

www.astesj.com 531

Determinism of Replicated Distributed Systems–A Timing Analysis of the Data Passing Process

Adriano A. Santos*,1, António Ferreira da Silva1, António P. Magalhães2, Mário de Sousa3

1Centre for Research & Development in Mechanical Engineering (CIDEM), Mechanical Department, School of Engineering (ISEP),
Polytechnic of Porto, 4249-015 Porto, Portugal

2Mechanical Engineering Department, Faculty of Engineering, University of Porto (FEUP), 4200-465 Porto, Portugal

3Electrical and Computer Engineering Department, Faculty of Engineering, University of Porto (FEUP), 4200-465 Porto, Portugal

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 10 August, 2020
Accepted: 07 October, 2020
Online: 20 November, 2020

 Fault-tolerant applications are created by replicating the software or hardware component
in a distributed system. Communications are normally carried out over an Ethernet network
to interact with the distributed/replicated system, ensuring atomic multicast properties.
However, there are situations in which it is not possible to guarantee that the replicas
process the same data set in the same order. This occurrence will lead to inconsistency in
the data set produced by the replicas, that is, the determinism of the applications is not
guaranteed.
To avoid these inconsistencies, a set of Function Blocks has been proposed which, taking
advantage of the inherent properties of Ethernet, can guarantee the synchronism and
determinism of the real-time application. This paper presents this set of Function Blocks,
focusing our action on the development of reliable distributed systems in real-time. This
demonstrates that the developed Function Blocks can guarantee the determinism of the
replicas and, as such, that the messages sent are processed, in the same order and
according to the time in which they were made available.

Keywords:
Distributed Systems
Event-Base Control
Fault-Tolerance (FT)
IEC 61499
Industrial Control
Real-Time (RT)
Replication
Commercial Off-the-Shelf (COTS)

1. Introduction

Fault-tolerance or replication is implemented, in most cases, by
replication of one or more critical components, by replication of
the hardware, the software or both. Therefore, regardless of the
approach used, the main objective is to ensure that if one of the
replicas fails, the remaining replicas will continue to function and
therefore mask the existence of the failed replica before the
remaining application, making it as transparent as possible. So, we
must consider a fault-tolerant distributed system as an
interconnection of several unitary components that, in each call of
an event, process data, generating new events and/or data. On the
other hand, event and data, generated on a different replica, located
to different nodes, must be synchronized to assure that the replicas
receive the same set of data in the same order. All replicas must
have the same perception of the data and this perception will be
obtained through a multicast protocol.

To support the Distributed Computer Controller System
(DCCS) in real-time and reliably replicated over Commercial Off-
The-Shelf components (COTS), it is essential to provide a simple
and transparent programming model. So, programmers should be
unaware of implementation problems and the details of
distribution and replication. However, it is important that the
replication mechanism allows us to develop a generic and
transparent approach without concerns the inherent requirements
of the distributed system and the replication issues. Therefore, to
overcome the problems inherent to the development of
distributed/replicated systems, we opted for the use of a framework
that guarantees not only the required abstraction capacity but also
the ability to carry out the distribution and replication of real-time
systems as well as, ensure determinism. Thus, taking as a starting
point the new standard IEC 61499 [1], we opted for the use of an
application that allows perform the development of distributed
systems and, consequently, their replication, which, in parallel,
supports the requirements of this same standard, i.e., based on the
Open Source PLC Framework for Industrial Automation &

ASTESJ
ISSN: 2415-6698

*Corresponding Author: Adriano A. Santos, Centre for Research & Development
in Mechanical Engineering (CIDEM), Department of Mechanical, School of
Engineering (ISEP), Polytechnic of Porto, ads@isep.ipt

Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 531-537 (2020)

www.astesj.com

Second International Virtual Conference on Multidisciplinary Research 2020

https://dx.doi.org/10.25046/aj050663

http://www.astesj.com/
mailto:ads@isep.ipp.pt
http://www.astesj.com/
https://dx.doi.org/10.25046/aj050663

A.A. Santos et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 531-537 (2020)

www.astesj.com 532

Control, Eclipse 4diacTM [2] (infrastructure for distributed
Industrial Process Measurement and Control Systems – IPMCS).

This paper is organized as follows: Section 2 presents a
literature review, where ideas from different authors for the
distributed and replicated systems problems will be exposed.
Section 3 presents an overview of IEC 61499 standard. Section 4
presents the proposed implementation for reliable real-time SIFB
communication and their decision timing analysis. A numerical
example is presented in Section 5 and the conclusions are outlined
in Section 6.

2. Related work

Replicated systems is based in the replication of the critical
components of software or hardware, connected by a network. So,
to use a networks communication to support DCCS applications
requires not only a bounded times transmission services, but also
ensuring the dependability for the applications with real-time
needs.

