
systems and, consequently, their replication, which, in parallel, 
supports the requirements of this same standard, i.e., based on the 
Open Source PLC Framework for Industrial Automation & 
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Control, Eclipse 4diacTM [2] (infrastructure for distributed 
Industrial Process Measurement and Control Systems – IPMCS). 

This paper is organized as follows: Section 2 presents a 
literature review, where ideas from different authors for the 
distributed and replicated systems problems will be exposed. 
Section 3 presents an overview of IEC 61499 standard. Section 4 
presents the proposed implementation for reliable real-time SIFB 
communication and their decision timing analysis. A numerical 
example is presented in Section 5 and the conclusions are outlined 
in Section 6. 

2. Related work 

Replicated systems is based in the replication of the critical 
components of software or hardware, connected by a network. So, 
to use a networks communication to support DCCS applications 
requires not only a bounded times transmission services, but also 
ensuring the dependability for the applications with real-time 
needs.  

Fault-tolerance architectures based on software have been 
proposed by many authors, all of them exploring the diversity of 
implementation, diversity of data and temporal diversity [3]. 
Consequently, two approaches can be taken to tolerated or 
recovery faults: the forward recovery (N-Version Programming 
[4] and its variations, N-Self Checking Programming [5], N-Copy 
Programming such as Distributed Recovery Block (DRB) [6] or 
Extend DRB [7]), and backward recovery (use of checkpoints from 
which recovery is attempted). So, when using in a replicated 
system forward recovery it is necessary that all replicas remain 
synchronized in order to produce the same set of data and events 
outputs in the same order (replicas will have to be deterministic) 
[8] and, somewhere, the replicas outputs need to be consolidated. 
On the other hand, replica determinism it will be possible achieved 
through the use of clocks synchronization, atomic multicast 
protocol and consensus agreement protocols [9] but also by timed 
messages [10]. Base in these concepts, a similar technic for a 
DEAR-COTS framework based on Ada 95 has already been 
proposed by Pinho et al. [11]. These authors using a Network Time 
Protocol (NTP) to synchronize replicas and messages transmission 
time are set offline.  

Likewise, considering replication systems, [12] presents an 
approach based on a Fast and scalable Byzantine Fault-Tolerance 
protocol (FBFT) using message aggregation technique combined 
with reliable hardware-based execution environments. Based on a 
multicasting replication the aggregation reduces the complexity of 
messages and computation overhead. In this turn, Pinho et al. [13] 
using a Stat Machine approach to develop fault-tolerant distributed 
system. Replication is based on a priority algorithm (total order 
and consensus) like Raft (PRaft). Incoming messages are executed 
according to the priority level, so the processes do not have to wait 
to the confirmation of the request. Messages are executed at the 
moment they are received. Hu et al. [14] propose a standard for 
fault-tolerance modulation based on the programming of 
N-Versions that can be integrated, transparently, into existing 
applications, improving its operation, maintaining the 
characteristics of time. The model, developed in C language, 
consists of a set of components (initiator, member versions and the 
voter) where they encapsulated several alternative algorithms to 
obtain the same outputs. 

Some works based on the IEC 61499 fault tolerance system 
have already been tested and presented in [15], where a distributed 
replication structure, similar to the work presented in this 
document, is presented. In this case, a timed message protocol is 
used to ensure synchronization of the internal states of the replicas 
and was also implemented in Eclipse 4diacTM and validated in a 
FORTE runtime multicast environment. In the same line of 
reliability [16], it presented a formal modeling methodology to 
validate and evaluate the reliability of IEC 61499 applications 
applied to critical safety situations. On the other hand, the works 
developed by Batchkova et al. [17] and Dai et al. [18], which are 
related in some way, focus on the development of reconfigurable 
IEC 61499 control systems. The methodology proposed by these 
authors allows IEC 61499 applications to be reconfigured during 
execution, replacing one Function Block (FB) with another. The 
substitution, done in real time, does not create a significant impact 
on the execution of the system and as such can be used as an 
approach to fault-tolerance. However, they focused on 
reconfiguration of the system and not on a fault-tolerance scenario, 
where time to bring up the system is not considered. 

In the same area of the IEC 61499 Lednicki et al. [19] presents 
a model to calculate the Wast-Case Execution Time (WCET) for 
the software FB execution. This model works with a set of events, 
considering the information associated with the inputs, in which 
the execution is initiated by the arrival of the input event to the 
function blocks. The WCET value represents the maximum time 
that a FB needs to execute its functionality, from the entry of an 
event until its internal activity is completed (exit of the event). The 
WCET is independent of the internal path or the execution paths. 
This model gives us the time needed to activate the next FB. 

