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The crisis linked to the COVID-19 and the uncertainty it generates in the unprecedented health,
societal, economic and financial fields have had a strong impact on the stock markets. Indeed,
in such a climate of very high uncertainty, it is to be expected that the excessive stock market
price movements will continue, with both declines and technical rebounds, and that the resulting
volatility will remain particularly high. In order to cope with this crisis, investors and portfolio
managers must mobilize all portfolio selection strategies. In particular, portfolio management
and construction are based on the concepts of return and risk. This couple has been at the
center of all the concerns of managers and investors in portfolio optimization issues since the
introduction of the mean-variance model by Markowitz. However, many studies have proposed
different measures of risk to overcome the drawbacks of variance. The objective of this paper is
to present and compare the portfolio compositions and performance of four different portfolio
optimization models using different risk measures, including variance, Mean Absolute Deviation,
Gini coefficient and Lower Partial Moments (LPM). The results of this study show that the
Mean-Lower Partial Moments (MLPM) model outperforms other models. The Mean-Lower
Partial Moments (MLPM) model is suitable for investors during the crisis period (COVID-19)
in the Moroccan financial market.

1 Introduction

During a financial crisis, it is crucial for investors and portfolio man-
agers to implement the best portfolio selection model that takes into
account investors’ risk and return preferences. Several studies have
evaluated and compared different portfolio management strategies
according to their return and risk characteristics. The portfolios are
made up of financial assets such as shares, bonds, credits, and op-
tions. A fundamental question in the management of asset portfolios
is the choice of valid investment objectives. In the context of risk,
individuals make decisions based on two fundamental parameters
(return and risk).

Return1 and risk2 are two associated concepts in finance. Indeed,
in the case of an investment in a risky financial asset, an investor will

demand a higher return or a lower risk and investment decisions boil
down to finding an optimal compromise between return and risk.
So an investor who wishes to improve the return on his portfolio
must accept to take more risk.

The notion of risk derives from changes in the prices of financial
assets and their negative impact on the total financial value of the
portfolio.

Therefore, the risk is a very important component in portfolio
management. While the return is easy to assess, risk has not received
consensus on what constitutes its fair measurement. Risk can be
considered as variance (e.g., Markowitz [1], [2] [2], [3]; Tobin [4];
Sharpe [5]; Lintner [6], [7]; Mossin [8]; semi-variance Markowitz
[3]; partial lower moments (e.g. Bawa [9], Bawa and Lindenberg
[10], Fishburn [11] and Harlow and Rao [12], the so-called Value at

*Corresponding Author: Jamal Agouram, +212661653888 & jamal.agouram@edu.uiz.ac.ma
1Return is an indicator that measures the relative appreciation or depreciation of the value of a financial asset or portfolio of assets over a given period.
2The notion of risk derives from changes in the prices of financial assets and their negative impact on the total financial value of the portfolio.
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Risk Morgan [13], Jorion [14], Grebeck [15].
So the risk and return couple will be very central terms in our

analysis and it is essential that we understand the meaning of each
term and how portfolios with different structures can be compared.
To this end an overview of performance measures will be used to
compare the performance of portfolios, providing investors with
useful information on the capacity of managers and providing tools
to assess the risk taken by the manager based on the different two-
factor models.

In what follows, we will first briefly review the literature on
two-factor models. The second section is devoted to the application
of these models to real data from the Moroccan financial market.
Portfolio performance measures will be used in the third section to
compare the models.

2 Literature review

The advent of the Covid-19 pandemic, which includes both the Se-
vere Acute Respiratory Syndrome (SARS) virus and the Middle East
Syndrome (MOS), has led to major disruptions in world economies
and particularly in financial markets. In fact, the financial markets
reacted negatively to the growth of the cases confirmed by Covid-19
by posting abnormal negative returns on listed equities, reflecting
investors’ aversion to the pandemic. This crisis, like previous crises
in the world’s financial markets, has placed risk control at the center
of the concerns of investors and portfolio management companies.
Moreover, each of these crises is an opportunity to advance the
risk measurement and management tools proposed by theorists and
researchers in this field. In a risky environment, investors make
decisions based on their selection criteria. Consequently, decision
theory has been used as a basis for investment choice theory and
portfolio management.

Indeed, many economists and financial theorists have used the
fundamental contributions of decision theory since the middle of
the 20th century to evaluate investment opportunities. The theory
that has dominated risk studies since its emergence in 1944 is the
theory of expected utility. The latter has become widely accepted in
all areas of economic theory incorporating the risk factor. Parallel
to this, Harry Markowitz [1] proposed his famous Mean-Variance
model and gave the starting signal for modern portfolio choice the-
ory. Indeed, the use of utility functions is often complex and does
not lead to analytical solutions. This is why Markowitz simplified
the problem of choice in uncertainty in order to solve it in a simple
and explicit way. His idea was to measure the risk affecting a wealth
by its variance.

