
Advances in Science, Technology and Engineering Systems Journal
Vol. 5, No. 5, 563-577 (2020)

www.astesj.com
ASTES Journal
ISSN: 2415-6698

Advances in Optimisation Algorithms and Techniques for Deep Learning
Chigozie Enyinna Nwankpa*

Design Manufacturing and Engineering Management, University of Strathclyde, Glasgow, G1 1XJ, UK

A R T I C L E I N F O A B S T R A C T

Article history:
Received: 25 August, 2020
Accepted: 24 September, 2020
Online: 05 October, 2020

Keywords:
Deep learning
Optimisers
Optimisation algorithms
Deep learning optimisers
Deep learning optimisation
Neural network optimisers

In the last decade, deep learning(DL) has witnessed excellent performances on a variety of
problems, including speech recognition, object recognition, detection, and natural language
processing (NLP) among many others. Of these applications, one common challenge is to
obtain ideal parameters during the training of the deep neural networks (DNN). These typical
parameters are obtained by some optimisation techniques which have been studied extensively.
These research have produced state-of-art(SOTA) results on speed and memory improvements
for deep neural networks(NN) architectures. However, the SOTA optimisers have continued
to be an active research area with no compilations of the existing optimisers reported in the
literature. This paper provides an overview of the recent advances in optimisation algorithms
and techniques used in DNN, highlighting the current SOTA optimisers, improvements made
on these optimisation algorithms and techniques, alongside the trends in the development of
optimisers used in training DL based models. The results of the search of the Scopus database
for the optimisers in DL provides the articles reported as the summary of the DL optimisers.
From what we can tell, there is no comprehensive compilation of the optimisation algorithms
and techniques so far developed and used in DL research and applications, and this paper
summarises these facts.

1 Introduction

Optimisation algorithms and techniques have recently become a
vast research area with the increasing availability of large datasets
for DL research. Optimisation involves systematically choosing
an appropriate set of values from a defined range of parameter set.
These algorithms and techniques have witnessed remarkable break-
throughs in research aimed at performance improvement in applica-
tions. They are used in modelling NN to obtain better performance
results by updating model parameters during the training, usually
referred to as cost function in machine learning(ML). Optimisers are
vital parameters when developing and deploying NN based models
and help to ensure that models do not oscillate as well as preventing
slow convergence [1]. Perhaps, modelling challenges have been
driven research in optimisation to obtain appropriate parameters
especially the assumptions made during the modelling problems as
being convex functions, ill-conditioning of gradients, local minima,
saddle points, plateau and flat regions, inexact, exploding gradients
and cliffs, long term dependencies, theoretical limits of optimisation
and poor correspondence between global and local structures [2].

To address these challenges and obtain efficient parameter learn-
ing as well as improve the performance of these learning algorithms,
[3] outlined that there are three key areas to consider which include;

to improve the model, to obtain better features, and lastly to improve
the model inference. For large scale datasets, these improvements
are necessary most importantly, to use the entire datasets for training
and to obtain useful features for the learning model as well as to
control the speed of learning (learning rate) of the model during
the training process [4]. These large scale datasets involve mas-
sive data points and features that are used as decision variables in
modelling. Some application areas that require some form of opti-
misation include ML, data analytics, natural language processing
(NLP), among many others [5]–[6].

Cost functions have the inherent property of being convex; thus,
there is always a line segment between two points on the graph of
the cost function that lies on or above the chart [2]. This is achieved
by reducing the difference between the predicted and actual out-
puts. Selecting optimal parameters for these models are difficult to
achieve, with model parameters including learning rate, weights and
biases, among others. The heuristic process of parameters optimisa-
tion including learning rate, weights and biases improves training
stability, speed of convergence as well as a model generalisation
but not currently achievable for all parameters. However, this calls
for the need to review possible approaches to achieve optimal pa-
rameters. Optimisation models are used to minimise or maximise
the objective function, usually referred to as the error function, cost

*Corresponding Author: Chigozie Enyinna Nwankpa, DMEM, University of Strathclyde Glasgow, +44 (0) 141 574 5194 & chigozie.nwankpa@strath.ac.uk

www.astesj.com
https://dx.doi.org/10.25046/aj050570

563

http://www.astesj.com
https://www.astesj.com
https://dx.doi.org/10.25046/aj050570

