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 The proactive caching has been an emerging approach to cost-effectively boost the network 
capacity and reduce access latency. While the performance of which extremely relies on 
the content prediction.  Therefore, in this paper, a proactive cache policy is proposed in a 
distributed manner considering the prediction of the content popularity and user location 
to minimise the latency and maximise the cache hit rate. Here, a backpropagation neural 
network is applied to predict the content popularity, and prediction by partial matching is 
chosen to predict the user location. The simulation results reveal our proposed cache policy 
is around 27%-60% improved in the cache hit ratio and 14%-60% reduced in the average 
latency, compared with the two conventional reactive policies, i.e., LFU and LRU policies.    
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1. Introduction  

This article is an extended version of a conference paper 
presented in 2018 at the Biomedical Engineering, Healthcare, 
Robotics, and Artificial Intelligence 2018 [1]. 

With the ubiquitous emergence of the smart mobile devices, 
e.g., the mobile phones, as well as the trend towards high data rate 
applications, exponential mobile data have been generated in the 
wireless network while the current network cannot support the fast 
growth of the mobile data traffic [2], [3]. As a result, the storage 
capacity of the wireless network needs to be expanded and the 
conventional way is the dense-deployment of the base stations 
(BSs). However, it costs a lot for the mobile operator to upgrade 
this infrastructure [4]. Therefore, a more cost-effective approach is 
needed and the caching technique is regarded as an ideal approach 
[5].  

By deploying the cache devices at the edge of the wireless 
network in proximity to the users, e.g., BSs and user terminals 
(UTs), and storing the popular contents at the cache devices [6], 
[7], users can directly retrieve the contents from the edge nodes 
rather than the remote core network via the backhaul links [8]. 
Hence, the content access latency can be decreased due to the 
reduced content transmission distance [9]. In parallel, duplicated 
requests for the same contents from the core network to the edge 
of the network can be avoided, which reduces the potential data 

congestion of the network [10]. Furthermore, due to the 
increasingly decreased prices of the cache devices, the storage 
capacity of the wireless network can be more cost-effectively 
boosted compared to the conventional way [4].  

Due to the limited storage capacity of the cache devices, only 
a part of the contents can be stored in the edge cache devices. 
Hence, multiple works are focusing on how to design an efficient 
cache content placement policy. The most common approaches are 
least frequently used (LFU) and least recently used (LRU), which 
are referred to as reactive cache policies that determine whether to 
cache a specific content after it has been requested [11], [12]. In 
detail, LRU always caches the most recently requested contents 
while LFU caches the most frequently requested contents [13]. 
While the reactive cache policy is not efficient during peak hours. 
Hence, the proactive caching strategy is introduced, by which the 
content can be cached before the request, and hence the users can 
access the preferred content immediately when they arrive in new 
areas.[14], [15].   

There are many proactive schemes have been investigated. In 
[16], a threshold-based proactive cache scheme based on 
reinforcement is presented, aiming at minimising the average 
energy cost. In this case, the time variation of the content is 
considered, which means the content popularity is changed over 
time rather than static. In practice, only the content whose lifetime 
is not expired has the potential to be cached. In [17], a caching 
scheme is presented to improve the cache hit rate and reduce 
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energy consumption by predicting the content popularity 
distribution. In [18], a proactive cache based on the estimation of 
the content popularity is presented, targeting at increasing the 
cache hit rate and decreasing the content transmission expenditure. 
Motivated by deep learning which can improve the accuracy of the 
content prediction, many works utilise deep learning for proactive 
caching. In [19], deep learning is utilised to predict the future 
probability of the content and the predicted content with a high 
probability will be cached. In [20], a proactive cache policy is 
proposed based on a deep recurrent neural network model which 
can predict the future content requests.  

Table 1: Summary of existing cache policies. 

Policy  
Contribution 

[11] [12] LFU and LRU are explained to manage the cache content 
updating. 

[16] 

A reinforcement learning-based proactive cache policy is 
proposed to minimise energy consumption. Here, content 
popularity is a time-varying variable and only the contents whose 
lifetime are not expired can be considered to be cached or not. 

[17] An accurate content popularity prediction is adopted to improve 
the cache hit rate and reduce energy consumption. 

[18] 

A proactive cache policy is proposed to increase the cache hit rate 
and decrease the content transmission cost. Here, transfer 
learning is applied to evaluate the content popularity, and a 
greedy algorithm is adopted to deal with the cache problem. 

[19] 
A deep learning algorithm is applied to predict the future 
probability of the content, and the content with a high predicted 
probability will be pre-cached. 

[20] 

A proactive cache policy is proposed to alleviate the data 
congestion and reduce the average latency, in which a deep 
recurrent neural network algorithm is adopted to predict future 
content requests. 

