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A rarefied gas flow is modeled inside two cases of triangular lid-driven microcavity using single
(SRT) and multi-relaxation time (MRT) lattice Boltzmann approaches. In the first one, the
right angle is in the top-left corner and the upper wall moves with positive horizontal velocity.
However, in the second case, the right angle is in the bottom-left corner and the bottom wall
moves with negative horizontal velocity. Unlike the classical form of square cavities, widely
treated in the literature, the triangular form has a diagonal wall that affects the flow motion.
At the moving wall, diffuse scattering boundary condition (DSBC) is employed while at the
stationary sides, a combination of bounce-back and specular reflection boundary conditions
(BSBC) is used. The computations are primarily performed in the slip and early transition
regimes. The rarefaction effect, given by the Knudsen number (Kn) value, on the profiles of
velocity components, is examined for both approaches. This study proves that for the higher
values of Kn, the SRT-LBM approach cannot provide accurate results, particularly, near the
inclined wall. However, the MRT-LBM approach confirms its validity even in the transition
regime. A comparison with Direct Simulation Monte Carlo (DSMC) results for horizontal
velocity contours shows the efficiency of the MRT-LBM approach than the SRT-LBM one which
breaks down for rarefied flows.

1 Introduction

A complete description of gas microflows involved in the
micro/nano-electro-mechanical systems (MEMS/NEMS) [1] re-
mains a challenge for many researchers during the last decades.
Lid-driven cavity flow is one of the classical benchmark problems
of computational fluid dynamics (CFD) [2–5]. Such flow has been
analyzed by various computational methods like the Navier-Stokes-
Fourier equations (NSF) [6, 7], Direct Simulation Monte Carlo
(DSMC) [7–10] and moment equations approach [6, 10, 11].

In micro-devices, gaseous flows undergoe non-equilibrium or
rarefaction effects. The gas flow rarefaction degree is, usually, given
by the Knudsen number (Kn) which is the ratio of gas-molecules
mean free path (λ) and the characteristic length of the system (l)
(see Fig. 1). The particle/wall collisions cease to be negligible
against the particle/particle ones in the transition regime and the gas
becomes rarefied. This situation takes place in many microfluidic
and vacuum applications [12, 13].

Figure 1: Flow regimes according to the Knudsen number.

To describe this kind of flows a kinetic based approach is needed.
In order to save the computational time, the lattice boltzmann
method (LBM) is used. This method was, first, inspired by the
lattice gas automata (LGA) method for which the fluid is moving
along the lattice. For both methods, the time, space, and veloci-
ties of the particles are discrete. The LGA model uses a six-speed
hexagonal lattice, however, in LBM, the most used model for two-
dimensional (D = 2) geometries is D2Q9 which is a square grid with
nine discrete velocities (Q = 9). In recent years, LBM has become
a promising alternative to simulate fluid flows and heat transfer
problems. Unlike the classical CFD approaches, the LBM is a meso-
scopic approach which combines the classical computational fluid
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dynamics (CFD) and the kinetic description based on the Boltzmann
equation. The method, therefore, ensures a relation between the
macro and the microscopic descriptions of flow. Only a few studies
that have investigated the effectiveness of this method and extend its
ability to model hydrodynamic and rarefied flows [14–20]. However,
the study of such flows requires a good choice and implementation
of the boundary conditions (BC), which is a key step in the LBM
simulation process. In the literature different BC are tested for
various problems in order to capture non-equilibrium effects near
the walls [21–25]. To solve the lattice Boltzmann equation (LBE),
we used the well-known kinetic model of Bhatnagar–Gross–Krook
(BGK) [26] which is the simplest and most widely used collision
operator for the LBE. This operator is represented by a linear dis-
cretization of the relaxation of particle distribution function toward
the Maxwell equilibrium state.

Application of LBM, under rarefaction conditions, to describe
gas microflows is still a new field needing improvement to extend
its applicability to this kind of flows. This study aims to simulate
lid-driven gas flow in triangular micro-cavity. The results obtained
by both approaches of LBM, SRT and MRT, are compared with
those obtained by the DSMC method in the slip regime, usually
encountered in MEMS devices [27]. The main simulation param-
eters are the Knudsen number (Kn) and the tangential momentum
accommodation coefficient σ (TMAC). Unlike the DSMC method
which needs a long computation time to give satisfactory results [28]
and the extended macroscopic theory, like regularized 13 moment
(R13), which the range of validity is limited [6, 29], the MRT-LBM
proved its effectiveness for rarefied gas simulation.