C. Enyinna / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 563-577 (2020)

function or loss function in literature [2]. These terms will be used
interchangeably in this paper. This error function is a crucial mathe-
matical function which depends on the model’s learnable parameters
used for computing the target output from a set of inputs. The gen-
eral training of NNs involves an iterative process of minimising the
loss function given by

minθJ(θ), θεRd (1)

Where θ is a trainable parameter of the NN.
Conversely, as the internal parameters of the models are essential

for the efficient training of the deeper architectures, which contains
multiple hidden layers in their designs. The optimisation process
helps the model to calculate and obtain optimal values as well as
update the model parameters, thereby aiding effective learning of
the features and patterns in the data. This makes the optimisation
process, an essential part of model development for DL applications.
This research provides a comprehensive overview of optimisation
algorithms and techniques used in DL.

The remaining parts of the paper are organised as follows; Sec-
tion 2 provides a brief introduction of deep learning, alongside the
role of optimisers in DL research. Section 3 discusses the research
method and motivation. Section 4 discusses the optimisation tech-
niques used in DL research. Section 5 provides a brief discussion,
and Section 6 presents the conclusion and future work.

2 Deep Learning
Deep learning is a sub-field of ML, where high levels of abstrac-
tion are learned from data [7]. This learning process is an iterative
process that involves propagating the weights and biases of the net-
work from input to output and vice versa. The DNNs are organized
in layers, and these layers are arranged in a chain structure, with
each layer being a function of the preceding layer. In this way, the
overall output of the NN is obtained by computing the outputs of
the successive layers from the input layer through the subsequent
layers, with the output.

For a given system with n− dimensional initial inputs of X, k−
layers, W− weights and b− biases ,

X =

x1
x2
...

xn

 ,W =

w11 w12 . . .w1n
...

. . .

wk1 wk2 wkn

 , b =

b1
b2
...

bn

the output of each layer is obtained by the computing the dot product
of weights and inputs, with the model fitting bias term given by

y[1] = α((W [1]T · X) + b[1]) (2)

Where y1 = first output layer, X = inputs to the model, α1 = layer
activation function (AF), W1 = weight coefficient at layer, and b1

= layer bias coefficients, are the parameters of the DNN. From the
single layer model of equation 2, the nth depth architecture is repre-
sented using numeric layer superscripts that shows the position of
the parameters of the NN architecture, to obtain the overall output y
of the very DNN as

y = α((W [n]T · yn−1) + b[n]) (3)

Pictorially, we can visualise this NN, assuming five inputs, three
hidden layers and an output layer is depicted in Figure 1. As the
input signals are received, the hidden layers perform different trans-
formations on the signal before propagating the signal to the output
layer, where the non-linear sum of the inputs signal is obtained.
This output becomes the reference output for further processing and
back propagation.

Input
layer

Hidden
layer

Output
layer

Input 1

Input 2

Input 3

Input 4

Input 5

Out

Figure 1: Neural network showing five input, three hidden and one output layer.

Conversely, the NN models consist of different architectures
which are dependent on the components, arrangement, and the num-
ber of layers cascaded together, like in Figure 1. As the layers of the
NN are cascaded together, more and more parameters are introduced
into the network, thereby making the architecture deeper and the
learning process more complicated. These models provide some
distinct characteristics, mostly its scalability with increasing data
and generalisation on unseen data[8].

To train these complex architectures, gradient descent is one of
the most common approaches. It involves computing the minimum
of a given function, by taking steps proportional to the negative of
the gradient of a function at its current point [9]. During training,
the inputs are forward propagated to the hidden layers and finally
the output, producing a scalar cost function. This output cost is then
made to flow backwards to obtain the gradient. This backward flow
is known as backpropagation[10], and it involves repeated applica-
tion of chain rule, across all possible paths in a NN, to obtain the
gradient of each weight with respect to the corresponding output.
The gradient descent would be discussed in details in the following
section. Besides, as DL models depend on large amounts of data,
finding the underlying patterns in the data will involve iteratively
passing the data to the model until the entire examples are seen by
the model, for some specified number of times, usually referred
to as epochs. This entails that the models will adjust the weight
and bias parameters until it attains optimal values. This adjustment
process is often referred to as optimisation, and the role of these
optimisation algorithms, to achieve proper learning in DNNs are
outlined.