[21] 

A long-short term memory (LSTM) network is utilised to predict 
the direction of the moving vehicles, and the proactive cache 
problem is modeled as MDP and solved by a heuristic 𝜀𝜀n-greedy 
algorithm. 

[22] 

A two-layer cache network consisting of several MSBs and SBSs 
is proposed to improve the cache hit ratio and reduce the average 
latency. Here, the adjacent SBSs can communicate with each 
other. Besides, the users with different moving speeds are 
clustered into different layers, i.e. the MBS or the SBS.   

[23] 

A cooperative cache framework is proposed to increase the cache 
hit ratio and reduce access latency. Here, a PPM algorithm is 
adopted to predict vehicles’ probability of arriving in the hot 
areas. 

Besides, in [21], a proactive cache policy for the vehicular 
network is proposed, where the roadside units (RSUs) are 
equipped with the cache capability under high mobility of the 
moving vehicles. There, a long-short term memory (LSTM) 
network is utilised to predict the direction of the moving vehicles. 
Then the proactive cache problem is modeled as a Markov 
decision process (MDP) problem and solved by a heuristic 𝜀𝜀n-
greedy algorithm. In [22], Gao et al. design a proactive cache 
scheme for the hierarchical network where each small base station 
(SBS) can perceive the user mobility of its adjacent small base 
stations (SBSs), aiming at maximising the cache hit rate and 
minimising the transmission latency. In specific, the users with 
different moving speeds are clustered into different layers and the 

cached content deployment problem is solved by a genetic 
algorithm. In [23], a cooperative cache framework is introduced 
to increase the cache hit rate and minimise the access latency, in 
which the prediction by partial matching (PPM) is utilised to 
predict the vehicles’ probability of arriving at the hot areas. The 
vehicles with long sojourn time in a hot spot are equipped with 
cache capability and are regarded as cache nodes.  A summary of 
the aforementioned works is shown in Table 1. 

Different from the aforementioned works singly considering 
the prediction of the content popularity or the users’ location, this 
extended paper designs a proactive cache policy jointly 
considering the prediction of the user preference and the user 
location to minimise the average latency and maximise the cache 
hit rate, which to the best of our knowledge has not been 
considered in the prior research works. In detail, a practical 
scenario is considered, in which the BSs are distributed and the 
users are mobile. A backpropagation (BP) neural network, one of 
the deep learning methods, is applied to predict the user 
preference based on the historical content requests. Furthermore, 
the user’s future location is predicted via PPM which has been 
introduced in our previous work [1], and the user’s preferred 
content is pre-cached at the location in which the user will highly 
arrive. The main contributions of this paper are as follows: 

• This paper focuses on minimising the average latency and 
maximising the cache hit rate by jointly considering the 
content popularity prediction and user location prediction. 

• The BP neural network is applied to predict the content 
popularity, and PPM is chosen to predict the user location. 

• The effect of the several parameters on the cache 
performance is investigated, i.e., the Zipf parameter, the 
content size, the transmission rate, the distance of the 
backhaul link, and the distance between the user and the 
BS. 

The remainder of this paper is organised as follows. The system 
model and the problem formulation are shown in section 2. Section 
3 introduces the proactive cache policy. We show the simulation 
results in section 4 and conclude in section 5. 

2. System model and problem formulation 

In this section, we describe the system model, state the 
assumption, and formulate the problem. 

2.1. System model 

For each time slot t whose period is one hour, the proposed 
proactive cache policy adopts the PPM algorithm to obtain the 
probability of the user arriving at different locations. The location 
with the highest value is regarded as the future location. In parallel, 
the prediction of the user preference is trained via the BP neural 
network. Once the predicted user preference and the future 
location are obtained, the popular contents in the user preference 
are pre-cached at the future location. Consequently, once the user 
arrives in this location in the next time slot (t+1), the user can 
immediately obtain the requested content. However, if the 
prediction is not accurate, the BS needs to retrieve the requested 
content from the core network and then send it to the users, which 
imposes a more latency consumption issue.  
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As shown in Figure 1, the distributed cache architecture consists 
of the following network equipment (NE): a core network,  ℳ 
cache-enabled BSs, and 𝒩𝒩 mobile users. The 𝔪𝔪𝑡𝑡ℎ BS is denoted 
by 𝐵𝐵𝐵𝐵𝓂𝓂 for 1 < 𝔪𝔪 < ℳ, the 𝓃𝓃𝑡𝑡ℎ user is denoted by 𝑈𝑈𝓃𝓃 for 1 <𝓃𝓃  
< 𝒩𝒩, the circular coverage area of 𝐵𝐵𝐵𝐵𝓂𝓂 is denoted as 𝐴𝐴𝓂𝓂, and the 
set of the users served by 𝐵𝐵𝐵𝐵𝓂𝓂 is denoted as 𝑈𝑈𝓂𝓂. Let  ℱ𝑛𝑛={𝒻𝒻𝓃𝓃1, 
𝒻𝒻𝓃𝓃2,…, 𝒻𝒻𝓃𝓃𝓃𝓃} denotes the set of 𝓀𝓀 contents requested by 𝑈𝑈𝓃𝓃. The 
content popularity distribution of a user, i.e. user preference, 
follows Zipf distribution law [24].  The popularity of the ℜ𝑡𝑡ℎ 
content requested by 𝑈𝑈𝓃𝓃 is characterized as: 