The investor is then presumed to make decisions based on only
two parameters: the first reflects the return on the investment mea-
sured by the expected return desired and the second reflects the risk
measured by the variance. Markowitz asserts the strength of the re-
lationship between return and risk because he has shown that, under
certain conditions, investors can manage to balance their hopes of
obtaining portfolios that have both the best possible return and a
minimum of risk.

This approach leads to the theory of efficient portfolios, which
suggests combining appropriate proportions of assets in a port-
folio. A little later, Treynor [16], [17], Sharpe [5], Lintner [6],

and Mossin [8] developed the Financial Asset Equilibrium Model
(CAPM) which, under certain assumptions, leads to an equilibrium
return for any stock. Later, Ross [18] developed an alternative to
CAPM called Price Arbitration Theory (PAT) based on multifac-
torial models. The Markowitz, CAPM, and APT models form the
core of classical portfolio theory.

The latter has revolutionized the way portfolio management is
conceived and its contributions have become absolutely essential
even today. However, the application of the Mean-Variance (MV)
model in portfolio selection is questionable because this model is
only valid if returns are normally distributed or if the investors have
quadratic preferences. However, several researches have shown that
returns on financial assets are not normally distributed. Similarly,
Ballestero [19], Bond and Satchell [20], [21], Estrada [22], and
Unser [23] have pointed out that variance is a dubious measure of
risk because it treats above-average and below-average returns in
the same way, whereas investors associate risk with returns below
the target rate of return.

The restrictive nature of variance as a measure of risk in the
Markowitz model has motivated a large number of studies to seek
more appropriate risk measures. Markowitz [3], Fishburn [11], and
Bawa and Lindenberg [10] have proposed the use of Lower Partial
Moments.

To remedy the imperfections of the Mean-Variance approach,
Shalit and Yitzhaki [24] introduced the Mean-Gini model in portfo-
lio management as an alternative to the mean-variance model. The
Mean-Gini model (MG) uses the Gini coefficient as the risk param-
eter rather than variance. Thus, the concept proposed by Shalit and
Yitzhaki [24] is similar to Markowitz’s [1], because it is based on
two parameters. In addition, the Mean-Gini strategy can circumvent
assumptions about the normality of the distribution of returns, and of
the quadratic function of the utility function. Yitzhaki [25] showed
also that the Gini coefficient satisfies the stochastic dominance of
the second degree, which makes the Mean-Gini model compatible
with the theory of expectation of utility.

Later, Shalit and Yitzhak [24] [26] presented the Generalised
Mean-Gini (GMM) as a model that provides a measure to embody
the preferences of different investors regarding their degree of risk
aversion. As a result, this model can better reflect the perceived
risk of an individual investor, as highlighted in the recent study
by Cardin et al [27]. For these reasons, this theory is seen as an
alternative to the traditional approach that has been dominant in
financial theory for more than half a century. While Konno and
Yamazaki [28], in contrast to Markowitz’s quadratic model, pro-
posed the first linear model by replacing the variance with the mean
absolute deviation (MAD) as a measure of risk.
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2.1 The Mean-Variance of Markowitz

The Mean-Variance model offers the investor a set of efficient port-
folios, i.e. those with the lowest risk for a possible overall return3

, and vice versa. This method uses only the concepts of mean for
the expected return and variance4 for the uncertainty associated
with this return, hence the name Mean-Variance5 associated with
Markowitz analysis.

The variance of a portfolio combination of securities is equal
to the weighted average covariance6 of the returns on its individual
securities:

Var(rp) = σ2
p =

N∑
i=1

N∑
j=1

xix jCov(ri, r j) (2)

Markowitz’s[2] model may be written as the following non-linear
quadratic programming model:

min
N∑

i=1

N∑
j=1

xix jCov(ri, r j) (3)

s.t :
N∑

i=1

x jr j ≥ w0 (4)

N∑
i=1

x j = 1 (5)

0 ≤ x j ≤ u j, j ∈ N (6)

The first constraint simply says that the expected return on the
portfolio should equal the target return determined by the portfolio
manager (w0). The second constraint says that the weights of the
securities invested in the portfolio must sum to one. The last con-
straint stipulates that asset weights must be positive, i.e. short sales
are not allowed.

Since its appearance, the Markowitz model has taken a very
important place in the evolution of modern finance and has achieved
great success with its contribution to portfolio management. But
with recent adjustments, this model has found several limitations
raised by several practitioners of financial theory. As with any
model, the limitations are generally focused around these assump-
tions7 as well as on the estimation of these parameters.