2.1 Role of Optimisers in Deep Learning

The training of DNN architectures requires the propagation of gradi-
ents to and fro the layers of the deep architectures. These gradients

www.astesj.com 564

http://www.astesj.com

C. Enyinna / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 563-577 (2020)

and their initialisation have been studied extensively alongside their
propagation behaviours during the training of the learning mod-
els. Majority of these models require some optimisation to obtain
the appropriate parameters. The backpropagation algorithm is one
of the foremost algorithms used to compute the reverse order of
computation for NNs using chain rule [10]. The backpropagation
algorithm is the partial derivative of the cost function C with respect
to any weights w or biases b, represented as ∂C

∂w or ∂C
∂b . It works

by calculating the gradient of the cost function with respect to the
respective weights and biases using the chain rule, while iterating
backwards from the output layer, through each of the individual
layers, to the inputs.

After the output is obtained by forward pass, the NN calculates
the loss L, which quantifies the difference between the desired out-
put and the actual output.The overall idea is to update the weight
vectors to reduce the loss factor L. The gradient descent is used to
update the weights by moving it to the opposite direction of the loss.
This gradient of the loss with respect to the weights is given by

δL
δw

=
δL
δy
·
δy
δw

=
δL
δy
·
δy
δz
·
δz
δw

(4)

where z is the inner product, obtained by z = xT w and y = f (z).
The update is performed in the opposite direction of the forward
propagation beginning from the last layer to the first layer. This
process is known as backward propagation or backpropagation. In
[11], the authors highlighted that back-propagated gradients values
decreases as they move from the output layers to the inputs. This
causes the gradients to almost vanish at some point for very deep
architectures [12], thereby requiring some optimisation to achieve
an adequate learning, without dead signals. These optimisers mod-
ify the weights, biases, learning rate and other vital parameters of
a model to improve the performance by reducing the losses. The
numerous optimisers used to evaluate and update optimal values in
these deep architectures.

3 Research Methodology and Motivation

A search of optimisers of DL was performed on the Scopus database
using the keywords ”optimisers” OR ”optimizers” AND ”deep learn-
ing”, with the filter criteria outlined in Table 1. A total of 117 papers
were obtained. Besides reading the titles, abstracts, and keywords,
only 42 relevant articles were selected, in addition to some other
articles added through cross-citation. The search results suggest that
DL optimisation algorithms in literature have not been significantly
explored. However, different authors have performed research on
the comparison of different optimisation algorithms without a docu-
mented summary of the DL optimisers in the literature.

Nevertheless, the motivation behind this research is based on
the trends observed in research publications where researchers dis-
cuss and compare the relevant DL optimisers while there is no
documented research on the DL optimisers. This is evident in very
recently published research where authors outlined the use of differ-
ent optimisers in their research analysis including Adam, Stochastic
Gradient Descent (SGD), AdaDelta, AdaGrad, RMSProp [13, 14],
and many other applications outlined in the literature[15].

Table 1: Article Search Criteria

Criteria Filter
Restriction Title, abstract and Keywords
Language English

Document Type Articles
Keywords Optimisers, Optimisation, DNN, DL, NN

Conversely, other authors considered the DNN optimisers as
a tool to improve model design [16] and also to test the model
performance of different applications including sign language
recognition[17], optimising car crash detection [18], prediction
of water leakage using Adam, RMSProp and AdaDelta [19], SGD,
Adam, AdaGrad, AdaDelta, Nadam, RMSProp for bushfire pre-
diction [20] among others. This article provides a comprehensive
compilation of optimisers used in DL research. A search of the
Scopus database reveals that there is considerable interest in optimi-
sation techniques in DL with more and more researchers investigat-
ing these challenges with significant improvements since 2017, as
shown in Figure 1.