𝔭𝔭𝓃𝓃(ℜ,𝔐𝔐,𝔘𝔘) = 
1
ℜ𝔐𝔐

∑ 1
𝔘𝔘𝔐𝔐

𝔘𝔘
1

,                              (1)                                                                                        

where ℜ is the rank of the content in ℱ𝑛𝑛, 𝔐𝔐 is the Zipf parameter 
for 0< 𝔐𝔐<1, and 𝔘𝔘 is the total number of contents in ℱ𝑛𝑛.   

Let ℱ𝑈𝑈𝓂𝓂  represents the set of the contents requested at 𝐵𝐵𝐵𝐵𝓂𝓂, 
𝔭𝔭𝑈𝑈𝔪𝔪 represents the content popularity at 𝐵𝐵𝐵𝐵𝓂𝓂 and 𝒞𝒞={1,2,…, ℋ} 
represents the library of all the contents requested by 𝒩𝒩 mobile 
users served by ℳ BSs. Assume each BS can store 𝒽𝒽 contents at 
most for 𝒽𝒽< ℋ, and each content has the same size ℬ. Besides, 
one user only requests one content at most for each time slot t.  

 
Figure 1: The cache-enabled network. 

2.2. Problem formulation 

Based on the mention before, our target is to minimise the 
access latency 𝔗𝔗, which is comprised of the transmission latency 
and propagation latency [25]. The transmission latency is caused 
by transmitting the content from ENi to ENj [26],  in which ENi 
and ENj are any two network equipment. According to [27], the 
transmission rate ℝ(𝑖𝑖,𝑗𝑗) is calculated  as: 

ℝ(𝑖𝑖,𝑗𝑗)= Blog2(1+𝜌𝜌𝜌𝜌
𝜎𝜎2

),                                 (2)                                                                                     

where B (Hz) is the available spectrum bandwidth, 𝜌𝜌  is the 
transmitted power, 𝜎𝜎2 is the noise power and 𝜇𝜇 is the channel gain 
between ENi and ENj. 

Therefore, the transmission latency 𝔗𝔗𝑡𝑡(𝑖𝑖,𝑗𝑗)
𝑐𝑐  based on the size of 

the requested content 𝑐𝑐 and the transmission rate is derived as: 

𝔗𝔗𝑡𝑡(𝑖𝑖,𝑗𝑗)
𝑐𝑐 = 𝒮𝒮

ℝ(𝑖𝑖,𝑗𝑗)
,                                      (3)                                                                                                   

where 𝒮𝒮 is the size of requested content 𝑐𝑐. 

The propagation latency 𝔗𝔗𝑝𝑝(𝑖𝑖,𝑗𝑗)
𝑐𝑐  is defined as the time of 

propagating the requested content 𝑐𝑐 from ENi to ENj. Affected by 

the propagation speed of the electromagnetic wave and the 
distance between the ENi and ENj, the propagation latency  𝔗𝔗𝑝𝑝(𝑖𝑖,𝑗𝑗)

𝑐𝑐  
is expressed as: 

𝔗𝔗𝑝𝑝(𝑖𝑖,𝑗𝑗)
𝑐𝑐  =

𝒥𝒥(𝑖𝑖,𝑗𝑗)

𝑣𝑣
 ,                                 (4)                                                                                                     

where 𝑣𝑣 is the propagation speed of the electromagnetic wave in 
the corresponding channel, 𝒥𝒥(𝑖𝑖,𝑗𝑗) is the distance between ENi and 
ENj.  

Therefore, the access latency is expressed as: 

𝔗𝔗 = 𝔗𝔗𝑡𝑡(𝑖𝑖,𝑗𝑗)
𝑐𝑐  + 𝔗𝔗𝑝𝑝(𝑖𝑖,𝑗𝑗)

𝑐𝑐                               (5)                                                                                        

 = 𝒮𝒮
ℝ(𝑖𝑖,𝑗𝑗))

 + 
𝒥𝒥(𝑖𝑖,𝑗𝑗)

𝑣𝑣
.                                    (6)                                                                                       

In detail, the content can be directly retrieved from BS if it is 
hit at the BS, i.e., the content is cached at the BS. Hence the 
latency 𝔗𝔗ℎ𝑖𝑖𝑖𝑖 of cached content is shown as: 