2 Problem statement
In the current simulation, an isosceles right-angled triangular

prism micro-cavity is considered with a large cross-sectional aspect
ratio, the flow properties are independent of z-coordinate. In this
study, the effect of any external body force is neglected. The gas
flow can be considered within a two-dimensional enclosure of length
scale H = L. According to the position of the moving wall, with a
constant velocity U0, two cases of the isosceles right triangle are
considered in this study. In the first one, the right angle is in the top-
left corner and the upper wall moves towards positive x-direction.
However, in the second case, the right angle is in the bottom-left
corner and the bottom wall moves in the negative x-direction (see
Figs. 2).

3 Lattice Boltzmann models and bound-
ary conditions

3.1 Boltzmann equation

In absence of external force, the behavior of gas flow is gov-
erned by the Boltzmann equation given by

(∂t + c.∇r) f = Ω ( f ) . (1)

Where f is the distribution function and Ω( f ) is the collision opera-
tor which represents the particles microscopic collision dynamics.

In the BGK model, this operator is given by

Ω ( f ) = −
1
τ

( f − f eq) . (2)

In which τ represents the relaxation time and f eq is the Maxwell
distribution function at the equilibrium state.

(a) Case (1)

(b) Case (2)

Figure 2: Studied domain configuration.

3.2 Single relaxation time lattice Boltzmann method
(SRT-LBM)

For distribution function density f a D2Q9 model with square
grid is used in this study. According to the BGK model, the gov-
erning, lattice Boltzmann equation, for this distribution function, is
written as

fk (x + ck∆t, t + ∆t) = fk (x, t) (1 −
∆t
τ

) +
∆t
τ

f eq
k (x, t) . (3)
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The Maxwell distribution function f eq
k at the equilibrium state

is written in the Taylor expansion as

f eq
k = wkρ

[
1 + 3

ck.u
c2 +

9
2

(ck.u)2

c4 −
3
2

u2

c2

]
. (4)

Where the weight factors wk are w0 = 4/9, w1−4 = 1/9,
w5−8 = 1/36, and c is the lattice speed given by: c = ∆x

∆t =
∆y
∆t .

The discrete scheme D2Q9 is characterized by[
ck,x

ck,y

]
= c

[
(0 1 0 −1 0 1 −1 −1 1)
(0 0 1 0 −1 1 1 −1 −1)

]
, k = 0 − 8

The macroscopic values of density ρ and velocity u = (u, v), are
computed by the following relations:

ρ =

8∑
k=0

fk, (5a)

ρu =

8∑
k=0

fkck. (5b)

For rarefied flows, the ratio of the mean free path λ and the

mean thermal velocity 〈v〉 =

√
8RT
π

is equivalent to the relaxation
time τ given by

τ =
λ

〈v〉
= λ

√
π

8RT
. (6)

In microfluidic devices, gas flows are characterized by their
rarefaction degree given by the Knudsen number Kn = λ

H , where H
is the total number of lattice nodes in the y-direction. Usually, we
set c =

√
3RT = 1 for D2Q9 model, therefore [22]

τ =

√
3π
8
λ � KnH. (7)

3.3 Multi-relaxation time lattice Boltzmann method
(MRT-LBM)

The collision operator in the multi-relaxation time lattice Boltz-
mann method (MRT-LBM) is given by

M−1S
[
m (x, t) −meq (x, t)

]
. (8)

Thus, the eq. (3) becomes,

fk (x + ck∆t, t + ∆t) − fk (x, t) = −M−1S[m (x, t) −meq (x, t)]. (9)

Where m (x, t) is a vector of moments and meq (x, t) is the cor-
responding one at the equilibrium state. The passage from the
velocities space to the moments space and vice versa is obtained by
the following linear transformations:
m = M f and f = M−1m.
For D2Q9 scheme, the transformation matrix M is given by

M =



1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2
4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1



The moments vector m is:

|m〉 =
(
ρ e ε ρu qx ρv qy pxx pxy

)
T .