3. Overview of the IEC 61499 

IEC 61499 applications are made up of interconnections of FBs 
that exchange information, data and events, based on a graphical 
representation. Each of these graphic representations (FB) consists 
of a rectangular structure that incorporates an upper part, called the 
head, and a lower part, called the body. The head is the interface 
for receiving events, initializing the FB and activating the internal 
algorithms. It is also used for sending events, confirming the 
initialization of the FB, as well as the execution of the internal 
algorithm or algorithms. The body is the interface for received and 
sending data and it is also de base for the internal algorithms. Data 
and events inputs are on the left and outputs on the right.  

An FB network is assumed to be an event exchange process in 
which each outgoing event is linked to an incoming event, and each 
outgoing data is linked to an incoming data. FBs are executed 
when they receive events so, from that moment on data can be 
processed, reading inputs data. However, it is only after the 
execution of the internal algorithms that the data is updated, placed 
on the output link, and one or more output events can be generated. 
Input and output data are defined according to the type (Int, Real, 
etc.) so, in IEC 61499 applications, it will only be possible to 
establish connections between data of the same type, while the 
events can be considered as the base event type used in the FB 
activation.  

As stated earlier, the central structure of the IEC 61499 is the 
FB, which interconnected in a network may represent a device, like 
a Personal Computer (PC) or a Programmable Logical Controller 

http://www.astesj.com/


A.A. Santos et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 531-537 (2020) 

www.astesj.com     533 

(PLC), for example, connect in a control node. In this sense, we 
will be able to fit the FBs in the object-oriented paradigm where 
each of the FBs can be considered as a single object (Basic 
Function Block – BFB, with an Execution Control Chart – ECC, 
consisting of one or more algorithms), as a Composit Function 
Block (CFB), constituted by an interconnected BFBs or CFBs and 
Special Interface Function Block (SIFB) used in communication. 
The program algorithm for the BFB, CFB and SIFB may be 
developed in any languages defined by the IEC 31131-3 [20] and 
also in all additional languages supported by the IEC 61499 (e.g., 
Java, C, C++, C#, etc.). Developers are free to choose language 
since the standard does not specify a recommended language.  

A distributed IEC 61499 or a replicated fault-tolerance system, 
split among several computer devices (e.g., PC, microcomputer or 
PLC), needs to send, over the network, events and data to each one 
of the FB distributed or replicated into the devices. To do this, the 
developer, insert a SIFB communication which will allow 
communication between FBs allocated to the same device or 
distributed by remote devices. The purpose of this article is to 
define a methodology to guarantee replicas determinism, using 
standard communication interfaces (SIFB), which will 
communicate between replicas, on remote devices, ensuring that 
the replicas process the same data set in the same order. On the 
other hand, industrial redundancy is typically archived at the 
hardware level, where the access to physical I/Os is done by 
communication SIFB Publish/Subscribe pair over UDP/IP – User 
Datagram Protocol/Internet Protocol (unidirectional 
communication), or Client/Server pair over TCP/IP (Transmission 
Control Protocol/Internet Protocol), bidirectional data/event 
communication [21].  

4. Proposed IEC 61499 Implementation  

An IEC 61499 application is seen as a combination by several 
devices, sub-applications or interconnected unitary processing 
elements (FBs), which at each invocation of events, process the 
data, generating new events and/or data. So, to tolerate individual 
faults, ensure the reliability of the application, only the critical 
components of the application must be replicated. Components is 
defined as an atomic and indivisible component (FB) which can 
include tasks and resources replicated on multiple nodes or 
allocated in just on node. As an example, Figure 1 shows a real-
time sub-application “C” with 2 FBs (FB1 e FB2) distributed over 
nodes 1 and 2 and replicated over nodes 2 and 3 or, alternatively, 
replicated entirely in a single node (node 4).  

So, the communication infrastructure of the proposed 
replication framework (base on active replication, i.e., all replicas 
are active and running at all times), based on the same 
communication structure used by IEC 61499, must guarantee that 
all messages sent by computer devices, delivery to all receiver, is 
correctly received. However, it will also be necessary that replicas 
agree with the order of the data set sent and consolidate data from 
replicated inputs into a single value that will be propagated to the 
subsequent FB.  