Fault-tolerance architectures based on software have been
proposed by many authors, all of them exploring the diversity of
implementation, diversity of data and temporal diversity [3].
Consequently, two approaches can be taken to tolerated or
recovery faults: the forward recovery (N-Version Programming
[4] and its variations, N-Self Checking Programming [5], N-Copy
Programming such as Distributed Recovery Block (DRB) [6] or
Extend DRB [7]), and backward recovery (use of checkpoints from
which recovery is attempted). So, when using in a replicated
system forward recovery it is necessary that all replicas remain
synchronized in order to produce the same set of data and events
outputs in the same order (replicas will have to be deterministic)
[8] and, somewhere, the replicas outputs need to be consolidated.
On the other hand, replica determinism it will be possible achieved
through the use of clocks synchronization, atomic multicast
protocol and consensus agreement protocols [9] but also by timed
messages [10]. Base in these concepts, a similar technic for a
DEAR-COTS framework based on Ada 95 has already been
proposed by Pinho et al. [11]. These authors using a Network Time
Protocol (NTP) to synchronize replicas and messages transmission
time are set offline.

Likewise, considering replication systems, [12] presents an
approach based on a Fast and scalable Byzantine Fault-Tolerance
protocol (FBFT) using message aggregation technique combined
with reliable hardware-based execution environments. Based on a
multicasting replication the aggregation reduces the complexity of
messages and computation overhead. In this turn, Pinho et al. [13]
using a Stat Machine approach to develop fault-tolerant distributed
system. Replication is based on a priority algorithm (total order
and consensus) like Raft (PRaft). Incoming messages are executed
according to the priority level, so the processes do not have to wait
to the confirmation of the request. Messages are executed at the
moment they are received. Hu et al. [14] propose a standard for
fault-tolerance modulation based on the programming of
N-Versions that can be integrated, transparently, into existing
applications, improving its operation, maintaining the
characteristics of time. The model, developed in C language,
consists of a set of components (initiator, member versions and the
voter) where they encapsulated several alternative algorithms to
obtain the same outputs.

Some works based on the IEC 61499 fault tolerance system
have already been tested and presented in [15], where a distributed
replication structure, similar to the work presented in this
document, is presented. In this case, a timed message protocol is
used to ensure synchronization of the internal states of the replicas
and was also implemented in Eclipse 4diacTM and validated in a
FORTE runtime multicast environment. In the same line of
reliability [16], it presented a formal modeling methodology to
validate and evaluate the reliability of IEC 61499 applications
applied to critical safety situations. On the other hand, the works
developed by Batchkova et al. [17] and Dai et al. [18], which are
related in some way, focus on the development of reconfigurable
IEC 61499 control systems. The methodology proposed by these
authors allows IEC 61499 applications to be reconfigured during
execution, replacing one Function Block (FB) with another. The
substitution, done in real time, does not create a significant impact
on the execution of the system and as such can be used as an
approach to fault-tolerance. However, they focused on
reconfiguration of the system and not on a fault-tolerance scenario,
where time to bring up the system is not considered.

In the same area of the IEC 61499 Lednicki et al. [19] presents
a model to calculate the Wast-Case Execution Time (WCET) for
the software FB execution. This model works with a set of events,
considering the information associated with the inputs, in which
the execution is initiated by the arrival of the input event to the
function blocks. The WCET value represents the maximum time
that a FB needs to execute its functionality, from the entry of an
event until its internal activity is completed (exit of the event). The
WCET is independent of the internal path or the execution paths.
This model gives us the time needed to activate the next FB.

3. Overview of the IEC 61499

IEC 61499 applications are made up of interconnections of FBs
that exchange information, data and events, based on a graphical
representation. Each of these graphic representations (FB) consists
of a rectangular structure that incorporates an upper part, called the
head, and a lower part, called the body. The head is the interface
for receiving events, initializing the FB and activating the internal
algorithms. It is also used for sending events, confirming the
initialization of the FB, as well as the execution of the internal
algorithm or algorithms. The body is the interface for received and
sending data and it is also de base for the internal algorithms. Data
and events inputs are on the left and outputs on the right.

An FB network is assumed to be an event exchange process in
which each outgoing event is linked to an incoming event, and each
outgoing data is linked to an incoming data. FBs are executed
when they receive events so, from that moment on data can be
processed, reading inputs data. However, it is only after the
execution of the internal algorithms that the data is updated, placed
on the output link, and one or more output events can be generated.
Input and output data are defined according to the type (Int, Real,
etc.) so, in IEC 61499 applications, it will only be possible to
establish connections between data of the same type, while the
events can be considered as the base event type used in the FB
activation.