20
16

20
17

20
18

20
19

20
20

0

20

40

60

80

Year of publication

N
um

be
ro

fA
rt

ic
le

s

Year Analysis of the Publications

Figure 2: Scopus recent research interest for DL optimisers

However, another prominent trend in optimisation research is
that it is not field-specific as authors from different fields are explor-
ing these techniques to enhance their model performances. This is
evident in Figure 3, showing the various areas of researchers inves-
tigating optimisers for DL, with computer science and engineering
providing more than half of the optimisation research publications.

4 Optimisation Techniques
The numerous optimisation algorithms and techniques used in DNN
design and applications are outlined. Due to the popularity of
DL, a considerable amount of research has investigated and pro-
posed new optimisation techniques, aimed at enhancing the model
performances. These improvements outline the progress made in
specific approaches and provide an entry point for discussing the
current SOTA research in optimisation. Firstly, a brief outline of

www.astesj.com 565

http://www.astesj.com

C. Enyinna / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 563-577 (2020)

weight initialisation is presented since the majority of the optimi-
sation techniques involves adjusting weights and learning rate of a
model, to obtain the best features from the data. Also, the first, and
second-order optimisers, the swarm intelligence optimisers, along-
side parallel computing, are discussed as the other techniques of
optimising DNN found in the literature results.

Computer Science

28.8%

Engineering

24.7%

Mathematics

7.4% Material Science

7.0%
Physics

5.5%

Biochemistry4.1%

Medicine
4.1%

Energy

2.6%

Environmental Science

2.2%

Social Science

2.2%

Others

11.4%

Figure 3: Scopus field of publication analysis.

4.1 Weight Initialisation

The initialisation process is a crucial optimisation approach for train-
ing DNNs. It specifies how fast the learning model converges and
are used to define the starting point of a training process [21, 22],
especially during the forward pass, thereby avoiding vanishing
and exploding gradients. The DNNs inherently have a significant
amount of parameters with a non-convex loss function response,
which makes them challenging to train in real-time. To train these
DNNs to achieve fast convergence while avoiding vanishing gradi-
ent problems, a careful and proper network initialisation is necessary
[22, 23]. Although, it is worthy of highlighting that a proper initiali-
sation ensures to avoid magnifying or reducing the magnitudes of a
given signal exponentially [24]. While weights and biases are the
key parameters to initialise, the initialisation should be able to break
symmetry within the hidden units of the network.

Early weight initialisation techniques include the sparse initial-
isation where each unit is initialised to a constant non-zero value
[25]. This approach provides more diversity in time initialised
units but becomes a problem for larger Gaussian values and models
with a very significant number of filters. Besides, other researchers
performed initialisation differently, by initialising from Gaussian
distribution with a standard deviation of 0.01, with the biases set to 1
[21], nevertheless, this technique suffers from poor convergence[24].
Other initialisation techniques include initialising with an orthonor-
mal matrix with a carefully selected scale factor that accounts for
non-linearity [26], with researchers suggesting that this technique
performed better than the Gaussian distribution-based initialisation.
Furthermore, the layer-sequential unit-variance(LSUV) initialisa-
tion uses the orthonormal matrices approach to pre-initialise weights
of each convolution layer, with the variance of the output from the
first layer normalised to 1, up to the last layer [27], in a deep CNN
application.

Besides, another vital weight initialisation technique include the

Xavier initialisation techniques[28], which uses a scaled uniform
distribution and assumes that the activations are solely linear in all
applications, thereby maintaining variance across each layer [24].
Perhaps, this is not true when the rectified activations are used in
a model. This becomes a limitation for the Xavier initialisation
as well as the poor convergence on very deep architectures with
over thirty layers [24]. Other initialisation techniques for further ex-
ploration include the identity matrix technique, constant technique,
orthogonal techniques, and variance scaling approach [26].

For proper initialisation, researchers suggest that the choice
of the uniform or Gaussian distribution does not matter much but
the scale of the initial distribution is a vital factor in the model
optimisation [2], with the larger initial weights providing higher
symmetry-breaking effect, avoidance of signal loss during forward
and backwards passes, and a risk of exploding gradients. Conversely,
the selection of optimal weight parameters alone cannot guarantee
optimal performance especially as the behaviour of a model during
the learning process is dynamic and the model parameters are not
only the weights, although they are among the critical factors for
the improved performance of DNNs.