Component replication can be performed using multiple 
replicas, however, the most common is the use of two (f + 1) or 
three replicas (2 * f + 1), to tolerate f failures. Therefore, replication 
based on these assumptions places us in the presence of several 
communication/interaction scenarios in which the exchange of 

messages can be defined according to the following four 
approaches [22]: 1-to-1 (communication from a nonreplicated FB 
to another nonreplicated or communication inside of the replica, 
base of the IEC 61499 communication); 1-to-many 
(communication from a nonreplicated FB to a group of replicated 
FB. An atomic multicast protocol [9] must be used to ensure that 
all the replicas received the same set of information (data/events) 
in the same order. Replicas need to maintain internal state 
synchronized); many-to-1 (a replicated FB sends data/events to a 
nonreplicated FB. Nonreplicated FB receives a set of inputs from 
all replicas and vote, consolidate mechanism [3], on the output 
value to process continue) and many-to-many (a mix of the last two 
cases where each received replica need to agree on the value to 
forward process. An atomic multicast protocol is used to 
disseminate values and the agree decision can be performed by one 
of the received values or on some value calculate based on 
majority, average, median, etc.). Voting mechanism can itself be 
replicated or only a single copy can be executed.  

 
Figure 1: Replicated real-time sub-application 

Replication model was implemented using Eclipse 4diac™. It 
is developed using the 4DIAC-IDE (Integrated Development 
Environment), graphical platform, and the FORTE runtime 
execution environment [2]. The graphical platform is used to 
develop the application, perform the interconnections between the 
instances, create, compile (in C ++) and integrate (in FORTE) the 
new types of FBs, once FORTE is compiled and executed in each 
computer device. Communication between replicas was carried 
out using standard communication FBs, made available by the 
4diac repository and in accordance with IEC 61499. Data and 
events connection, between computer device and all instantiated 
FBs is supported by the FORTE runtime environment.  

4.1. Communication architecture  

The communication architecture is based on standards SIFB 
(Publish/Subscribe or Client/Server) interactions using Internet 
Protocol (IP) and FORTE runtime [23]. So, each of 
communication layers needs to be configured by the addressing 
schema accomplished by the identifier parameter (ID). 
Communication protocol is implemented in FBDK, inside a 
multicast group, using an Internet address and a unique port 
number [IP:port, e.g., 239.0.0.100:61023]. In a multicast 
communication scenarios (SIFB Publish/Subscribe) any of the 
subscribe blocks, located in the same network segment as the 
publish, can receive all published data/events [24]. On the other 
hand, a real-time industrial control application requires clocks 
synchronization, use of the timed messages to ensure determinism 
and the analyses of the worst-case execution times of the replicated 
FBs (including clock lag and communication delays). In fact, the 
developer needs to create a structure that supports IEC 61499 

http://www.astesj.com/


A.A. Santos et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 531-537 (2020) 

www.astesj.com     534 

replication based on the existent communication SIFB considering 
scenarios presented above, in other words, it will only be necessary 
to use only two of the presented layers: 1-to-many and many-to-1 
communication scenarios. Figure 2 shows the interface of the pair 
Publish/Subscribe used in multicast protocol communications.  

 
Figure 2: Interface of the Publish/Subscribe communication pair 

4.2. Consolidation and voting replicate inputs  

Voters can be developed according to the most varied 
techniques of fault-tolerance. However, these have the ultimate 
purpose of comparing the results of two or more variables and 
deciding which is the correct result, if any. There are in fact many 
types of voters [3] and the decision on which voting algorithm to 
use will depend on the semantics required by the application. For 
the voting to be viable, all replicas must send the data in the 
expected time. So, voting mechanism or consolidate module is 
built in top of the atomic multicast protocol, to ensure that all 
replicated FB receives the same set of data in the same order. The 
subscribe will wait until the set of events and data from the 
publishes are received. It is only at this point that the data is 
consolidated (the data is chose) or when it know that you will no 
longer receive messages at the 𝛿𝛿𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 specific delay, Figure 3.  

 
Figure 3: Data consolidate without faults 

Note that this procedure must be implemented in a many-to-1 
context and that the decision time will depend on the worst-case 
response time (WCRT) of the last data received. On the other hand, 
we should consider that it will not be necessary to use underlying 
protocols that solve the problems of inconsistency by omitting 
messages, as it will be enough that only one node delivers a 
message.  