As stated earlier, the central structure of the IEC 61499 is the
FB, which interconnected in a network may represent a device, like
a Personal Computer (PC) or a Programmable Logical Controller

http://www.astesj.com/

A.A. Santos et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 531-537 (2020)

www.astesj.com 533

(PLC), for example, connect in a control node. In this sense, we
will be able to fit the FBs in the object-oriented paradigm where
each of the FBs can be considered as a single object (Basic
Function Block – BFB, with an Execution Control Chart – ECC,
consisting of one or more algorithms), as a Composit Function
Block (CFB), constituted by an interconnected BFBs or CFBs and
Special Interface Function Block (SIFB) used in communication.
The program algorithm for the BFB, CFB and SIFB may be
developed in any languages defined by the IEC 31131-3 [20] and
also in all additional languages supported by the IEC 61499 (e.g.,
Java, C, C++, C#, etc.). Developers are free to choose language
since the standard does not specify a recommended language.

A distributed IEC 61499 or a replicated fault-tolerance system,
split among several computer devices (e.g., PC, microcomputer or
PLC), needs to send, over the network, events and data to each one
of the FB distributed or replicated into the devices. To do this, the
developer, insert a SIFB communication which will allow
communication between FBs allocated to the same device or
distributed by remote devices. The purpose of this article is to
define a methodology to guarantee replicas determinism, using
standard communication interfaces (SIFB), which will
communicate between replicas, on remote devices, ensuring that
the replicas process the same data set in the same order. On the
other hand, industrial redundancy is typically archived at the
hardware level, where the access to physical I/Os is done by
communication SIFB Publish/Subscribe pair over UDP/IP – User
Datagram Protocol/Internet Protocol (unidirectional
communication), or Client/Server pair over TCP/IP (Transmission
Control Protocol/Internet Protocol), bidirectional data/event
communication [21].

4. Proposed IEC 61499 Implementation

An IEC 61499 application is seen as a combination by several
devices, sub-applications or interconnected unitary processing
elements (FBs), which at each invocation of events, process the
data, generating new events and/or data. So, to tolerate individual
faults, ensure the reliability of the application, only the critical
components of the application must be replicated. Components is
defined as an atomic and indivisible component (FB) which can
include tasks and resources replicated on multiple nodes or
allocated in just on node. As an example, Figure 1 shows a real-
time sub-application “C” with 2 FBs (FB1 e FB2) distributed over
nodes 1 and 2 and replicated over nodes 2 and 3 or, alternatively,
replicated entirely in a single node (node 4).

So, the communication infrastructure of the proposed
replication framework (base on active replication, i.e., all replicas
are active and running at all times), based on the same
communication structure used by IEC 61499, must guarantee that
all messages sent by computer devices, delivery to all receiver, is
correctly received. However, it will also be necessary that replicas
agree with the order of the data set sent and consolidate data from
replicated inputs into a single value that will be propagated to the
subsequent FB.

Component replication can be performed using multiple
replicas, however, the most common is the use of two (f + 1) or
three replicas (2 * f + 1), to tolerate f failures. Therefore, replication
based on these assumptions places us in the presence of several
communication/interaction scenarios in which the exchange of

messages can be defined according to the following four
approaches [22]: 1-to-1 (communication from a nonreplicated FB
to another nonreplicated or communication inside of the replica,
base of the IEC 61499 communication); 1-to-many
(communication from a nonreplicated FB to a group of replicated
FB. An atomic multicast protocol [9] must be used to ensure that
all the replicas received the same set of information (data/events)
in the same order. Replicas need to maintain internal state
synchronized); many-to-1 (a replicated FB sends data/events to a
nonreplicated FB. Nonreplicated FB receives a set of inputs from
all replicas and vote, consolidate mechanism [3], on the output
value to process continue) and many-to-many (a mix of the last two
cases where each received replica need to agree on the value to
forward process. An atomic multicast protocol is used to
disseminate values and the agree decision can be performed by one
of the received values or on some value calculate based on
majority, average, median, etc.). Voting mechanism can itself be
replicated or only a single copy can be executed.

Figure 1: Replicated real-time sub-application

Replication model was implemented using Eclipse 4diac™. It
is developed using the 4DIAC-IDE (Integrated Development
Environment), graphical platform, and the FORTE runtime
execution environment [2]. The graphical platform is used to
develop the application, perform the interconnections between the
instances, create, compile (in C ++) and integrate (in FORTE) the
new types of FBs, once FORTE is compiled and executed in each
computer device. Communication between replicas was carried
out using standard communication FBs, made available by the
4diac repository and in accordance with IEC 61499. Data and
events connection, between computer device and all instantiated
FBs is supported by the FORTE runtime environment.

4.1. Communication architecture

The communication architecture is based on standards SIFB
(Publish/Subscribe or Client/Server) interactions using Internet
Protocol (IP) and FORTE runtime [23]. So, each of
communication layers needs to be configured by the addressing
schema accomplished by the identifier parameter (ID).
Communication protocol is implemented in FBDK, inside a
multicast group, using an Internet address and a unique port
number [IP:port, e.g., 239.0.0.100:61023]. In a multicast
communication scenarios (SIFB Publish/Subscribe) any of the
subscribe blocks, located in the same network segment as the
publish, can receive all published data/events [24]. On the other
hand, a real-time industrial control application requires clocks
synchronization, use of the timed messages to ensure determinism
and the analyses of the worst-case execution times of the replicated
FBs (including clock lag and communication delays). In fact, the
developer needs to create a structure that supports IEC 61499

http://www.astesj.com/

A.A. Santos et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 531-537 (2020)

www.astesj.com 534

replication based on the existent communication SIFB considering
scenarios presented above, in other words, it will only be necessary
to use only two of the presented layers: 1-to-many and many-to-1
communication scenarios. Figure 2 shows the interface of the pair
Publish/Subscribe used in multicast protocol communications.