2.2 The Mean-Lower Partial Moment Model

This concept was introduced by Bawa [9] and Fishburn [11] and
Nawrocki [30]–[32] to define measures of downside risk in general.
Since the variance takes into account all negative as well as positive
deviations, lower partial moments only take into account negative
deviations. Semi-variance is a special case of a class of asymmetric
measures proposed by Markowitz [3] in the case where the investor
is indifferent between two or more securities after having calculated
the variance, i.e. the variance is sometimes insufficient to make
the right decision. Semi-variance is a type of measure known as a
measure of downside risk. This type of measure focuses primarily
on losses. Unlike variance, no assumptions are made about the
statistical distribution of asset returns. Thus, the lower partial mo-
ments represent, in a way, the standard deviation of returns below a
target return. They do not penalize returns above a target return and
differentiate between risk, returns below a minimum return, uncer-
tainty and variability of returns. Bawa and Lindenberg [10], Lee and
Rao [33], and Harlow and Rao [12] have developed lower partial
mean-moment models (LPMM), and have shown their advantages
over the Mean-Variance (MV) model. Despite these efforts, few
studies have empirically examined these advantages.

Bawa (1975) developed the concept of downside risk by lower
partial moments (MPM) of order n with a target rate of return τ8

defined in continuous time by:

LPMα(τ,Ri)α =

∫ τ

−∞

(τ,R)αdF(R) (7)

Where R, F, τ, and n denote respectively the rate of return of a
security or portfolio, the probability distribution of that return, the
target rate of return, and the degree of the moment.

Under these conditions, the portfolio choice problem accord-
ing to the Mean-Lower Partial Moment Model criterion consists in
solving the following optimization problem:

min
τ∑

t=1

ptz2
t (8)

zt ≥
∑

(r jt − r j)x j, t = 1, 2, . . . ,T (9)

zt ≥ 0, t = 1, 2, . . . ,T (10)
3In practice, the statistical parameters are often estimated at Based on time series (such as historical data from the financial markets), and after that they are somehow

adjusted. Given any set of risky assets and a set of weights that describe how the portfolio investment is split, the general formula of expected return for n assets is:

E(rp) =

N∑
j=1

x jr j (1)

where: N the number of securities; x j is the proportion of the funds invested in security j; r j are the return on ith security j and portfolio p; and E() is the expectation of the
variable in the parentheses.

4As long as the assets are supposed to be characterized by distributions symmetrical, the variance or standard deviation are good measures because any normal
distribution is fully described by its mean value and its variance (or standard deviation) (see, for example, Artzner et al [29]). Variance is not a good measure of risk if we
are dealing with financial assets that are characterized by unsymmetric gains.

5Although the mean-variance approach proposed by Markowitz has been used extensively in practice, it has several limitations (computational load, the non-linear
(quadratic) nature of the risk measure, the perception of non-symmetrical risk, the normal distribution of returns, and many others).

6High covariance indicates that an increase in one stock’s return is likely to correspond to an increase in the other. A low covariance means the return rates are relatively
independent and a negative covariance means that an increase in one stock’s return is likely to correspond to a decrease in the other.

7As with any model, Markowitz-style portfolio selection is based on several assumptions about individual behaviour and the context of uncertainty.
8In the case where t is the mean of the return distribution, we find the traditional semi-variance as introduced by Markowitz.
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N∑
i=1

x j = 1 (11)

0 ≤ x j ≤ u j, j ∈ N (12)

In order to test the Mean-Lower Partial Moment Model, we chose
to place ourselves in a semi-variance context.

2.3 The Mean Absolute Deviation

The alternative presented by Konno and Yamazaki [28] suggests that
Markowitz-type portfolio optimisation could be replaced or even
improved by a model using the mean absolute deviation (MAD9)
as a measure of risk to overcome the weaknesses of Markowitz’s
[2] non-linear model. The DSM results in a linear programming
model, which proves to be equivalent to the Markowitz model and
easier to compute. The DSM linear programming model, proposed
by Konno & Yamazaki [28], can be posed as follows:

min
∑
t∈T

ptyt (14)

s.t: “Markowitz” constraints (2)-(3)

yt +
∑
j∈N

(r jt − r j)x j ≥ 0, t = 1, 2, . . . ,T (15)

yt −
∑
j∈N

(r jt − r j)x j ≥ 0, t = 1, 2, . . . ,T (16)

0 ≤ x j ≤ u j, j ∈ N (17)

2.4 The Mean-Gini (MG) model

The Mean-Gini (MG) model was originally developed by Yitzhaki
[25]. Then, it was applied in finance by Shalit and Yitzhaki [24]
as an alternative model to the Mean-Variance model to assess risk
and construct optimal portfolios that are consistent with the theory
of utility expectation and stochastic dominance. The Mean-Gini
(MG) model shows strong results when the mean-variance model
is doomed to failure, particularly when assets are not normally
distributed.

The Mean-Gini (MG) approach in finance is used by Bey and
Howe [34] in portfolio analysis, Okunev [35] to evaluate the per-
formance of mutual funds, Shalit and Yitzhaki [24] and agouram &
lakhnati [36] [37] [38] to obtain optimal portfolio selection, Cheung
et al. [39] to examine the effectiveness of hedging options and
futures contracts, and Berkhouch et al. [40] introduced and applied
the Tail Extended Gini functional and the Extended Gini Shortfall
on daily returns for the MASI index.