In this approach, as we use a Triple Modular Redundancy 
(TMR) to mask faults [25] a majority voter was used. In the case 
of the three replicates, is done by simply comparison of the values 
received in A and C. The voting mechanism determines which 
value should be chosen according to the pseudocode shown in 
Algorithm 1. 

 

Algorithm 1 VOTER algorithm pseudo code  
  1: /* Initialization */ 
  2: void FORTE_VOTER 
  3: switch(pa_nEIID){ 
  4: case input event:  
  5: if (A() == C()) 
  6: VOTED() = A(); 
  7: else 
  8: VOTED() = B(); 
  9: output event; 
10: break; 

 

On the other hand, it is also necessary to consider that the 
determinism of the replicas must be guaranteed by the active 
replication. Therefore, the concept of timed messages [10] must be 
implemented to define the correct order of the execution of the 
received data. Thus, according to the mapping of the replication 
scenarios presented in [22], the application clocks must be 
synchronized. Data to be disseminated are associated with the 
availability times, defined by the execution times of the FBs to 
which the events/data are linked, that is, immediately after their 
execution. This validation time will be, in reality, the worst 
execution time of the FB that makes the data available (since in the 
IEC 61499 framework, the output data are only available when the 
algorithm finishes its execution) plus the sending times, which can 
be determined offline [26]. In this sense, when the data manager, a 
software element that guarantees the achievement of determinism, 
reads the received values (sent only once), works with the most 
recent values that have the oldest validation moments associated 
with the task validation. Figure 4 shows the scheme of how 
determinism can be obtained in the replicated components 
depending on the treatment of the timed messages received and 
treated according to the concept developed in the ordering FB. 

 
Figure 4: Replicas consistence, adapted to IEC 61499 

Each FB is associated with a task, so they will send a message 
of order mk where, in this implementation, the k index is associated 
with the number of the respective FB or task. δtr is the limit of the 
predefined time for its execution (time that is activated after 
receiving the first message). mk(vi) is a message of order k made 
available at the time of validity vi. The instant tri represents the 
times of recession in processes P1 and P2 so, δtri is the waiting 
time, associated with event i received. When a new event is 
received the δtri waiting time is restarted, associated with the new 
event i, at the end of which the events will be ordered according to 
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the instant of validation vi. Message that has the most recent value 
and that has the oldest validation time associated with its validation 
will be allocated to O1 (OUT1) while the second message will be 
allocated to output O2 (OUT2). CNF event confirms the execution 
of the FB and the availability, at the same time, of data d1 and d2. 

4.3. Consolidate time analysis  

The analysis of the consolidate protocol execution time, at the 
receiving replicas, aims to define the delay time in the decision 
phase (𝛿𝛿𝑑𝑑𝑑𝑑cision), necessary for the FB to consolidate the received 
data, i.e., guarantee that FB will not receive any more messages. 
This time is dependent on the worst-case response time of the 
replicated messages as well as their best-case response time 
(BCRT), message processing, having as reference the initial time 
common to all sending and receivers nodes. However, we must 
consider that the time to send messages is common to all nodes 
(synchronization of local clocks) there were small variations or 
errors in the clock readings (jitter) that, like the offset, made the 
clocks only approximately synchronized. 

Knowing the worst-case response time, we can determine the 
𝛿𝛿𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖ion assuming that the first message received has the best-case 
transmission time and the last has the worst-case response time. 
Therefore:  

 𝛿𝛿𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = max
∀𝑚𝑚∈𝑟𝑟𝑟𝑟𝑟𝑟(𝑚𝑚)

{𝑊𝑊𝑚𝑚} − min
∀𝑚𝑚∈𝑟𝑟𝑟𝑟𝑟𝑟(𝑚𝑚)

{𝑊𝑊𝑚𝑚} + 𝜀𝜀 (1) 

where 𝑚𝑚𝑚𝑚𝑚𝑚{𝑊𝑊𝑚𝑚} is the worst-case response time of message and 
𝑚𝑚𝑚𝑚𝑚𝑚{𝑊𝑊𝑚𝑚} is the best-case response time of message, considering a 
common time reference.  𝑟𝑟𝑟𝑟𝑟𝑟(𝑚𝑚) is the set of replicated messages 
received and ε is the maximum deviation between nodes 
synchronized local clocks. Figure 5 shows the time relationships 
referred. 

 
Figure 5: Relationship of times consolidate protocol 

5. Numerical example  

In order to explain the use of the presented model, a simple 
example of application is used. In Figure 6 is presented a real-time 
distributed system replication scheme using in the considered 
example. System application is constituted by five nodes, 
connected by TPC/IP network based on multicast protocol.  