Figure 2: Interface of the Publish/Subscribe communication pair

4.2. Consolidation and voting replicate inputs

Voters can be developed according to the most varied
techniques of fault-tolerance. However, these have the ultimate
purpose of comparing the results of two or more variables and
deciding which is the correct result, if any. There are in fact many
types of voters [3] and the decision on which voting algorithm to
use will depend on the semantics required by the application. For
the voting to be viable, all replicas must send the data in the
expected time. So, voting mechanism or consolidate module is
built in top of the atomic multicast protocol, to ensure that all
replicated FB receives the same set of data in the same order. The
subscribe will wait until the set of events and data from the
publishes are received. It is only at this point that the data is
consolidated (the data is chose) or when it know that you will no
longer receive messages at the 𝛿𝛿𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 specific delay, Figure 3.

Figure 3: Data consolidate without faults

Note that this procedure must be implemented in a many-to-1
context and that the decision time will depend on the worst-case
response time (WCRT) of the last data received. On the other hand,
we should consider that it will not be necessary to use underlying
protocols that solve the problems of inconsistency by omitting
messages, as it will be enough that only one node delivers a
message.

In this approach, as we use a Triple Modular Redundancy
(TMR) to mask faults [25] a majority voter was used. In the case
of the three replicates, is done by simply comparison of the values
received in A and C. The voting mechanism determines which
value should be chosen according to the pseudocode shown in
Algorithm 1.

Algorithm 1 VOTER algorithm pseudo code
 1: /* Initialization */
 2: void FORTE_VOTER
 3: switch(pa_nEIID){
 4: case input event:
 5: if (A() == C())
 6: VOTED() = A();
 7: else
 8: VOTED() = B();
 9: output event;
10: break;

On the other hand, it is also necessary to consider that the
determinism of the replicas must be guaranteed by the active
replication. Therefore, the concept of timed messages [10] must be
implemented to define the correct order of the execution of the
received data. Thus, according to the mapping of the replication
scenarios presented in [22], the application clocks must be
synchronized. Data to be disseminated are associated with the
availability times, defined by the execution times of the FBs to
which the events/data are linked, that is, immediately after their
execution. This validation time will be, in reality, the worst
execution time of the FB that makes the data available (since in the
IEC 61499 framework, the output data are only available when the
algorithm finishes its execution) plus the sending times, which can
be determined offline [26]. In this sense, when the data manager, a
software element that guarantees the achievement of determinism,
reads the received values (sent only once), works with the most
recent values that have the oldest validation moments associated
with the task validation. Figure 4 shows the scheme of how
determinism can be obtained in the replicated components
depending on the treatment of the timed messages received and
treated according to the concept developed in the ordering FB.

Figure 4: Replicas consistence, adapted to IEC 61499

Each FB is associated with a task, so they will send a message
of order mk where, in this implementation, the k index is associated
with the number of the respective FB or task. δtr is the limit of the
predefined time for its execution (time that is activated after
receiving the first message). mk(vi) is a message of order k made
available at the time of validity vi. The instant tri represents the
times of recession in processes P1 and P2 so, δtri is the waiting
time, associated with event i received. When a new event is
received the δtri waiting time is restarted, associated with the new
event i, at the end of which the events will be ordered according to

http://www.astesj.com/

A.A. Santos et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 531-537 (2020)

www.astesj.com 535

the instant of validation vi. Message that has the most recent value
and that has the oldest validation time associated with its validation
will be allocated to O1 (OUT1) while the second message will be
allocated to output O2 (OUT2). CNF event confirms the execution
of the FB and the availability, at the same time, of data d1 and d2.

4.3. Consolidate time analysis

The analysis of the consolidate protocol execution time, at the
receiving replicas, aims to define the delay time in the decision
phase (𝛿𝛿𝑑𝑑𝑑𝑑cision), necessary for the FB to consolidate the received
data, i.e., guarantee that FB will not receive any more messages.
This time is dependent on the worst-case response time of the
replicated messages as well as their best-case response time
(BCRT), message processing, having as reference the initial time
common to all sending and receivers nodes. However, we must
consider that the time to send messages is common to all nodes
(synchronization of local clocks) there were small variations or
errors in the clock readings (jitter) that, like the offset, made the
clocks only approximately synchronized.