Recall that the Gini coefficient is equal to:

Γp = 2cov(Rp, F(Rp)) (18)

where Rp is the portfolio return and F(Rp) is is the cumulative dis-
tribution function. Thus, the mathematical optimization problem is
presented as follows:

minΓp = 2cov(Rp, F(Rp)) = 2
N∑

i=1

xicov(Ri, F(Rp)) (19)

s.t :
N∑

i=1

x jr j ≥ w0 (20)

N∑
i=1

x j = 1 (21)

0 ≤ x j ≤ u j, j ∈ N (22)

where Γp is the Gini coefficient of the portfolio, x j is the weight
of asset j, r j is the expected return on asset j per period, w0 is the
minimum rate of return required by the investor.

3 Data and Methodology
Our study focuses on a sample of securities of the MADEX Index
for which we collected daily prices over the period from September
7, 2015 to August 28, 2020. The MADEX Index groups the values
of 45 securities according to their capitalization and volumes traded.
The index is therefore representative of the most capitalized and
liquid securities listed on the Casablanca Stock Exchange.

The data will be used as follows:

• First of all, we will use the first 1113 daily returns, corre-
sponding to the period from September 7th 2015 to February
28th 2020 (the date of appearance of the first positive case in
Covid-19), for the composition of the four portfolios.

• Next, we will estimate the performance measures of the four
portfolios in order to compare them. To calculate the perfor-
mance of these portfolios, we use the following three perfor-
mance measures : Sharpe Ratio, Treynor Ratio, Jensen Alpha.
To be more precise, we will use the risk-adjusted Sharpe ratio
of each model. We will use the following formulas:

S P =
E(RP) − r f

Rmeasure
(23)

Where S P is the Sharpe ratio, E(RP) is the portfolio return, r f

is the return on risk-free assets and Rmeasure is the risk measure
of each model.

TP =
E(RP) − r f

βP
(24)

9The mean absolute deviation is defined as the mean of the absolute values of the differences between the observations and their mean :

MAD(R) =
1
n

n∑
i=1

|Ri − R̄| (13)

Where n is the number of observed values, R̄ is the mean of the observed values and Ri are the individual values.
Absolute mean deviation is a more robust scale estimator relative to standard deviation and more resistant to outliers in a data set. For a larger mean absolute deviation,

the risk is high.
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where TP is the Treynor Ratio, E(RP) is the portfolio return,
r f is the return on risk-free assets and βP is is the beta of the
portfolio.

α = E(RP) − (r f + βP(E(Rm) − r f ) (25)

where S P is the Jensen Alpha, E(RP) is the portfolio return,
r f is the return on risk-free assets and βP is is the beta of the
portfolio.

Table 1: Summary of datasets used

Stocks Mean Standard Max Min Skewnes Kurtusis Jarque-Bera P-Value
Deviation Test Statistic Jarque-Bera

ADH -0.0008 0.0230 0.0998 -0.0999 -0.0723 5.2333 1268.78 0.0000
ADI 0.0004 0.0333 0.2075 -0.1087 0.4387 3.0088 454.71 0.0000
ALM 0.0014 0.0308 0.0995 -0.1172 -0.1525 0.4731 14.67 0.0007
ATH 0.0002 0.0224 0.0999 -0.0999 -0.0115 2.0090 186.86 0.0000
ALT 0.0004 0.0197 0.0998 -0.0777 0.2459 2.7947 372.75 0.0000
ATW 0.0004 0.0099 0.0425 -0.0489 0.2240 2.7070 348.50 0.0000
BCI 0.0002 0.02892 0.0997 -0.2014 -0.2243 2.7009 347.00 0.0000
BCP 0.0002 0.0111 0.0685 -0.0925 -0.0133 8.1582 3081.04 0.0000
BOA -0.0001 0.0130 0.0997 -0.0801 0.8456 8.2679 3296.83 0.0000
CIH 0.0001 0.0189 0.0820 -0.0754 0.2327 2.4187 280.83 0.0000