4.2 Biases

The biases are vital parameters of the hidden layers of the NN. They
are useful and allows for the shifting of the activation of a given NN
to fit the incoming signals. It can move either left or right, thereby
acting as an offset, to influence the output of the model. A crucial
property of the biases is that they do not interact with the original
inputs of the model as depicted in Figure 4. The initialisation of
these biases is usually set to 0; however, it might be set to non-zero
values in practice as researchers suggest, and that bias initialisation
should not be from a random walk initialisation [29].

x2 w2 Σ f

Activate
function

y
Outputx1 w1

x3 w3

Weights

Bias
b

Inputs

Figure 4: Typical neural network showing the positions of Weights and biases.

Conversely, initialising with high biases produces a very high
output while using very low values, tends to make the signal dis-
appear, thereby causing vanishing gradient problems. However,
different architectures require different initialisation techniques; for
example, the LSTM investigation have researchers suggesting to
set the bias to 1, on the forget gate [30]. Another bias initialisation
technique is to start with very small values, such that it would not
cause massive saturation at the start especially when the rectified
activations are involved [2].

Initialising the weight and bias parameters of a NN is a heuristic
process and setting the bias to very small values for architectures
with rectified activation is recommended while setting it to 0 for the
linear activation is the standard practice. However, [2] suggest that
setting biases to 0 is very compatible with the majority of the weight

www.astesj.com 566

http://www.astesj.com

C. Enyinna / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 563-577 (2020)

initialisation techniques. Perhaps, where resources permit, setting
these parameters as a hyperparameter is recommended, for scales
are chosen by parameter search, thereby enhancing performance.
Finally, to obtain the ideal model parameters for the weights and
biases involves optimisation and these optimisation techniques are
presented in the subsequent sections.

4.3 First Order Optimisers (FOO)

The FOO is the dominant class of optimisers used in DL research.
These models try to minimise or maximise the error function (Ex)
using gradient values with respect to other parameters in the network
[31, 21]. Generally, the gradient is the rate at which parameters
change with time. The minimised or maximised function is usually
denoted by superscript ∗. The error function is given by [2]

x∗ = argmin f (x). (5)

Gradient descent tells when the function is increasing or decreasing
at a particular point. The first order gradient produces a line tangen-
tial to a position on the error surface and is easy to compute, less
time consuming and converges fast on large datasets. The variants
of the first-order optimisation algorithms including batch, stochastic
and mini-batch gradient descent, stochastic gradient descent with
momentum as well as with warm restarts, Nesterov accelerated
gradient, AdaGrad, AdaDelta, RMSProp, Adam, AdaMax, Nadam,
AMSGrad, Radam and the Lookahead optimisers. These first-order
algorithms are discussed in details subsequently.

4.3.1 Batch Gradient Descent (BGD)

This variant of gradient descent computes the gradient of the loss
function with respect to the parameters θ for the whole training
examples and update accordingly. The BGD is the default gradient
descent algorithm, and it is given by

θ = θ − η · ∇θJ(θ) (6)

As this update is performed once, the BGD is inherently slow as
well as not suitable when the entire examples cannot fit the com-
puter memory, thereby not ideal for very DNN. The BGD does not
guarantee to converge to some global minimum for convex surface
errors alongside a local minimum for non-convex surfaces [32].

4.3.2 Stochastic Gradient Descent (SGD)

The SGD technique is one of the foremost approximation techniques
found in the literature. It was first proposed as an approximation
method of gradient optimisation by [33] and has witnessed diverse
variants of optimisation to suit different applications. The stochastic
gradient descent algorithm was proposed as a solution to manage
the memory and speed of the BGD optimisation. The SGD solved
these problems by randomly selecting the next set of examples that
will update the trainable parameters, thereby improving the training
speed. For a simple randomly selected examples x(t), y(t), the SGD
is given by the relationship [34]

θt+1 = θt − ηt∇θι
(
θt; x(t) , y(t)

)
(7)

The advantage of SGD as outlined by [35] is that it performs better
than the adaptive optimisers at very prolonged training time for effec-
tive hyperparameter tuning. However, some significant drawbacks
exist for the SGD optimiser, which includes that there is no adaptive
way for finding the optimal learning rate for the training process
and the SGD has the gradients tending to zero at some point (saddle
point), thereby making it difficult to continue alongside it’s poor
convergence speed. Furthermore, other authors highlighted that the
SGD does not scale well with huge datasets as well as underfitting
the data for very deep architectures [36]. These drawbacks inspired
further research into improving the SGD optimisation technique.