The application used in this example is constituted by five 
components (C1 to C4), each one with a task (𝜏𝜏1 to 𝜏𝜏4) which are 
distributed over the nodes. A simple replication of critical 
components was performed by interconnecting the distributed and 
replicated components, with a switch, over an Ethernet TCP/IP 
network at a rate of 10/100 Mbps. Component C1 (FB1) 
encapsulate tasks 𝜏𝜏1 at node 1, component C2 (FB2) encapsulate 

task 𝜏𝜏2 at node 2, components C3a and C3b (replicated components, 
FB3 e FB3’, at nodes 3 and 4) encapsulate 𝜏𝜏3 and 𝜏𝜏3′ , and finally 
component C4 (FB4) encapsulated 𝜏𝜏4  (used to synchronize the 
start of components C1 and C2) at node 5. 

 
Figure 6: Application structure (replication and messages passing) 

Table 1: Tasks characteristics 

Tash Type Component Node 

𝝉𝝉𝟏𝟏 Periodic C1 1 
𝝉𝝉𝟐𝟐 Periodic C2 2 
𝝉𝝉𝟑𝟑 Periodic C3a 3 
𝝉𝝉𝟑𝟑′  Periodic C3b 4 
𝝉𝝉𝟒𝟒 Spor/Per  C4 5 
𝝉𝝉𝟓𝟓 Periodic C5 6 

Table 1 presents each of the task’s characteristics of the 
distributed application, while Table 2 presents the messages 
exchanged between FB (all values are in milliseconds).  

Table 2: Messages passing characteristics  

Msg Bytes Period (ms) From To Protocol 

M5 
--- --- 𝜏𝜏4 𝜏𝜏1, 𝜏𝜏2 Multicast 

56(84) ping -f 𝜏𝜏4 𝜏𝜏5 Unicast  
M1 24 1000/500 𝜏𝜏1 𝜏𝜏3, 𝜏𝜏3′  Multicast 
M2 24 1000/500 𝜏𝜏2 𝜏𝜏3, 𝜏𝜏3′  Multicast 
M6 32 ping -t 𝜏𝜏5 𝜏𝜏4 Unicast 

Note that message from component C1 and C2 (M1, M2) is a 
1-to-many communication (multicast protocol) and also the 
message of system initialization (event synchronization starts of 
the C1 and C2) M5. Messages M5 is also used to increase the 
network traffic, in the switch, to component C5 (Windows PC). 
Message M6 from C5 to C4 is the task response and also a 
contribute to the network traffic, it is a 1–to–1 communication. 
Messages M1 and M2 are messages from nonreplicated 
components to a replicate’s components (C3a and C3b), therefore, 
they will have to be consolidate in each of the receiving replicas. 
This consolidation mask node failures of the sender’s components. 
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5.1. Determinism testing  

In order to clarify the possible determinism of the application, 
using only standard elements of the 4diac framework, 
Publish/Subscribe communication pairs, 10000 events and data 
were launched in the network with frequency ranges of 1Hz and 
0.5Hz, that is, with 1000 ms and 500 ms intervals. Each of the 
components (C1 and C2) sends messages to the replicas, in the same 
frequency ranges, associated with the availability time 
(tsa - timestamp to availability in sec and nsec) in the format [data, 
sec, nsec]. Replicas receives data associating the reception time 
(tsr – timestamp to receiving) in the same format.  

The purpose of this example is to test the possibility of 
guaranteeing the determinism of the replicas according to the 
proposed and applied communication protocols 
(Publish/Subscribe pairs, inherent to 4diac), for both the delivery 
and response time of messages. Thus, we consider the response 
time as the time interval between the instant when the message is 
sent and the instant when it is received by replies. A multicast 
protocol is used, to propagate messages, assuming that all the 
messages are delivered and received correctly. Table 3 shows the 
worst-case response time (WCRT) for a set of messages sent to the 
network using a 1000 ms trigger frequency. These experiments are 
carried out considering three conditions of operation: no additional 
traffic, with daily traffic directed simply to the switch (tp-link, TL-
SF1008D) and additional traffic directed from a nonreplicated 
component to a replicated. Table 4 shows the results obtained for 
the WCRP considering a 500 ms trigger frequency.  