CMA 0.0012 0.0226 0.0994 -0.0993 0.0608 1.6813 131.53 0.0000
CMT 0.0004 0.0217 0.1000 -0.1146 -0.2687 4.7220 1045.55 0.0000
COL 0.0007 0.0290 0.2001 -0.2050 0.0516 4.8696 1098.20 0.0000
CRS 0.0010 0.0309 0.1000 -0.0997 0.2107 1.1873 73.47 0.0000
CTM 0.0015 0.0252 0.2553 -0.1522 1.2173 14.2007 9609.58 0.0000
DHO 0.0005 0.0232 0.0997 -0.0909 0.2774 2.3334 266.30 0.0000
DLM -0.0009 0.0383 0.1231 -0.2189 -0.4775 2.1645 259.10 0.0000
DWY 0.0007 0.0251 0.1448 -0.0999 0.4550 3.2230 519.21 0.0000
FBR -0.0003 0.0403 0.1415 -0.1550 0.0178 0.3493 5.70 0.0576
GAZ 0.0013 0.0286 0.0998 -0.0997 0.0523 0.7583 27.12 0.0000
HPS 0.0026 0.0283 0.1000 -0.1577 -0.0732 1.6319 124.27 0.0000
IAM 0.0003 0.0086 0.0582 -0.0752 -0.5511 12.7913 7630.40 0.0000
IBC -0.0015 0.0424 0.1909 -0.2186 0.0141 1.5426 110.18 0.0000
INV 0.0006 0.0369 0.1238 -0.1150 0.0913 0.4477 10.82 0.0045
JET 0.0005 0.0288 0.1000 -0.1364 0.1825 1.9568 183.42 0.0000
LBV 0.0010 0.0257 0.0990 -0.0997 0.0424 1.4843 102.32 0.0000
LES 0.0007 0.0194 0.0993 -0.0877 0.4733 2.7353 387.82 0.0000
LHM 0.0004 0.0209 0.0997 -0.0997 -0.0274 2.4867 286.38 0.0000
LYD 0.0007 0.0275 0.0952 -0.0998 0.0352 0.8244 31.68 0.0000
M2M 0.0015 0.0344 0.1000 -0.1000 0.2485 0.3014 15.63 0.0004
MDP 0.0001 0.0390 0.2091 -0.3126 0.0467 4.5041 939.52 0.0000
MIC 0.0016 0.0273 0.0999 -0.0963 0.2107 1.0399 58.27 0.0000
MNG 0.0002 0.0290 0.2109 -0.0996 0.3517 4.0247 772.74 0.0000
NKL 0.0002 0.0280 0.0982 -0.0997 -0.0110 1.6414 124.73 0.0000
RDS -0.0009 0.0235 0.0999 -0.0999 0.0537 2.1790 220.32 0.0000
RIS 0.0000 0.0289 0.1000 -0.0998 0.1481 1.1046 60.53 0.0000
S2M 0.0005 0.0277 0.1937 -0.1357 0.2211 3.2267 491.01 0.0000
SAH 0.0005 0.0280 0.0997 -0.0999 0.0060 1.8116 151.93 0.0000
SID -0.0009 0.0285 0.1000 -0.1005 0.1213 1.6771 132.92 0.0000
SLF 0.0005 0.0212 0.0979 -0.1264 -0.2940 4.2780 863.19 0.0000
SMI 0.0008 0.0320 0.0908 -0.1334 -0.0988 0.2294 4.24 0.1199
SNP 0.0019 0.0331 0.1000 -0.1000 0.3789 1.4434 123.02 0.0000
STR -0.0013 0.0422 0.1000 -0.1900 -0.0111 0.6210 17.87 0.0001
TQM 0.0007 0.0155 0.0758 -0.0656 0.1101 2.0392 194.73 0.0000
WAA 0.0005 0.0276 0.0989 -0.0998 0.0771 0.8688 36.03 0.0000
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4 Empirical Results and Discussion

This study begins with an analysis of the characteristics of the 45 se-
lected stocks that will enable us to build our portfolios according to
the Mean-Variance (MV), Mean-Absolute Deviation (MAD), Mean-
Lower Partial Moments (MLPM) and Mean-Gini (MG) strategies.
Descriptive statistics are presented in Table 1. The normality test
(Jarque-Bera) for each stock led us to reject the null hypothesis of
the normality test at the 99% confidence level. This non-normality
of returns does not seem to make the Mean-Variance test relevant
(Amato et ali, 1999 [39]),we assume that in the context of our data,
the Mean-Variance strategy is the least appropriate. These results
indicate a property already observed in the financial data series that
returns are generally not normally distributed. In addition, other
properties of risky assets were found in the data series such as skew-
ness and kurtosis. Figures 1, 2, 3 and 4 represent the daily returns
of the different strategies during the crisis period from February 28,
2020 to August 28, 2020.

Figure 1: Graphical representation of return ( Mean-Variance (MV)).

Figure 2: Graphical representation of return ( Mean-Absolute Deviation (MAD)).

Table 2: Composition of the different portfolios

Mean- Mean-Abslute Mean- Mean-
Variance Devaiation Semivariance Gini

ALM 7.73% 8.19% 3.97% 7.83%
CMA 2.40% 4.12% 2.61% 3.06%
CTM 11.40% 12.92% 11.14% 11.54%
GAZ 3.53% 2.70% 4.38% 3.77%
HPS 39.94% 41.27% 39.14% 40.51%
M2M 6.60% 5.50% 7.33% 6.05%
MIC 13.56% 13.06% 14.69% 13.30%
SNP 14.84% 12.25% 16.73% 13.94%

Figure 3: Graphical representation of return ( Mean-Gini (MG)).

Figure 4: Graphical representation of return ( Mean-Lower Partial Moments
(MLPM)).

Table 2 above gives the proportions of each share in the optimal
portfolios. The results show that the compositions are different
as each portfolio has its own composition of shares but with the
same assets (ALM, CMA, CTM, GAS, HPC, M2M, MIC, SNP) as
the objective return for the period was 0.002 while the majority of
the assets have negative returns. For the Mean-Variance strategy,
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Figure 5: Composition of the different portfolios

HPS is in first place with 39.94, followed by SNP with 14.84, and
CMA in last place with 2.40, while the other shares are not part
of the composition. Figure 5 provides a detailed overview of the
composition of each portfolio. Then, the summary statistics of the
optimal portfolios obtained by the resolution of the optimisation
programmes are presented in the table 3.