Knowing the worst-case response time, we can determine the
𝛿𝛿𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖ion assuming that the first message received has the best-case
transmission time and the last has the worst-case response time.
Therefore:

 𝛿𝛿𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = max
∀𝑚𝑚∈𝑟𝑟𝑟𝑟𝑟𝑟(𝑚𝑚)

{𝑊𝑊𝑚𝑚} − min
∀𝑚𝑚∈𝑟𝑟𝑟𝑟𝑟𝑟(𝑚𝑚)

{𝑊𝑊𝑚𝑚} + 𝜀𝜀 (1)

where 𝑚𝑚𝑚𝑚𝑚𝑚{𝑊𝑊𝑚𝑚} is the worst-case response time of message and
𝑚𝑚𝑚𝑚𝑚𝑚{𝑊𝑊𝑚𝑚} is the best-case response time of message, considering a
common time reference. 𝑟𝑟𝑟𝑟𝑟𝑟(𝑚𝑚) is the set of replicated messages
received and ε is the maximum deviation between nodes
synchronized local clocks. Figure 5 shows the time relationships
referred.

Figure 5: Relationship of times consolidate protocol

5. Numerical example

In order to explain the use of the presented model, a simple
example of application is used. In Figure 6 is presented a real-time
distributed system replication scheme using in the considered
example. System application is constituted by five nodes,
connected by TPC/IP network based on multicast protocol.

The application used in this example is constituted by five
components (C1 to C4), each one with a task (𝜏𝜏1 to 𝜏𝜏4) which are
distributed over the nodes. A simple replication of critical
components was performed by interconnecting the distributed and
replicated components, with a switch, over an Ethernet TCP/IP
network at a rate of 10/100 Mbps. Component C1 (FB1)
encapsulate tasks 𝜏𝜏1 at node 1, component C2 (FB2) encapsulate

task 𝜏𝜏2 at node 2, components C3a and C3b (replicated components,
FB3 e FB3’, at nodes 3 and 4) encapsulate 𝜏𝜏3 and 𝜏𝜏3′ , and finally
component C4 (FB4) encapsulated 𝜏𝜏4 (used to synchronize the
start of components C1 and C2) at node 5.

Figure 6: Application structure (replication and messages passing)

Table 1: Tasks characteristics

Tash Type Component Node

𝝉𝝉𝟏𝟏 Periodic C1 1
𝝉𝝉𝟐𝟐 Periodic C2 2
𝝉𝝉𝟑𝟑 Periodic C3a 3
𝝉𝝉𝟑𝟑′ Periodic C3b 4
𝝉𝝉𝟒𝟒 Spor/Per C4 5
𝝉𝝉𝟓𝟓 Periodic C5 6

Table 1 presents each of the task’s characteristics of the
distributed application, while Table 2 presents the messages
exchanged between FB (all values are in milliseconds).

Table 2: Messages passing characteristics

Msg Bytes Period (ms) From To Protocol

M5
--- --- 𝜏𝜏4 𝜏𝜏1, 𝜏𝜏2 Multicast

56(84) ping -f 𝜏𝜏4 𝜏𝜏5 Unicast
M1 24 1000/500 𝜏𝜏1 𝜏𝜏3, 𝜏𝜏3′ Multicast
M2 24 1000/500 𝜏𝜏2 𝜏𝜏3, 𝜏𝜏3′ Multicast
M6 32 ping -t 𝜏𝜏5 𝜏𝜏4 Unicast

Note that message from component C1 and C2 (M1, M2) is a
1-to-many communication (multicast protocol) and also the
message of system initialization (event synchronization starts of
the C1 and C2) M5. Messages M5 is also used to increase the
network traffic, in the switch, to component C5 (Windows PC).
Message M6 from C5 to C4 is the task response and also a
contribute to the network traffic, it is a 1–to–1 communication.
Messages M1 and M2 are messages from nonreplicated
components to a replicate’s components (C3a and C3b), therefore,
they will have to be consolidate in each of the receiving replicas.
This consolidation mask node failures of the sender’s components.

http://www.astesj.com/

A.A. Santos et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 531-537 (2020)

www.astesj.com 536

5.1. Determinism testing

In order to clarify the possible determinism of the application,
using only standard elements of the 4diac framework,
Publish/Subscribe communication pairs, 10000 events and data
were launched in the network with frequency ranges of 1Hz and
0.5Hz, that is, with 1000 ms and 500 ms intervals. Each of the
components (C1 and C2) sends messages to the replicas, in the same
frequency ranges, associated with the availability time
(tsa - timestamp to availability in sec and nsec) in the format [data,
sec, nsec]. Replicas receives data associating the reception time
(tsr – timestamp to receiving) in the same format.

The purpose of this example is to test the possibility of
guaranteeing the determinism of the replicas according to the
proposed and applied communication protocols
(Publish/Subscribe pairs, inherent to 4diac), for both the delivery
and response time of messages. Thus, we consider the response
time as the time interval between the instant when the message is
sent and the instant when it is received by replies. A multicast
protocol is used, to propagate messages, assuming that all the
messages are delivered and received correctly. Table 3 shows the
worst-case response time (WCRT) for a set of messages sent to the
network using a 1000 ms trigger frequency. These experiments are
carried out considering three conditions of operation: no additional
traffic, with daily traffic directed simply to the switch (tp-link, TL-
SF1008D) and additional traffic directed from a nonreplicated
component to a replicated. Table 4 shows the results obtained for
the WCRP considering a 500 ms trigger frequency.