𝔗𝔗ℎ𝑖𝑖𝑖𝑖= 𝒮𝒮
ℝ(𝑢𝑢,𝑏𝑏)

 + 
𝒥𝒥(𝑢𝑢,𝑏𝑏)

𝑣𝑣ℎ𝑖𝑖𝑖𝑖
,                                (7)                                                                                    

where ℝ(𝑢𝑢,𝑏𝑏) is the transmission rate between a user and a BS,  
𝒥𝒥(𝑢𝑢,𝑏𝑏)  is the distance between a user and a BS, and 𝑣𝑣ℎ𝑖𝑖𝑖𝑖  is the 
propagation speed of the electromagnetic wave in the air. 

Otherwise, the content needs to be retrieved from the core 
network via the backhaul links if the content is missed at the BS, 
i.e., the content is not cached at the BS. According to [28], the 
transmission rate ℝ(𝑢𝑢,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)  from the core network to the BS is 
shown as  

ℝ(𝑏𝑏,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)= R*,                                      (8)                                                                                             

where R* is the maximal transmission rate of the network.                              

Therefore, the latency of a missed content 𝔗𝔗𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 consisting 
of the transmission latency 𝔗𝔗𝑡𝑡(𝑢𝑢,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)

𝑐𝑐  and the propagation latency 
of a missed content is expressed as:              

𝔗𝔗𝑡𝑡(𝑢𝑢,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)
𝑐𝑐  = 𝒮𝒮

R∗
+ 𝒮𝒮
ℝ(𝑢𝑢,𝑏𝑏)

,                                 (9)                                                                                      

𝔗𝔗𝑝𝑝(𝑢𝑢,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)
𝑐𝑐  =  

𝒥𝒥(𝑢𝑢,𝑏𝑏)

𝑣𝑣ℎ𝑖𝑖𝑖𝑖
 + 

𝒥𝒥(𝑏𝑏,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)

𝑣𝑣𝑏𝑏
,                    (10)                                                                         

𝔗𝔗𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝒮𝒮
ℝ(𝑢𝑢,𝑏𝑏)

 + 𝒮𝒮
R∗

 +
𝒥𝒥(𝑢𝑢,𝑏𝑏)

𝑣𝑣ℎ𝑖𝑖𝑖𝑖
 + 

𝒥𝒥(𝑏𝑏,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)

𝑣𝑣𝑏𝑏
,          (11)                                                                                            

where  𝒥𝒥(𝑢𝑢,𝑏𝑏) is the distance between the user and the BS, 𝒥𝒥(𝑏𝑏,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 
is the distance between the BS and the core network, and 𝑣𝑣𝑏𝑏 is the 
propagation speed of the electromagnetic wave in the backhaul 
link. 

Therefore, the average system latency 𝔗𝔗 is calculated as:  

𝔗𝔗=
∑ [� 𝒮𝒮

ℝ(𝑢𝑢,𝑏𝑏)
+ 
𝒥𝒥(𝑢𝑢,𝑏𝑏)
𝑣𝑣ℎ𝑖𝑖𝑖𝑖

�+(1−𝒵𝒵)( 𝒮𝒮R∗ + 
𝒥𝒥(𝑏𝑏,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)

𝑣𝑣𝑏𝑏𝑏𝑏
  )]𝑁𝑁

1

𝑁𝑁
,              (12)                                                             

where 𝒵𝒵 is the cache hit rate and is calculated as follows: 
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𝒵𝒵 =
∑ ∑ 𝐹𝐹(𝑅𝑅𝑖𝑖𝑈𝑈𝓃𝓃 )𝒢𝒢

1
𝒩𝒩
𝑛𝑛=1

∑ 𝒢𝒢𝒩𝒩
𝑛𝑛=1

 ,                         (13)                                                                                    

where 𝑅𝑅𝑖𝑖𝑈𝑈𝓃𝓃  is the content requests of 𝑈𝑈𝓃𝓃 , 𝒢𝒢  is the number of 
request times of 𝑅𝑅𝑖𝑖𝑈𝑈𝓃𝓃 . The 𝐹𝐹(𝑅𝑅𝑖𝑖𝑈𝑈𝓃𝓃) is calculated as 

𝐹𝐹(𝑅𝑅𝑖𝑖𝑈𝑈𝓃𝓃) = �
1, 𝑅𝑅𝑖𝑖𝑈𝑈𝓃𝓃𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒

0,𝑅𝑅𝑖𝑖𝑈𝑈𝓃𝓃  𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒           (14)                                                              

The problem of minimising the average system latency is 
modeled as follows  

P_1: min 𝔗𝔗                                   (15)                                                                                          

s.t.  0<𝑣𝑣𝑏𝑏𝑏𝑏<𝑣𝑣ℎ𝑖𝑖𝑖𝑖 ≤3× 108𝑚𝑚/𝑠𝑠                (16)                                                                      

0≤ 𝒵𝒵 ≤ 1                                    (17)                                                                                         

3. The proactive cache based on the content popularity 
prediction and future location prediction 

In this section, a proactive cache policy is proposed to address 
P_1. Firstly, the user preference is predicted according to the 
backpropagation (BP) neural network. Besides, we introduce the 
future location prediction based on the prediction by partial 
matching (PPM) algorithm. The proposed cache policy minimises 
the average system latency by pre-caching the predicted popular 
content at the correspondingly predicted location. 