Where e is the energy, ε is the square of energy, j = (ρu, ρv) is
the momentum of density, and q = (qx, qy) is the vector of heat flux.
The stress tensor components are also pxx, and pxy.
The moments vector at the equilibrium state meq (x, t) is given by

meq =



meq
0 = ρ

meq
1 = −2ρ + 3( j2x + j2y)

meq
2 = ρ − 3( j2x + j2y)

meq
3 = jx

meq
4 = − jx

meq
5 = jy

meq
6 = − jy

meq
7 = j2x − j2y

meq
8 = jx jy

(10)

In the moment space the collision matrix S is the diagonal ma-
trix,

S =
(
1 1.4 1.4 1.0 1.2 1.0 1.2 s7 s8

)
.

Where s7 = s8 = 1/τ. Note that by taking sk = 1/τ, k = 0−8,
the MRT model is reduced to the SRT one.

3.4 Stationary and moving walls boundary conditions

Boundary conditions implementation plays a crucial role in
gas flow simulation within micro-geometries. In the present study,
a combination of bounce-back and specular boundary conditions
(BSBC) is used at the stationary walls, however, diffuse scattering
boundary conditions (DSBC) are imposed at the moving wall.

• Combination of bounce-back and specular boundary condi-
tions

The BSBC is adopted by using the coefficient of the tangential
momentum accommodation σ (TMAC) expressed by [30]

σ =
Mi − Mr

Mi − Mw
. (11)

Where Mi,r,w are the tangential momentum of molecules related,
respectively, to the incident, reflected molecules, and wall. This
coefficient ranges from 0 for pure specular reflection, to 1 which
corresponds to the pure bounce-back one.

At the inclined wall, the boundary conditions using TMAC are
as follows (see Fig. 3):

f6 = f8, (12a)
f2 = σ × f4 + (1 − σ) × f1, (12b)
f3 = σ × f1 + (1 − σ) × f4. (12c)
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• Diffuse scattering boundary condition
The DSBC is used to simulate fluid interactions at solid inter-

faces written as [31]

| (ck − uw) .n| fk =
∑

(ck′−uw).n<0

| (ck′ − uw) .n|< f (ck′ → ck) fk′ . (13)

Where
< f (ck′ → ck) =

An

ρw
((ck − uw) .n) f eq

k |u=uw , (14)

where k and k′ refer to the reflected and incident directions of
molecules, respectively, and n is the unit normal vector inward of
the wall, and < f (ck′ → ck) is the scattering probability from the
direction ck′ to ck. By satisfying zero normal flux condition across
the wall, the coefficient of normalization An can be obtained by the
following relation:

An = ρw

∑
k | (ck − uw) .n| fk

| (ck − uw) .n| f eq
k

∑
k′ | (ck′ − uw) .n| fk′

. (15)

At the top wall, the unknown distribution functions are fk=4/7/8
(see Fig. 3) can be determined from the known ones fk=2/5/6 and
f eq
k=4/7/8 as shown in the DSBC (Eqs. (13)–(15)) by

fk=4/7/8 =
An

ρw
f eq
k=4/7/8 (ρw,uw) ( f2 + f5 + f6) . (16)

For the D2Q9 model, the coefficient An takes the value 6 [24].

Figure 3: Gas-surface interaction at the top and inclined walls.

4 Results and discussion
All present simulations are carried out using a developed For-

tran code. The SRT-LBM and MRT-LBM approaches are used to
simulate lid-driven gas microflow in two configurations of triangu-
lar right micro-cavity isosceles (see Figs. 2). In the literature, the

simulation of fluid microflows was made a lot for a square-section
cavity [14–20]. However, a few studies were focused on the geome-
tries with inclined sides [32–38]. Unlike most of these papers, based
on the Reynolds number (Re), the rarefaction degree is expressed in
this study according to the Knudsen number value (Kn).

4.1 Mesh independence study

For Kn = 0.01 and σ = 0.5, Table 1 shows mesh size effect on
the x-velocity component at the center of the moving wall, while
Figure 4 shows their effect on the profiles of u-velocity along the
vertical line x/H = 1/3 and v-velocity along the horizontal line
y/H = 2/3 for the case (1) using the SRT-LBM approach. Similarly,
Figure 5 shows the profiles of u and v along the lines x/H = 1/3 and
y/H = 1/3, respectively, for the case (2) by using the MRT-LBM
approach. As shown, the grid size 300× 300 is enough to offer good
and reliable results.