Table 3: Messages response time, 1000 ms trigger frequency

Msg Period
WCRT (ms) Reception

order C3a C3b
M5 - - -

93,35% M1 1000 6,720 3,979
M2 1000 6,765 3,806
M1 1000 6,527 2,602

94,33%
M2 1000 6,464 2,942
M1 1000 6,208 1,556

97,09%
M2 1000 6,448 1,941

As can be seen, the WCRP is obtained for M2 messages. This
carryout the messages sending from component C2 (nonreplicated)
to the replicated component C3a, response time of 6.765 ms. The
average order value of the received data (Reception order) is
94.92%, which demonstrates the absence of the determinism of the
replicas (C3a and C3b components) due to the frequency of the
experience triggering.

Table 4: Messages response time, 500 ms trigger frequency

Msg Period
WCRT (ms) Reception

order C3a C3b

M5 - - -
97,94% M1 500 6,760 6,236

M2 500 7,207 8,045
M1 500 5,843 2,457 93,43%

M2 500 6,248 2,569
M1 500 7,196 3,178

94,34%
M2 500 6,575 3,235

As can be seen, the WCRP is obtained for M2 messages. This
carryout the messages sending from component C2 (nonreplicated)
to the replicated component C3b, response time of 8.045 ms. The
average order value of the received data (Reception order) is
95.24%, which demonstrates the absence of the determinism of the
replicas (C3a and C3b components) due to the frequency of the
experience triggering.

Table 5 shows the WCRT (maxims time) and BCRT
(minimums times), calculated offline, for a set of messages
exchanged between components C1, C2 and C3a, C3b characterizing
the messages of stream M1 and M2. These values are the result of
the data and events received in the replicas, considering the
experiences defined above. The incidence based is 10 k events
processed in each of the experiments. These values are the result
of the offline analysis of the 60 k records processed.

Table 5: Messages times characteristics, maxims and minimums value

Msg WCRT
(ms)

BCRT
(ms) from→to Average

order
M1 7,169 0,170 𝜏𝜏1→𝜏𝜏3

95,08%
M2 8,045 0,131 𝜏𝜏2→𝜏𝜏3′

As can be seen, the average order for data received in the
replicas has a value less than 100%, which induces the existence
of failures in the ordering of the data. On the other hand, since the
messages must be consolidated and ordered according to the time
validity requirement, to guarantee determinism, it is necessary to
determine the 𝛿𝛿decision parameter of the consolidation protocol as
defined in (1). The maximums and minimums times for
transmission data/events are defined in Table 5 and the maximum
deviation between synchronized clocks (ε), also calculated offline,
is 164 µs. Therefore, using (1):

 𝛿𝛿𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 8.045 − 0.131 + 0.164 = 8.078 𝑚𝑚𝑚𝑚 (2)

The worst-case decision time for consolidation, considering
𝛿𝛿decision, can be defined considering all messages received in the set
res(m) so, that the worst-case decision time will be given by:

 𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = max
∀𝑚𝑚∈𝑟𝑟𝑟𝑟𝑟𝑟(𝑚𝑚)

{𝑊𝑊𝑚𝑚} + 𝛿𝛿𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 16.123 𝑚𝑚𝑚𝑚 (3)

where 𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is the worst time of the consolidation, i.e., time
decision when a new event arrives at the end of the 𝛿𝛿decision time.

6. Conclusions

The Eclipse 4diac™ tool was developed in accordance with
IEC 61499 and it is specially directed to the development of
distributed industrial applications portables and modular.

The Publish/Subscribe pair, provides by the 4diac object
repository, are a communication FB, fundamental for the
interconnection of the distributed components, guaranteeing not
only the synchronization of the system but also the implementation

http://www.astesj.com/

A.A. Santos et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 531-537 (2020)

www.astesj.com 537

of the atomic multicast protocol. However, the introduction of
software or hardware component replication introduces new
problems that were not anticipated in IEC 61499 as well as in
4diac. These pairs, using different communication interfaces,
guarantee replication synchronization, but cannot guarantee their
determinism and, as such, promote the occurrence of failures that
must be masked.

Based on the experiences carried out we can conclude that the
Publish/Subscribe pair, most used in the interconnection of
distribute/replicated computer devices, has a failure rate,
independent and identically distributed, of 4.92%. Therefore, it is
not possible, by itself, to ensure determinism, so the programmer
will need to develop a FB, also replicable, which ensures that all
replicas process the same data set in the same order.