3.1. The content popularity prediction based on backpropagation 
neural network 

User preference is the content probability distribution of 
individual user and content popularity is the content probability 
distribution of a cluster of users. Due to the characteristic of the 
user preference that a small number of contents account for most 
of the data traffic, the cache policy considers caching the popular 
content to reduce the complexity of the computation. Hence, the 
set of the  popular contents of 𝑈𝑈𝑛𝑛  is denoted as ℙ𝑈𝑈𝑛𝑛   ={𝑦𝑦𝑈𝑈𝑛𝑛

1 , 
𝑦𝑦𝑈𝑈𝑛𝑛
2 , …,𝑦𝑦𝑈𝑈𝑛𝑛

𝑘𝑘 }, which contains k samples by choosing the top k 
contents with the highest probability from the user preference. 
Therefore, the set of the popular contents at BSm is denoted as 
ℙBS𝑚𝑚={ ℙ1,ℙ2, …ℙ𝑈𝑈𝑛𝑛 … ,ℙ𝑈𝑈𝑚𝑚}.   

After obtaining the popular content database of BSm, the BP 
neural network, as shown in Figure 2, is applied to predict the 
content popularity. The proposed neural network is comprised of 
three layers, namely the input layer, hidden layer, and output layer. 
The number of the neuron cells in the input layer and the output 
layer is equal to the cache storage 𝑘𝑘. The content requests of 𝑈𝑈𝑛𝑛 
are collected each hour and denoted as a training data set. Besides, 
two continuous training data sets are chosen to optimise the 
parameter of the neural network. The value 𝑦𝑦𝑖𝑖𝑖𝑖 for the input layer 
is the request times of the top 𝑘𝑘 popular contents in the former 
training data set. The value 𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  is the request times of the top 𝑘𝑘 
popular contents in the latter training data set. Furthermore, mean 
squared error (MSE) is utilised as the loss function in the content 
prediction. The MSE is formulated as  

MSE = 
∑ (𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝)2𝑘𝑘
1

𝑘𝑘
,                         (18)                                                                           

where 𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝 is the value of the output layer. 

Besides, the Relu function is chosen as the activation function, 
which is expressed as 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑦𝑦𝑖𝑖𝑖𝑖) = � 0, 𝑦𝑦𝑖𝑖𝑖𝑖 < 0
𝑦𝑦𝑖𝑖𝑖𝑖 , 𝑦𝑦𝑖𝑖𝑖𝑖 ≥ 0 .                      (19)                                                                         

With the help of stochastic gradient descent (SGD), the 
proposed neural network can optimally predict the content 
popularity after enough training. 

 

3.2. The future location prediction based on a prediction by 
partial matching 

Before the location prediction, the historical location 
information is collected from a real environment model as shown 
in Figure 3. The areas labeled by red symbols are regarded as the 
hot spots with long sojourn time. The historical location 
information sequence is denoted as ℒ which is related to the hot 
spots. 

 

After obtaining the historical location information ℒ, PPM is 
applied to predict the user’s future location. PPM is a data 
compression method based on the finite context and it has been 
proven effective for the location prediction [23]. The probability 
of the future location y appearing after the given context Con is 
model as P(ycon), where Con is the sequence of the location and 
the length of the sequence is called order [29]. Furthermore, PPM 
proposes an escape mechanism to deal with the zero-frequency 
problem [30]. When escape occurs, i.e. y is missed after Con. 
Then the PPM outputs an escape probability defined as 
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Pesc(esc|Con). The computation of PPM is shown in Algorithm 
1. Firstly, PPM checks whether y appears after Con. If y appears, 
PPM records the number of appearing times and outputs the 
probability 𝑃𝑃(𝑦𝑦|𝐶𝐶𝐶𝐶𝐶𝐶) , otherwise, PPM outputs the escape 
probability Pesc(esc|Con). Under the escape situation, PPM 
restarts to check whether y appears after the new Con (the order 
of which is the original order minus 1). The process is finished 
until y appears after Con or the order is -1. The predictive 
probability of the future location is the multiple of the sub-
probabilities and the calculation is shown as: 

              𝑃𝑃 = ∏ 𝑃𝑃𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
1 ,                                   (20                                                                                         