To compare the four stages over the crisis period, i.e. from the
appearance of the first case of COVID-19 in Morocco Financial
Market until now, we will use the Sharpe ration adjusted by each
risk measure (Variance, Absolute Deviation (MAD), Lower Partial
Moments (LPM) and Gini Coefficient). The results are presented in
Table 4. These results show that the Mean-Lower Partial Moments
(MLPM) strategy is the most efficient during this period of crisis
compared to other strategies at the time. As shown in Figure 6
and 7, the Mean-Lower Partial Moments (MLPM) model is the

one that represents the maximum performance of the Sharpe ratio
adjusted by the different risk measures used. Whereas the two mod-
els Mean-Gini (MG) and Mean-Absolute Deviation (MAD) are in
second position. Finally, the Mean-Variance (MV) model occupies
the last position. In general, a higher Treynor Ratio indicates su-
perior performance, and vice versa. In our case and based on the
table 4 data, the Mean-Absolute Deviation (MAD) model is the best
performing model, followed by Mean-Variance (MV) model which
slightly outperforms the other two models: Mean-Lower Partial
Moments (MLPM) and Mean-Gini (MG). The results for the Jensen
Alpha show that the Lower Mean Partial Moment Model (MLPM)
is the one that represents the maximum performance of the Jensen
Alpha. Followed by the Mean-Absolute Deviation Model (MAD).
While the Mean-Gini model (MG) takes third place. Finally, the
Mean-Variance (MV) model occupies the last position.

5 Conclusion
In this paper, we have assessed the contribution of the theoretical ap-
proach of Mean-Variance (MV), Mean-Absolute Deviation (MAD),

Mean-Lower Partial Moments (MLPM) and Mean-Gini (MG) to the
resolution of portfolio management problems in extreme periods
within the Casablanca financial center . Empirical application on a

Table 3: Descriptive statistics of portfolio

Mean- Mean-Abslute Mean- Mean-
Variance Deviation Semivariance Gini

Mean -0.00011 -0.00011 -0.00010 -0.00013
Median 0.00141 0.00175 0.001757 0.00164

Maximum 0.02676 0.02656 0.02712 0.02665
Minimum -0.04877 -0.04763 -0.04697 -0.04720
Std. Dev. 0.01182 0.011768 0.01216 0.01181
Skewness -0.99321 -0.98486 -0.92523 -0.94871
Kurtosis 5.18704 4.94169 4.41719 4.76167
J-Bera 44.7365 39.2064 27.8424 34.3566

Probability 0.00 0.00 0.00 0.00
MAD 0.898% 0.888% 0.936% 0.890%

Semivariance 0.949% 0.957% 0.970% 0.951%
Gini 0.7406% 0.7416% 0.7416% 0.7402 %
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Figure 6: Graphical representation of performance (adjusted Sharpe ratio) of the four strategies.

Figure 7: Graphical representation of performance (Treynor Ratio & Jensen Alpha) of the four strategies.

sample of stocks belonging to the MADEX index allowed the selec-
tion of four performing portfolios with a better risk/return ratio over
the period before COVID-19. The main results show the superiority
of the Mean-Lower Partial Moments (MLPM) model over other

models based on the results of the adjusted Sharpe ratio. This com-
parison has been made on the period of the onset and amplification
of the COVID-19 pandemic in Morocco. Also note the inferiority of

Table 4: Performance measures (Sharpe ratio,Treynor Ratio and Jensen Alpha) adjusted by each risk measure (Variance, Absolute Deviation (MAD), Lower Partial Moments
(LPM) and Gini Coefficient)

performance measures Mean- Mean-Absolute Mean- Mean-
Variance (MV) Deviation (MAD) Semivariance Gini (MG)

Sharpe ratio adjusted

Return/Standard deviation -0.0116140 -0,0100686 -0,0087240 -0,0100996
Return/Absolute Deviation -0.0152826 -0.0134055 -0.0113376 -0.0133471
Return/Lower Partial Moments -0.0144509 -0.0124426 -0.0109366 -0.0124972
Return/Gini -0.0185225 -0.0160531 -0.0143108 -0.0160553