Table 3: Messages response time, 1000 ms trigger frequency 

Msg Period 
WCRT (ms) Reception 

order C3a C3b 
M5 - - - 

93,35% M1 1000 6,720 3,979 
M2 1000 6,765 3,806 
M1 1000 6,527 2,602 

94,33% 
M2 1000 6,464 2,942 
M1 1000 6,208 1,556 

97,09% 
M2 1000 6,448 1,941 

As can be seen, the WCRP is obtained for M2 messages. This 
carryout the messages sending from component C2 (nonreplicated) 
to the replicated component C3a, response time of 6.765 ms. The 
average order value of the received data (Reception order) is 
94.92%, which demonstrates the absence of the determinism of the 
replicas (C3a and C3b components) due to the frequency of the 
experience triggering. 

Table 4: Messages response time, 500 ms trigger frequency 

Msg Period 
WCRT (ms) Reception 

order C3a C3b 

M5 - - - 
97,94% M1 500 6,760 6,236 

M2 500 7,207 8,045 
M1 500 5,843 2,457 93,43% 

M2 500 6,248 2,569 
M1 500 7,196 3,178 

94,34% 
M2 500 6,575 3,235 

As can be seen, the WCRP is obtained for M2 messages. This 
carryout the messages sending from component C2 (nonreplicated) 
to the replicated component C3b, response time of 8.045 ms. The 
average order value of the received data (Reception order) is 
95.24%, which demonstrates the absence of the determinism of the 
replicas (C3a and C3b components) due to the frequency of the 
experience triggering. 

Table 5 shows the WCRT (maxims time) and BCRT 
(minimums times), calculated offline, for a set of messages 
exchanged between components C1, C2 and C3a, C3b characterizing 
the messages of stream M1 and M2. These values are the result of 
the data and events received in the replicas, considering the 
experiences defined above. The incidence based is 10 k events 
processed in each of the experiments. These values are the result 
of the offline analysis of the 60 k records processed.  

Table 5: Messages times characteristics, maxims and minimums value 

Msg WCRT 
(ms) 

BCRT 
(ms) from→to Average 

order 
M1 7,169 0,170 𝜏𝜏1→𝜏𝜏3 

95,08% 
M2 8,045 0,131 𝜏𝜏2→𝜏𝜏3′  

As can be seen, the average order for data received in the 
replicas has a value less than 100%, which induces the existence 
of failures in the ordering of the data. On the other hand, since the 
messages must be consolidated and ordered according to the time 
validity requirement, to guarantee determinism, it is necessary to 
determine the 𝛿𝛿decision parameter of the consolidation protocol as 
defined in (1). The maximums and minimums times for 
transmission data/events are defined in Table 5 and the maximum 
deviation between synchronized clocks (ε), also calculated offline, 
is 164 µs. Therefore, using (1): 

 𝛿𝛿𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 8.045 − 0.131 + 0.164 = 8.078 𝑚𝑚𝑚𝑚 (2) 

The worst-case decision time for consolidation, considering 
𝛿𝛿decision, can be defined considering all messages received in the set 
res(m) so, that the worst-case decision time will be given by: 

 𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = max
∀𝑚𝑚∈𝑟𝑟𝑟𝑟𝑟𝑟(𝑚𝑚)

{𝑊𝑊𝑚𝑚} + 𝛿𝛿𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 16.123 𝑚𝑚𝑚𝑚 (3) 

where 𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  is the worst time of the consolidation, i.e., time 
decision when a new event arrives at the end of the 𝛿𝛿decision time.  

6. Conclusions  

The Eclipse 4diac™ tool was developed in accordance with 
IEC 61499 and it is specially directed to the development of 
distributed industrial applications portables and modular.  

The Publish/Subscribe pair, provides by the 4diac object 
repository, are a communication FB, fundamental for the 
interconnection of the distributed components, guaranteeing not 
only the synchronization of the system but also the implementation 
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of the atomic multicast protocol. However, the introduction of 
software or hardware component replication introduces new 
problems that were not anticipated in IEC 61499 as well as in 
4diac. These pairs, using different communication interfaces, 
guarantee replication synchronization, but cannot guarantee their 
determinism and, as such, promote the occurrence of failures that 
must be masked. 

Based on the experiences carried out we can conclude that the 
Publish/Subscribe pair, most used in the interconnection of 
distribute/replicated computer devices, has a failure rate, 
independent and identically distributed, of 4.92%. Therefore, it is 
not possible, by itself, to ensure determinism, so the programmer 
will need to develop a FB, also replicable, which ensures that all 
replicas process the same data set in the same order. 
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