𝑃𝑃𝑖𝑖 = �
𝑃𝑃(𝑦𝑦|𝐶𝐶𝐶𝐶𝐶𝐶) = 𝑁𝑁𝑦𝑦

𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒+𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶
, 𝑦𝑦 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐶𝐶𝐶𝐶𝐶𝐶

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑒𝑒𝑒𝑒𝑒𝑒|𝐶𝐶𝐶𝐶𝐶𝐶) = 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒
𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒+𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶

, 𝑦𝑦 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐶𝐶𝐶𝐶𝐶𝐶
 , 

(21)                                                     

where 𝑃𝑃𝑖𝑖  is the probability of step i, 𝑁𝑁𝑦𝑦 represents the number of 
the times of y appearing after Con, 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒  represents the number of 
the characters appearing after Con, and 𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶  represents the 
number of the times of all the characters appearing after Con.     

Once the probabilities of the possible locations are obtained 
via PPM, these obtained probabilities are ranked in descending 
order. The location with the highest probability is regarded as the 
future location. 

Algorithm 1 PPM algorithm 

Input: historical data ℒ 

Output: the probability P of the future location 𝑦𝑦 

1 Initialize P=0 

2 order = h, j =1 

3 if y appears after Con  

4     𝑃𝑃𝑗𝑗=P(y|Con) 

    Process finished 

5 else 

6     𝑃𝑃𝑗𝑗=P(esc|Con) 

7     h - =1, j + =1 

8     Restart the step 3-7 

9 The process is finished until  y appears after Con or h =-1. 
Output j, and P=∏ 𝑃𝑃𝑗𝑗

𝑗𝑗
1  

Here is an example to help understand PPM computation by 
giving a user path {L1, L3} and the future location L4 in the 
historical data sequence ℒ ={L1, L2, L3, L4, L5, L1, L3, L1, L4, L1, L2, 
L4, L3, L4, L1}. First, since the sequence{ L1, L3, L4 } cannot be 
found from the historical data sequence, the escape probability 
P(esc| L1, L3) is outputted based on Pesc(esc|Con) in Eq. (21), as 
shown in Eq. (22). Then the new order is 1 and consequently, the 
new context is { L3 }. The new sequence { L3, L4 } can be found 
from the historical date sequence, and therefore the probability 
P(L4| L3) is obtained based the 𝑃𝑃(𝑦𝑦|𝐶𝐶𝐶𝐶𝐶𝐶) in Eq. (21), as shown in 
Eq. (23). Finally, the probability P(L4| L1, L3) is obtained based on 
Eq. (20), as shown in Eq. (24).   

   P(esc| L1, L3) = 
𝑁𝑁(esc| 𝐿𝐿1,𝐿𝐿3)

𝑁𝑁(esc| 𝐿𝐿1,𝐿𝐿3)+𝑁𝑁(𝐿𝐿1| 𝐿𝐿1,𝐿𝐿3)
 = 1

1+1
 = 1

2
 ,      (22)                                                          

where 𝑁𝑁(esc| 𝐿𝐿1,𝐿𝐿3) is the number of the characters appearing after 
{L1, L3}, and 𝑁𝑁(𝐿𝐿1| 𝐿𝐿1,𝐿𝐿3)  is the number of the times of all the 
characters appearing after {L1, L3} since only L1 appears after {L1, 
L3}. 

P(L4| L3) = 
𝑁𝑁(𝐿𝐿4| 𝐿𝐿3) 

𝑁𝑁(esc| 𝐿𝐿3)+𝑁𝑁(𝐿𝐿4| 𝐿𝐿3) +𝑁𝑁(𝐿𝐿1| 𝐿𝐿3) 
 = 2

2+2+1
  =  2

5
 ,   (23)                                               

where 𝑁𝑁(𝐿𝐿4| 𝐿𝐿3) is the number of L4 appearing after L3,  𝑁𝑁(esc| 𝐿𝐿3) is 
the number of the characters appearing after L3 and 𝑁𝑁(𝐿𝐿1| 𝐿𝐿3)   is 
the number of L1 appearing after L3. The sum of 𝑁𝑁(𝐿𝐿4| 𝐿𝐿3)  and 
𝑁𝑁(𝐿𝐿1| 𝐿𝐿3) is called the number of the times of all the characters 
appearing after  L3.            

P(L4|L1, L3) = P(esc|L1,L3) × P(L4|L3)= 1
2

× 2
5
=1
5
 ,     (24)                                                     

3.3. The pre-deployment of the popular content at the future 
location 

In each time slot t, the users’ future locations in which users 
will highly arrive at the next time slot t+1 are predicted via PPM. 
In parallel, the user preference at t+1 is predicted via BP neural 
network. The top w contents with the highest number of request 
times are regarded as the popular contents in the future. After that, 
these popular contents are pre-deployed at the corresponding 
future location. Hence, in the next time slot t+1, if the prediction 
is correct, users can immediately obtain their preferred contents, 
which extremely reduces the average system latency.  