Acknowledgment

We acknowledge the financial support of CIDEM, R&D unit
funded by the FCT – Portuguese Foundation for the Development
of Science and Technology, Ministry of Science, Technology and
Higher Education, under the Project UID/EMS/0615/2019 and
ERDF – European Regional Development Fund through the
Operational Programme for Competitiveness and
Internationalisation - COMPETE 2020 Programme, and by
National Funds through the Portuguese funding agency, FCT -
Fundação para a Ciência e a Tecnologia, within project
SAICTPAC/0034/2015- POCI-01-0145-FEDER-016418.

References

[1] International Standard IEC 61499-1, Function Block-Part 1: Architecture,
2nd Edition. International Electrotechnical Commission, 2012.

[2] Eclipse 4diac, Open Source PLC Framework for Industrial Automation &
Control [Online], https://www.eclipse.org/4diac/.

[3] L. Laura, Software Fault Tolerance – Techniques and Implementation,
Artech House Publishers, ISBN: 9781580531375, 2001.

[4] L. Chen, A. Avizienis, “N-Version Programming: A Fault-Tolerance
Approach to Reliability of Software Operation” in Proceedings of FTCS-8,
Toulouse, France, 1978. DOI: 10.1109/FTCSH.1995.532621.

[5] J. C. Laprie, J. Arlat, C. Beounes and K. Kanoun, "Definition and analysis
of hardware- and software-fault-tolerant architectures," in Computer, 23(7),
39-51, July 1990. DOI: 10.1109/2.56851.

[6] K. H. Kim. The Distributed Recovery Block Scheme, in Software Fault
Tolerance, M. R. Lyu (Ed.), New York: John Wiley & Sons, 1995.

[7] D. Nguyen and Dar-Biau Liu, "Recovery blocks in real-time distributed
systems," in Annual Reliability and Maintainability Symposium. 1998
Proceedings. International Symposium on Product Quality and Integrity,
Anaheim, CA, USA, 1998, 149-154. DOI: 10.1109/RAMS.1998.653703.

[8] R. Guerraoui and A. Schiper, "Software-based replication for fault tolerance"
in Computer, 30(4), 68-74, April 1997. DOI: 10.1109/2.585156.

[9] V. Hadzilacos, S. Toueg, “Fault-Tolerant Broadcasts and Related Problems”
in Distributed Systems (2nd Ed.), ACM Press/Addison-Wesley Publishing
Co, USA, 97-145, 1993.

[10] S. Poledna, A. Burns, A. Wellings and P. Barrett, "Replica determinism and
flexible scheduling in hard real-time dependable systems" in IEEE
Transactions on Computers, 49(2), 100-111, Feb. 2000.
DOI: 10.1109/12.833107.

[11] L.M. Pinho, “Replication Management in Reliable Real-Time Systems”, in
Real-Time Systems, 26, 261–296 (2004).
https://doi.org/10.1023/B:TIME.0000018248.18519.46.

[12] J. Liu, W. Li, G. O. Karame and N. Asokan, "Scalable Byzantine Consensus
via Hardware-Assisted Secret Sharing" in IEEE Trans. on Computers, 68(1),
139-151, 1 Jan. 2019. DOI: 10.1109/TC.2018.2860009.

[13] R. Paulo, et al., “Replicação de Máquina de Estado Baseada em Prioridade
com PRaft” in XXXIV Simpósio Brasileiro de Redes de Computadores e
Sistemas Distribuídos, Salvador, Brazil, 2016.

[14] H. Tingting, Bertolotti, Ivan C. and Navet, Nicolas, “Towards seamless
integration of N-Version Programming in model-based design”, in 22nd
IEEE International Conference on Emerging Technologies and Factory

Automation (ETFA2017), Cyprus, 1-8, 2017.
DOI: 10.1109/ETFA.2017.8247678.

[15] M. de Sousa, C. Chrysoulas and A. E. Homay, "Multiply and conquer: A
replication framework for building fault tolerant industrial applications" in
2015 IEEE 13th International Conference on Industrial Informatics (INDIN),
Cambridge, 1342-1347, 2015. DOI: 10.1109/INDIN.2015.7281930.

[16] L. Yoong, “Modelling and Synthesis of Safety-Critical Software with IEC
61499”, PhD Thesis submitted for Electrical and Electronic Engineering,
University of Auckland, 2010. http://hdl.handle.net/2292/6691.

[17] I. Batchkova, G. Popov, H. Karamishev and Grigor Stambolov, “Dynamic
reconfigurability of control systems using IEC 61499 standard”, in 15th
Workshop on International Stability, Technology, and Culture the
International Federation of Automatic Control, 46(8), 256-261, 2013.
https://doi.org/10.3182/20130606-3-XK-4037.00050.

[18] W. Dai, V. Vyatkin, J. H. Christensen and V. N. Dubinin, "Bridging Service-
Oriented Architecture and IEC 61499 for Flexibility and Interoperability," in
IEEE Transactions on Industrial Informatics, 11(3), 771-781, June 2015.
Doi: 10.1109/TII.2015.2423495.