Table 1: Effect of the mesh on the x-velocity component at the center of the moving
wall for Kn = 0.01 and σ = 0.5.

Mesh 200 × 200 300 × 300 400 × 400
SRT-LBM for case (1) 0.9120 0.9116 0.9115
MRT-LBM for case (2) -0.9057 -0.9061 -0.9062

Figure 4: Profiles of u and v-velocity components along the lines x/H = 1/3 and
y/H = 2/3, respectively, obtained by SRT-LBM for case (1).

Figure 5: Profiles of u and v-velocity components along the lines x/H = 1/3 and
y/H = 1/3, respectively, obtained by MRT-LBM for case (2).
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4.2 Validation test

In order to ensure the validation of these models, a comparison
is made with previous studies according to the widely used TMAC
value (σ = 0.7) [14–16, 20] for both validation cases (square micro-
cavity and a triangular micro-cavity (case(2)). At first, the profile of
u−velocity for Kn = 0.01 and Kn = 0.1 along the vertical centerline
are compared with the findings reported by Perumal et al. [14, 15]
and Rahmati et al. [16] for a square micro-cavity (see Fig. 6a). Table
2 shows the location of the primary vortex center for Kn = 0.01 and
Kn = 0.1. The results of the current study align well with those of
Rahmati et al. [16, 17], and Tang et al. [18]. In the second validation
case, u-velocity contours inside a triangular micro-cavity (case (2))
are confronted with those obtained by the DSMC method [38], the
most confident and powerful method to study of such flows. Figures
6b and 7 show, respectively, the u-velocity component profiles for
x/H = 1/3 and the u contours for Kn = 0.01 and Kn = 0.1. Table
3 shows the location of the primary vortex center according to the
Knudsen number values Kn = 0.01 and Kn = 0.1. It is shown that
MRT-LBM results are acceptable and approximate well, those of
Roohi et al. [38], for which U0 = 100m/s.

(a)

(b)

Figure 6: Profile of x-velocity for Kn = 0.01 and Kn = 0.1 (a) along the vertical
centerline for square micro-cavity and (b) along the line x/H = 1/3 case (2) with a
positive velocity +U0.

4.3 Numerical results and analysis

In this work, the lid-wall moves with a fixed horizontal velocity
U0 = 0.1 for all simulations. To compare with and reproduce the
results of Roohi et al. [38], the TMAC is taken σ = 0.7. Using
the SRT-LBM and MRT-LBM methods, Figures 8 and 9 show the
Knudsen number effect on the horizontal and vertical velocities