4. Simulation results and analyzation  

In this section, we consider a distributed BS caching network 
which consists of 10 BS, 30 users, and 6 locations. The number of 
content requests of each user is 3000. The comprehensive 
simulation shows the performance of our proposed policy, LFU, 
and LRU in terms of the average latency and cache hit rate. The 
specific parameter settings are shown in Table 2. The program is 
modeled via PyTorch language in Pycharm software.To further 
show the improvement of our proposed policy in terms of the 
cache hit rate and the reduction of our proposed policy in terms of 
the cache hit rate compared with LFU and LRU policies, we 
propose the growth ratio 𝒫𝒫𝐺𝐺  and the reduction ratio 𝒫𝒫𝑅𝑅 , which are 
expressed as: 

𝒫𝒫𝐺𝐺 =
𝒞𝒞𝑜𝑜𝑜𝑜𝑜𝑜 − 𝒞𝒞𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝒞𝒞𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
,                           (25)                                                                              

𝒫𝒫𝑅𝑅 =
𝔗𝔗𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − 𝔗𝔗𝑜𝑜𝑜𝑜𝑜𝑜

𝔗𝔗𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
,                          (26)                                                                             

where  𝒞𝒞𝑜𝑜𝑜𝑜𝑜𝑜  and  𝒞𝒞𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  is the cache hit rate of our proposed 
policy and any one of the LFU and LRU policies, respectively. 
𝔗𝔗𝑜𝑜𝑜𝑜𝑜𝑜  and 𝔗𝔗𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is the average latency of our proposed policy 
and any one of the LFU and LRU policies, respectively. 

 

Table 2: The simulation parameter settings 

symbol value 
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𝑣𝑣𝑏𝑏𝑏𝑏 1 ×107 m/s 

𝑣𝑣ℎ𝑖𝑖𝑖𝑖 3 ×108 m/s 
ℝ(𝑖𝑖,𝑗𝑗) 10~50 Mbps 
𝜎𝜎2 1W 
𝜌𝜌 3W 

𝒥𝒥(𝑢𝑢,𝑏𝑏) 10~50km 

𝒥𝒥(𝑏𝑏𝑏𝑏,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 100km 
ℬ 
𝔐𝔐 
𝒬𝒬 
𝛿𝛿 

30Kb~450Kb 
1.1~1.8 
1%~10% 
2%~10% 

 
Figure 4 reveals the cache hit rate (represented in percentage) of 

our proactive policy and the conventional reactive policies, i.e., 
LFU and LRU. The number of the total content requests is 6000, 
the Zipf parameter of each user varies between 1.7 and 1.8. 
Besides, to demonstrate the effect of the cache capacity on the 
cache performance, we introduce the cache capacity ratio 𝛿𝛿 = 𝒽𝒽ℋ. 
And in this simulation, we assume 𝛿𝛿= 2%, 4%, 6%, 8% and 10%. 
Horizontally, the cache hit rates of LFU, LRU, and our proposed 
policy increase with the larger cache capacity ratio.  The tendency 
demonstrates that increasing the cache capacity can improve the 
cache hit rate since more popular contents can be cached. We also 
notice that our proactive policy has the highest cache hit rate, 
which is around 10-25% higher than that of LFU and LRU 
policies, no matter how the Zipf parameter varies. Therefore, our 
proposed policy outperforms the other two policies.  

 

Figure 4: The cache hit rate vs. cache capacity ratio 𝛿𝛿= 𝒬𝒬
ℋ

. 

Figure 5 investigates the effect of the Zipf parameter 𝔐𝔐 on the 
cache hit rate of our proposed policy with the other two policies 
as mentioned before. We assume 𝛿𝛿 is 10%, and the Zipf parameter 
of each user varies in the range [1.1, 1.2], [1.2, 1.3], [1.3, 1.4], 
[1.4, 1.5], [1.5, 1.6], [1.6, 1.7] and [1.7, 1.8]. As the Zipf 
parameter grows, the cache hit rates of all the cache policies 
increase. The reason is that fewer contents are taking up more 
content requests as the Zipf parameter grows, and hence the 
popular content becomes more popular. Considering the fixed 
number of the total content request, the number of content reduces. 
With the same capacity, the cache has a higher chance to store 
more contents and the cached contents are more popular, which 
contributes to a higher cache hit rate. Furthermore, the slopes of 
the three curves are gradually reduced. The reason is with the 

larger Zipf parameter, the newly cached popular contents have 
fewer content requests compared with the initially cached 
contents.  We also notice that the two reactive policies have a 
relatively close cache hit rate, and the cache hit rate of our 
proposed policy is around 24%-38% higher than that of the two 
reactive policies.     