Treynor Ratio 0.0046469 0.0063047 0.0041626 0.0043972
Jensen Alpha -0.0001810 -0.0001471 -0.0001440 -0.0001590
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the mean-variance (MV) model in terms of performance measured
by the adjusted Sharpe ratio since the different series of returns com-
posing our portfolios are volatile, leptokurtic and asymmetric. They
lead to a rejection of the Jarque-Bera normality test. As a result, the
distribution of daily returns of Moroccan equities deviates from the
normal distribution. Similarly, the results for the Jensen Alpha show
that theMean-Lower Partial Moments (MLPM) is the model that
represents maximum performance, followed by the Mean-Absolute
Deviation (MAD) and the Mean-Gini Model (MG) in third place.
Finally, the Mean-Variance (MV) model comes in last place. On
the other hand, the Mean-Absolute Deviation (MAD)) model is the
best performing, followed by the mean variance (MV) model which
slightly outperforms the other two models: the Mean-Lower Partial
Moments (MLPM) and the mean Gini (MG) based on the treynor
ratio results. The results for the Jensen Alpha show that the Lower
Mean Partial Moment Model (MLPM) is the model that represents
the maximum performance of the Jensen Alpha. This is followed by
the Mean-Absolute Deviation (MAD). While the Mean-Gini Model
(MG) is in third place. Finally, the Mean-Variance (MV) model
occupies the last position.

Through these results, we conclude that the best model available
to investors in the Moroccan financial market is the Mean-Lower
Partial Moments model (MLPM) since it is the most appropriate
model for our financial market and its characteristics.For that and
despite the use of the Mean-Variance model in the optimization and
management of portfolios by the majority of managers, we under-
line the inadequacy of this model to the reality of the Moroccan
financial center. Indeed, this model is built on the assumption of
normality of returns. However, the reality of the financial markets
is far from approaching normal distribution law, as several works
have pointed out (Agouram and Lakhnati [41].

Conflict of Interest The authors declare no conflict of interest.

Acknowledgment We would like to thank our professor, Lakhnati
Ghizlane of the National School of Applied Sciences (ENSA), Ibn
Zohr University, Agadir who has helped us a lot in this research.

References
[1] H. Markowitz, “The Utility of Wealth,” Journal of Political Economy, 1952,

doi:10.1086/257177.

[2] H. Markowitz, “Portfolio analysis,” Journal of Finance, 8, 77–91, 1952.

[3] H. M. Markowitz, “Portfolio Selection, Cowles Foundation Monograph 16,”
New York, New York: JohnWiley and Sons, 1959MarkowitzPortfolio Selection:
Cowles Foundation Monograph, 161959, 1959.

[4] J. Tobin, “Estimation of Relationships for Limited Dependent Variables,”
Econometrica, 1958, doi:10.2307/1907382.

[5] W. F. Sharpe, “Capital Asset Prices: A Theory of Market Equilibrium under
Conditions of Risk,” The Journal of Finance, 1964, doi:10.2307/2977928.

[6] J. Lintner, “SECURITY PRICES, RISK, AND MAXIMAL GAINS FROM
DIVERSIFICATION,” The Journal of Finance, 1965, doi:10.1111/j.1540-6261.
1965.tb02930.x.

[7] J. Lintner, “The Valuation of Risk Assets and the Selection of Risky Invest-
ments in Stock Portfolios and Capital Budgets,” The Review of Economics and
Statistics, 1965, doi:10.2307/1924119.

[8] J. Mossin, “Equilibrium in a Capital Asset Market,” Econometrica, 1966,
doi:10.2307/1910098.

[9] V. S. Bawa, “Optimal rules for ordering uncertain prospects,” Journal of Finan-
cial Economics, 2(1), 95–121, 1975.

[10] V. S. Bawa, E. B. Lindenberg, “Capital market equilibrium in a mean-lower
partial moment framework,” Journal of Financial Economics, 1977, doi:
10.1016/0304-405X(77)90017-4.

[11] P. C. Fishburn, “Condorcet Social Choice Functions,” SIAM Journal on Applied
Mathematics, 1977, doi:10.1137/0133030.

[12] W. V. Harlow, R. K. S. Rao, “Asset Pricing in a Generalized Mean-Lower
Partial Moment Framework: Theory and Evidence,” The Journal of Financial
and Quantitative Analysis, 1989, doi:10.2307/2330813.

[13] J. P. Morgan, Reuters Ltd, RiskMetrics - Technical Document, 1996.

[14] P. Jorion, “Risk management lessons from long-term capital management,”
European Financial Management, 2000, doi:10.1111/1468-036X.00125.

[15] M. Grebeck, S. Rachev, “Stochastic programming methods in asset-liability
management,” Investment Management and Financial Innovations, 2005.

[16] J. L. Treynor, “Market Value, Time, and Risk (revised manuscript),” Unpub-
lished manuscript dated 8/8/61, 1961, doi:10.2139/ssrn.2600356.

[17] J. L. Treynor, “Author : Jack L . Treynor Fall , 1962 ( Revised 12 / 28 / 02 , with
minor edits by Craig William French ) TOWARD A THEORY OF MARKET
VALUE OF RISKY ASSETS,” 1(2), 15–22, 1962.

[18] S. A. Ross, “The arbitrage theory of capital asset pricing,” Journal of Economic
Theory, 1976, doi:10.1016/0022-0531(76)90046-6.

[19] E. Ballestero, “Mean-semivariance efficient frontier: A downside risk model
for portfolio selection,” Applied Mathematical Finance, 2005, doi:10.1080/

1350486042000254015.