profiles, respectively, for case (1) and case (2). The slip effect at
the moving wall is more pronounced [14–17, 20, 38]. As predicted
by the kinetic theory, the velocity slip vanishes at the continuum
limit (Kn = 0.007), the gas-molecules velocity is almost equal the
lid-velocity U0. To evaluate both effects of rarefaction degree and
TMAC value, Tables 4 and 5 show that as Kn and σ increase, the ef-
fects of non-equilibrium impact on the flow motion and the velocity
slip evolve more importantly. For the first case, since the moving
wall velocity is positive then the horizontal velocity component
decreases to take negative values near the inclined wall, then in-
creases to take positive values with y-coordinate beyond the primary
vortex position. In that case, the lowest value of u/U0 is located at
y/H = 0.7 for Kn = 0.007 (see Figs. 8(a-b)). Similar and opposite
behavior of u-component velocity is observed in the second case.
The highest values of u/U0 is located at y/H = 0.32 for Kn = 0.007
(see Figs. 9(a-b)). The vertical velocity-slip increases when Kn
increases and it is more prominent by the SRT-LBM approach than
by the MRT-LBM one [16, 20] (see Figs. 8(c-d) and 9(c-d)). The
MRT-LBM method maintains its stability near the walls and the ver-
tical slip-velocity can be captured even at the center of the inclined
plane on the right (see Figs. 10b and 10d). However, for the SRT-
LBM method, when the value of Kn increases fluctuations appear
on and near the inclined wall. These fluctuations have a significant
influence, especially for Kn = 0.1 (see Figs. 10a and 10c). For Kn
= 0.01, 0.05, and 0.1, Table 6 shows the position of the primary
and secondary vortices inside the micro-cavity for the first case.
For both approaches, by increasing Kn, the primary vortex moves
from right to left in the direction of x and from top to bottom in the
direction of y. However, the secondary vortices at the bottom of the
micro-cavity vanish and it cannot be captured using the SRT-LBM
method while the MRT-LBM method retains their presence and
these vortices undergo the same motion as the primary ones with
Kn (see Figs. 12). For the value of TMAC σ = 0.7, these vortices
are slightly shifted to the right with respect to the σ = 0.5 case.
Table 7 presents the location of flow vortices in the second case.
The primary vortex with Kn for both approaches moves from left to
right in the direction of x and from bottom to top in the direction of
y. But, SRT-LBM cannot retain its horizontal x-direction movement
for Kn = 0.1. As in the case (1), unlike the SRT-LBM approach,
the secondary vortices are well captured by MRT-LBM. These vor-
tices move as the primary one along y-direction but in the opposite
x-direction. Thus, unlike in the square-cavity, in the presence of an
inclined wall, the flow stagnation points undergo two motion under
rarefaction effects. For σ = 0.7, both types of vortices are moved
in downward direction and shifted to the right with respect to the
σ = 0.5 case. For different Knudsen numbers, the flow stagnation
which corresponds to u/U0 profiles intersection point remains the
same (see Table 8, Figs. 8 (a-b) and Figs. 9(a-b)). The density ρ is
also sensitive to the rarefaction degree and its value increases with
Kn. An expected density has a great value near the upper-right and
lower-left corners, for the cases (1) and (2), respectively (see Fig.
11a). To examine the required run time for both approaches, the pro-
files of velocity components at the gravity center of the micro-cavity
(1) (x = H/3, y = 2H/3) are plotted as a function of the number of
time steps for Kn = 0.01 and σ = 0.7. After approximately 10000-
time steps number the velocity hits the steady-state (see Figs. 11b
and 11c). Developed codes SRT-LBM and MRT-LBM are run on
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(a) (b) (c)

(d) (e) (f)

Figure 7: x-velocity streamlines and contours for σ = 0.7 - case (2) with a positive velocity +U0. (a) SRT-LBM −Kn = 0.01 (b) MRT-LBM −Kn = 0.01 (c) Roohi et al. [38]
−Kn = 0.01 (d) SRT-LBM −Kn = 0.1 (e) MRT-LBM −Kn = 0.1 (f) Roohi et al. [38] −Kn = 0.1.

Table 2: Primary vortex center locations for a square micro-cavity.

Kn SRT-LBM MRT-LBM Rahmati et al. [16] Rahmati et al. [17] Tang et al. [18]

0.01 (0.5009, 0.7638) (0.5030, 0.76378) (0.5017, 0.7637) (0.5022, 0.7663) (0.5, 0.7633)
0.1 (0.5001, 0.7316) (0.5041, 0.75336) (0.5020, 0.7240) (0.5023, 0.7570) (0.5, 0.72)

Table 3: Primary vortex center locations for the triangular micro-cavity (case (2)).

Kn SRT-LBM MRT-LBM Roohi et al. [38] - Monatomic Roohi et al. [38] - Diatomic

0.01 (0.3979, 0.1525) (0.3974, 0.1523) (0.4209, 0.1520) (0.4119, 0.1520)
0.1 (0.3529, 0.1888) (0.3678, 0.1624) (0.3799, 0.1659) (0.3780, 0.1670)

the Intel (R) Core (TM) i5-3340 M CPU laptop @ 2.7 GHz and
RAM 8.00 GB. To obtain accurate findings the MRT-LBM requires
more processing time than the SRT-LBM [16, 20] due to the higher
number of moments hired in the calculation to capture the effects of
non-equilibrium (see Table 9). In Figures 12(a-i) the flow stream-
lines and u-velocity contours are plotted for Kn = 0.007, 0.05, 0.1,
1 and 3, respectively for σ = 0.7. As the increase in the Knudsen
number, the streamlines take the wall shape and the secondary vor-
tices observed for the lower Knudsen numbers vanish at the bottom
of the micro-cavity (1) [14–16, 20]. In addition, the primary vortex
undergoes a slight downward, and right-to-left movement with Kn
growth. Also, u-velocity is sensitive to the degree of rarefaction and

its value decreases as Kn increases. Figures 13 describe the flow
streamlines, u and v-velocities contours for Kn = 0.007 and Kn =