[19] Lednicki, Luka, Carlson, Jan e Sandstrom, Kristian, “Model level worst-case
execution time analysis for IEC 61499”, in Proc. of the 16th International
ACM Sigsoft symposium on Component-based software engineering, June,
169–178, 2013. https://doi.org/10.1145/2465449.2465455.

[20] International Electrotechnical Commission, “International Standard IEC
61131-3, Programmable Controllers - Part 3: Programming Languages”, 3rd
Edition, 2013.

[21] H.-M Hanisch and V. Vyatkin, “Achieving Reconfigurability of Automation
Systems by Using the New International Standard IEC 61499: A Developer’s
View”, in The Industrial Information Technology Handbook, CRC PRESS,
Section 4, 66, 2004. https://doi.org/10.1201/9781315220758.

[22] A. A. Santos and M. de Sousa, "Replication Strategies for Distributed IEC
61499 Applications”, in IECON 2018 - 44th Annual Conference of the IEEE
Industrial Electronics Society, Washington, DC, 2018, 2225-2230.
Doi: 10.1109/IECON.2018.8592737.

[23] M. Hofmann, M. Rooker and A. Zoitl, “Improved Communication Model
for an IEC 61499 Runtime Environment”, Proc. of IEEE 16th Conference on
Emerging Technologies & Factory Automation (ETFA2011), Toulouse,
France, 2011, 1-7. Doi: 10.1109/ETFA.2011.6059121.

[24] A. A. Santos, A. F. da Silva, M. de Sousa and P. Magalhães, "An IEC 61499
Replication for Distributed Control Applications", in IEEE 16th International
Conference on Industrial Informatics (INDIN), Porto, 2018, 362-367. Doi:
10.1109/INDIN.2018.8471958.

[25] M. Yang, G. Hua, Y. Feng, and J. Gong, “Fault‐Tolerance Architectures and
Key Techniques”, in Fault-Tolerance Techniques for Spacecraft Control
Computers (1st. ed.). Wiley Publishing, pp 29-76, 2017. DOI:
10.1002/9781119107392.

[26] K. Mohamed, R. Xavier, S. Françoise, “A Schedulability Analysis of an IEC-
61499 Control Application”, in 6th IFAC International conference on
Fieldbus Systems and their Applications (FeT’2005), 38(2), 71-78, 2005.
https://doi.org/10.3182/20051114-2-MX-3901.00011.

http://www.astesj.com/
https://webstore.iec.ch/publication/5506
https://webstore.iec.ch/publication/5506
https://www.eclipse.org/4diac/
https://uk.artechhouse.com/Software-Fault-Tolerance-Techniques-and-Implementation-P1371.aspx
https://uk.artechhouse.com/Software-Fault-Tolerance-Techniques-and-Implementation-P1371.aspx
https://doi.org/10.1109/FTCSH.1995.532621
https://doi.org/10.1109/2.56851
https://www.cse.cuhk.edu.hk/%7Elyu/book/sft/pdf/chap8.pdf
https://www.cse.cuhk.edu.hk/%7Elyu/book/sft/pdf/chap8.pdf
https://doi.org/10.1109/RAMS.1998.653703
https://doi.org/10.1109/2.585156
https://dl.acm.org/doi/10.5555/302430.302435
https://dl.acm.org/doi/10.5555/302430.302435
https://dl.acm.org/doi/10.5555/302430.302435
https://doi.org/10.1109/12.833107
https://doi.org/10.1023/B:TIME.0000018248.18519.46
https://doi.org/10.1109/TC.2018.2860009
http://www.sbrc2016.ufba.br/downloads/SessoesTecnicas/152277.pdf
http://www.sbrc2016.ufba.br/downloads/SessoesTecnicas/152277.pdf
http://www.sbrc2016.ufba.br/downloads/SessoesTecnicas/152277.pdf
https://doi.org/10.1109/INDIN.2015.7281930
http://hdl.handle.net/2292/6691
https://doi.org/10.3182/20130606-3-XK-4037.00050
https://doi.org/10.1109/TII.2015.2423495
https://doi.org/10.1145/2465449.2465455
https://webstore.iec.ch/publication/4552
https://webstore.iec.ch/publication/4552
https://webstore.iec.ch/publication/4552
https://doi.org/10.1201/9781315220758
https://doi.org/10.1109/IECON.2018.8592737
https://doi.org/10.1109/ETFA.2011.6059121
https://doi.org/10.1109/INDIN.2018.8471958
https://onlinelibrary.wiley.com/doi/book/10.1002/9781119107392
https://doi.org/10.3182/20051114-2-MX-3901.00011

	2. Related work
	3. Overview of the IEC 61499
	4. Proposed IEC 61499 Implementation
	4.1. Communication architecture
	4.2. Consolidation and voting replicate inputs
	4.3. Consolidate time analysis

	5. Numerical example
	5.1. Determinism testing

	6. Conclusions
	Acknowledgment
	References