[20] S. A. Bond, S. E. Satchell, “Statistical properties of the sample semi-variance,”
Applied Mathematical Finance, 2002, doi:10.1080/1350486022000015850.

[21] S. A. Bond, S. E. Satchell, “Asymmetry, loss aversion, and forecasting,” Journal
of Business, 2006, doi:10.1086/503649.

[22] J. Estrada, “Mean-semivariance behavior: Downside risk and capital as-
set pricing,” International Review of Economics and Finance, 2007, doi:
10.1016/j.iref.2005.03.003.

[23] M. Unser, “Sampling - 50 years after Shannon,” Proceedings of the IEEE, 2000,
doi:10.1109/5.843002.

[24] H. Shalit, S. Yitzhaki, “Mean-Gini, Portfolio Theory, and the Pricing of Risky
Assets,” The Journal of Finance, 1984, doi:10.2307/2327737.

[25] S. Yitzhaki, “Stochastic Dominance, Mean Variance, and Gini’s Mean Differ-
ence,” American Economic Review, 1982, doi:10.2307/1808584.

[26] H. Shalit, S. Yitzhaki, “The mean-Gini efficient portfolio frontier,” Journal of
Financial Research, 2005, doi:10.1111/j.1475-6803.2005.00114.x.

[27] M. Cardin, B. Eisenberg, L. Tibiletti, “Mean-extended Gini portfolios person-
alized to the investor’s profile,” Journal of Modelling in Management, 2013,
doi:10.1108/17465661311311978.

[28] H. Konno, H. Yamazaki, “Mean-Absolute Deviation Portfolio Optimization
Model and Its Applications to Tokyo Stock Market,” Management Science,
1991, doi:10.1287/mnsc.37.5.519.

[29] P. Artzner, F. Delbaen, J.-M. Eber, D. Heath, “Coherent measures of risk,”
Mathematical finance, 9(3), 203–228, 1999.

[30] D. N. Nawrocki, “Optimal algorithms and lower partial moment: Ex post
results,” Applied Economics, 1991, doi:10.1080/00036849100000021.

[31] D. N. Nawrocki, “The characteristics of portfolios selected by n-degree Lower
Partial Moment,” International Review of Financial Analysis, 1992, doi:
10.1016/1057-5219(92)90004-N.

www.astesj.com 725

http://www.astesj.com


J. Agouram et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 717-726 (2020)

[32] D. N. Nawrocki, “A Brief History of Downside Risk Measures,” The Journal
of Investing, 1999, doi:10.3905/joi.1999.319365.

[33] W. Y. Lee, R. K. S. Rao, “Mean Lower Partial Moment Valuation and Lognor-
mally Distributed Returns,” Management Science, 1988, doi:10.1287/mnsc.34.
4.446.

[34] R. P. Bey, K. M. Howe, “Gini’s Mean Difference and Portfolio Selection: An
Empirical Evaluation,” The Journal of Financial and Quantitative Analysis,
1984, doi:10.2307/2331094.

[35] J. Okunev, “MEAN GINI CAPITAL ASSET PRICING MODEL: SOME
EMPIRICAL EVIDENCE,” Accounting & Finance, 1989, doi:10.1111/j.
1467-629X.1989.tb00155.x.

[36] J. Agouram, G. Lakhnati, “A Comparative Study of Mean-Variance and Mean
Gini Portfolio Selection Using VaR and CVaR,” Journal of Financial Risk
Management, 2015, doi:10.4236/jfrm.2015.42007.

[37] A. Jamal, L. Ghizlane, “Mean-Gini portfolio selection: Forecasting VaR using
GARCH models in Moroccan financial market,” Journal of Economics and
International Finance, 2015, doi:10.5897/jeif2014.0630.

[38] J. Agouram, G. Lakhnati, “Mean-gini and mean-extended gini portfolio selec-
tion: An empirical analysis,” Risk Governance and Control: Financial Markets
and Institutions, 2016, doi:10.22495/rcgv6i3c1art7.

[39] C. S. Cheung, C. C. Kwan, P. C. Yip, “The hedging effectiveness of options and
futures: A Mean-Gini approach,” Journal of Futures Markets, 10(1), 61–73,
1990.

[40] M. Berkhouch, G. Lakhnati, M. B. Righi, “Extended Gini-type measures of
risk and variability,” Applied Mathematical Finance, 25(3), 295–314, 2018.

[41] J. Agouram, J. Anoualigh, G. Lakhnati, “Capital Asset Pricing Model (CAPM)
Study in Mean-Gini Model,” International Journal of Applied Economics,
Finance and Accounting, 6(1), 57–63, 2020.

www.astesj.com 726

http://www.astesj.com

	 Introduction
	 Literature review
	The Mean-Variance of Markowitz
	The Mean-Lower Partial Moment Model
	The Mean Absolute Deviation
	The Mean-Gini (MG) model

	Data and Methodology
	Empirical Results and Discussion
	Conclusion 