0.1, respectively, by combining the cavity of case(1)/case(2) with
their corresponding anti-symmetric cases. The segments connecting
the primary and secondary vortices centers intersect at the center of
the square micro-cavity, respectively (see Figs. 13(a-b)). The plots
of the velocity components distributions, Figures 13(c-f), confirm
the data anti-symmetric variation with respect to the square cavity
center and their sensitivity to the rarefaction effect. So, by studying
the two cases (1) and (2) we can deduce the characteristics of the
gas flow in their corresponding anti-symmetrical forms.

Finally, it is shown that SRT-LBM loses its validity in the
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transition regime while the results of the MRT-LBM method still
remain convincing. To summarize the MRT-LBM method imposes

itself as a good alternative for simulating the gas microflows usually
encountered in the micro-devices.

Table 4: Slip effects on the x-velocity component u(H/2,H)
U0

at the center of the moving
wall - case (1).

Approaches Kn 0.007 0.01 0.05 0.1

SRT-LBM
σ = 0.5 0.9372 0.91165 0.64171 0.41041
σ = 0.7 0.93674 0.91076 0.63227 0.39725

MRT-LBM
σ = 0.5 0.93739 0.91214 0.67381 0.51394
σ = 0.7 0.93692 0.91126 0.66554 0.50135

Table 5: Slip effects on the x-velocity component u(H/2,0)
U0

at the center of the moving
wall - case (2).

Approaches Kn 0.007 0.01 0.05 0.1

SRT-LBM
σ = 0.5 -0.93045 -0.90587 -0.63838 -0.41238
σ = 0.7 -0.92999 -0.90498 -0.62877 -0.39784

MRT-LBM
σ = 0.5 -0.93042 -0.90617 -0.67291 -0.51524
σ = 0.7 -0.92998 -0.90531 -0.66484 -0.50287

(a) (b)

(c) (d)

Figure 8: (a)-(b) x-velocity profile along the vertical line x/H = 1/3 and (c)-(d) profile of y-velocity along the horizontal line y/H = 2/3 at different Knudsen numbers for σ
= 0.7 - case (1).
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Table 6: Primary and secondary vortices locations for different values of Kn and σ - case (1).

Approaches
Kn

0.01 0.05 0.1

SRT-LBM
(σ = 0.5)
MRT-LBM

Primary vortex (0.3939, 0.8455) (0.3697, 0.8298) (0.3493, 0.8035)

Secondary vortex (0.0770, 0.2711) − − − − − − − − − −

Primary vortex (0.3933, 0.8458) (0.3681, 0.8360) (0.3660, 0.8298)

Secondary vortex (0.1101, 0.2572) (0.0884, 0.1807) − − − − −

SRT-LBM
(σ = 0.7)
MRT-LBM

Primary vortex (0.3944, 0.8471) (0.3713, 0.8351) (0.3526, 0.8106)

Secondary vortex (0.0783, 0.2821) − − − − − − − − − −

Primary vortex (0.3938, 0.8473) (0.3702, 0.8416) (0.3681, 0.8377)

Secondary vortex (0.1124, 0.2669) (0.1018, 0.2293) (0.0910, 0.1878)

(a) (b)

(c) (d)

Figure 9: (a)-(b) x-velocity profile along the vertical line x/H = 1/3 and (c)-(d) profile of y-velocity along the horizontal line y/H = 1/3 at different Knudsen numbers for σ
= 0.7 - case (2).
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Table 7: Primary and secondary vortices locations for different values of Kn and σ - case (2).