 
Figure 5: The cache hit rate vs. the Zipf parameter. 

The relation between the average latency and the size of the 
content is displayed in Figure 6.  Here, the size of the content is 
30Kb, 200Kb, 200Kb, 250Kb, 300Kb, 350Kb, and 450Kb, 
respectively. Besides, we set the cache capacity ratio 𝛿𝛿 is 10% and 
the fluctuation of the Zipf parameter is between 1.7 and 1.8, the 
distance between the user and the BS is 10km and the distance of 
the backhaul link is 100km. As the size of the content grows, the 
average latencies of all the policies increase. The reason is the 
transmitter consumes more time to send the content into the 
channel as the size of the content grows. Vertically, the average 
latency obtained by our proposed policy is around 60% reduced 
compared with LFU and LRU regardless of the size of the content, 
which implies our proposed policy outperforms the two reactive 
policies. 

 
Figure 6: The average latency vs. the size of the content. 

Figure 7 shows the relationship between the average latency and 
the transmission rate between the user and BS. Here, the content 
size is 400Kb, the storage capacity ratio is 10%, the distance 
between the user and the BS is 10km and the distance of the 
backhaul link is 100km. The transmission rate between user and 
BS is 10Mbps, 20Mbps, 30Mbps, 40Mbps, and 50Mbps, 
respectively. As the transmission rate between user and BS grows, 
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the average latencies of all the policies reduce.  The reason is that, 
with the larger transmission rate, the latency between the user and 
the BS is reduced. Also, the average latency of our proposed 
policy is 31%-64% reduced compared with the other two policies.  

 
Figure 7: The average latency vs. transmission rate between the user and the 

BS.  

As shown in Figure 8, the average latency is plotted as a 
function of the Zipf parameter. Here, the Zipf parameter of each 
user varies in the range [1.1, 1.2], [1.2, 1.3], [1.3, 1.4], [1.4, 1.5], 
[1.5, 1.6], [1.6, 1.7] and [1.7, 1.8], respectively. Besides, the 
transmission rate between the user and the BS is 50Mbps, the 
content size is 400Kb, the storage capacity ratio 𝛿𝛿  is 10%, the 
distance between the user and the BS is 10km and the distance of 
the backhaul link is 100km. As the Zipf parameter increase, the 
average latencies of three policies are reduced. The reason is that, 
with the increase of the Zipf parameter, more contents are cached 
locally, and hence fewer contents need to be retrieved from the 
remote core network. And the latency from the BS is lower than 
from the core network. Also, as the Zipf parameter grows, the 
slopes of the three curves gradually decrease. The tendency is 
caused since the newly cached contents are less popular than the 
initially cached contents. Furthermore, our proposed policy is 
around 14%-53% reduced in terms of the average latency 
compared with the two reactive policies.    

 
Figure 8: The average latency vs. Zipf parameter.  

The effect of the cache capacity ratio 𝛿𝛿 on the average latency 
is shown in Figure 9. In this simulation, we assume 𝛿𝛿= 2%, 4%, 6%, 
8% and 10%. Besides, the content size is 400Kb, the transmission 
rate is 50Mbps, the distance between the user and the BS is 10km 
and the distance of the backhaul link is 100km. The cache capacity 
ratio δ  is varied from 2% to 10%.  It can be noticed that the 
average latencies of three policies decrease with the increment of 
the cache capacity ratio. The fact is that a larger cache capacity 
means more contents can be cached. As a result, more long-
distance propagation time consumption from the core network to 
the BS can be avoided. Also, the average latency of our proposed 
policy is around 35%-55% reduced compared with the LFU and 
LRU.  

 
Figure 9: The average latency vs. cache capacity ratio.  

5. Conclusion  

In this paper, a proactive cache policy is proposed in a 
distributed manner to minimise the average latency, as well as 
maximising the cache hit rate. An accurate prediction is achieved 
to make sure the proactive cache policy can have a high cache 
performance. In specific, a BP neural network is applied to predict 
the content popularity, and a PPM algorithm is applied to predict 
the user location. The simulation results (Fig.4 and Fig.5 
simulations) reveal our proposed cache policy is around 10%-38% 
improved in terms of the cache hit rate no matter how the cache 
capacity and Zipf parameter vary, compared with LFU and LRU 
policies. As for the average latency, our proposed policy has at 
least 14% decrease no matter how parameters change, i.e., the 
variation of the content size ( Fig.6 simulation), the transmission 
rate between the user and BS (Fig.7 simulation), the Zipf 
parameter (Fig.8 simulation)  and the cache capacity (Fig.9 
simulation). Consequently, our proposed policy outperforms LFU 
and LRU policies.   
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