Approaches
Kn

0.01 0.05 0.1

SRT-LBM
(σ = 0.5)
MRT-LBM

Primary vortex (0.3275, 0.1616) (0.3514, 0.1709) (0.3379, 0.1944)

Secondary vortex (0.0871, 0.7438) − − − − − − − − − −

Primary vortex (0.3272, 0.1612) (0.3508, 0.1653) (0.3537, 0.1709)

Secondary vortex (0.1069, 0.7517) (0.0879, 0.8217) − − − − −

SRT-LBM
(σ = 0.7)
MRT-LBM

Primary vortex (0.3296, 0.1597) (0.3539, 0.1653) (0.3404, 0.1870)

Secondary vortex (0.0896, 0.7329) − − − − − − − − − −

Primary vortex (0.3293, 0.1594) (0.3536, 0.1596) (0.3555, 0.1630)

Secondary vortex (0.1098, 0.7417) (0.1020, 0.7727) (0.0912, 0.8133)

(a) (b)

(c) (d)

Figure 10: Profile of y-velocity along the horizontal line y/H = 0.5 at different Knudsen numbers for σ = 0.7 (a) SRT-LBM - case (1) (b) MRT-LBM - case (1) (c) SRT-LBM
- case (2) and (d) MRT-LBM - case (2).
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(a) (b)

(c)

Figure 11: For σ = 0.7. (a) Density along the moving wall for Kn = 0.01 and Kn = 0.1 for both cases by using the MRT-LBM method and (b)-(c) Evolution of x and
y-velocities at the center of gravity of the micro-cavity as a function of time for Kn = 0.01 by using both methods - case(1).

Table 8: Coordinates (y/H, u/U0) of the common intersection points at the line x/H = 1/3 for σ = 0.7.

Approaches
Cases

Case (1) Case (2)

SRT-LBM (0.874, 0.094) (0.145,−0.005)

MRT-LBM (0.866, 0.064) (0.159,−0.004)

Table 9: Execution time for 1000 iterations.

Approaches
Mesh

200 × 200 300 × 300 400 × 400

SRT-LBM 10.4s 21.4s 37.3s

MRT-LBM 30.8s 65.4s 113.3s
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 12: The flow streamlines and x-velocity contours for σ = 0.7 (case (1)) (a) SRT-LBM −Kn = 0.007 (b) MRT-LBM −Kn = 0.007 (c) SRT-LBM −Kn = 0.05 (d)
MRT-LBM −Kn = 0.05 (e) SRT-LBM −Kn = 0.1 (f) MRT-LBM −Kn = 0.1 (g) SRT-LBM −Kn = 1 (h) MRT-LBM −Kn = 1 and (i) MRT-LBM −Kn = 3.
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(a) (b)

(c) (d)

(e) (f)

Figure 13: The flow streamlines, x and y-velocities contours for σ = 0.7, respectively. (a, c and e) SRT-LBM −Kn = 0.007 (case (1) with its corresponding anti-symmetric
shape) and (b, d and f) MRT-LBM −Kn = 0.1 (case (2) with its corresponding anti-symmetric shape).
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5 Conclusion
In the current paper, a comparison between SRT-LBM and

MRT-LBM confirms MRT-LBM method’s ability to simulate rar-
efied gas flows. A lid-driven flow inside an isosceles triangular
cavity is investigated numerically. The range of Knudsen numbers
discussed is from the slip to the early transition regime. To capture
non-equilibrium effects near the walls slip boundary conditions are
used. It is clear that the SRT-LBM loses its validity with increasing
the rarefaction degree while the MRT-LBM findings approximate
well with those obtained by the DSMC method. To sum up, this
research reveals many interesting characteristics of micro lid-driven
microflows. In the slip regime, for small values of the Knudsen num-
ber, the results demonstrate that both methods are good alternatives,
but in the transition regime, only MRT-LBM shows its capability
to describe the gas microflows usually found in the MEMS/NEMS
devices.

Nomenclature
H, L Cavity height and length

t Time

Kn Knudsen number

Re Reynolds number

R Gas constant

c Lattice speed

cs Speed of sound

ck Lattice velocity vector

u Velocity vector

U0 Velocity of the moving wall

f Density distribution function

feq Equilibrium density distribution function

wk Weight factors in the equilibrium distribution

M Transformation matrix for D2Q9 scheme

m Moment vectors

meq Equilibrium moment vectors

S Collision matrix

Greek Symbols

λ Mean free path

∆t Time step

∆x, ∆y Lattice spacing in x and y directions

τ Momentum relaxation time

σ Tangential Momentum Accommodation Coefficient (TMAC)

ρ Density
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