4.3.3 Mini-Batch Gradient Decent (MGD)

The MGD is an optimiser that performs an update on every batch
of the training examples. The MGD offers numerous advantages
which include a reduction in the variance parameter updates, thereby
leading to better convergence. MGD is fully optimised for training
NNs, and it is computed by [31]

θ = θ − η · ∇θJ(θ; x(i:i+n); y(i:i+n)) (8)

The limitation of MGD is that it does not guarantee excellent con-
vergence speed as well as the difficulty of choosing the appropriate
learning rate for the algorithm, which should ideally be a parameter
of the dataset being considered.

4.3.4 Stochastic gradient Descent with Momentum (SGDM)

The SGDM was proposed to speed up the optimisation process of
the training per dimension [37]. The process involves accelerating
the process in line with the direction where the gradient points to,
as well as slowing the process in the direction where the sign of the
inherent gradient is changing. The classical SGDM update is given
by the relationship [34]

vt+1 = γvt − ηt∇θι
(
θt; x(t) y(t)

)
; θt+1 = θt − vt+1 (9)

Where vt+1 = current velocity vector, γ = momentum term which
is usually set as γ = 0.9. Alternatively, the SGDM could also be
achieved by keeping track of the previous parameter updates using
an exponential decay function given by

∆xt = ρ∆xt−1 − ηgt (10)

Where ρ is the decay constant controlling the previous parameter
updates. The drawback for the SGDM is that the learning rate is
still manually optimised, and this makes it dependent on expert
judgement when trying to optimise an SGDM based model.

4.3.5 Stochastic Gradient Descent with Warm Restarts (SGDR)

The SGDR is another variant of the gradient descent optimisation
that uses warm restarts instead of learning rate annealing to accel-
erate the training of deep neural networks. In every restart, the
learning rate is initialised to a value which is scheduled to decrease.
A key property of the warm restart is that the optimisation does not
start from the beginning but from the parameters of the model at the

www.astesj.com 567

http://www.astesj.com

C. Enyinna / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 563-577 (2020)

last step of convergence. The decrease in learning rate is obtained
using a schedule of aggressive cosine annealing given by [38]

ηt = ηi
min +

1
2

(ηi
max − η

i
min)

(
1 + cos(

Tcur

Ti
π)

)
(11)

Where ηt
min and ηt

max represents learning rate ranges and Tcur repre-
sents the number of epochs since the last restart. The Ti is the total
epochs performed while i is the index of the iteration or run. The
SGDR is used to deal with multi-modal functions, and these warm
restart improves the rate of convergence in accelerated gradient
schemes and has been successful in deep learning-based applica-
tions.

4.3.6 Nesterov Accelerated Gradient (NAG)

The Nesterov’s accelerated gradient is another first-order optimisa-
tion method that provides better convergence than gradient descent
based optimisers under certain conditions [22]. The NAG optimiser
was inspired by Polyak classical momentum technique of accel-
erating gradient descent that accumulates a velocity vector in the
direction of continuous decreasing objective function [33]. Typi-
cally, given an objective function f (θ) for minimisation, the classical
momentum is obtained by

vl+1 = µvt − ε∇ f (θt) ; θt+1 = θt + vl+1 (12)

Where ε > 0 = learning rate, µ ∈ [0, 1] = momentum coefficient
and ∇ f (θt) = gradient at θt. The NAG optimiser and update rule is
obtained using the relationships

vt+1 = γvt − ε∇ f (θt + µvt) ; θt+1 = θt − vt+1 (13)

The NAG computes gradient known as θt+1 and approximates the
subsequent steps for choosing optimal step size. The NAG first
moves in the direction of past accumulated gradients γvt, computes
the current gradient and updates the gradient. However, the NAG
and most of the gradient-based optimisers have the same general
limitation of having hand-fixed learning rate. This limitation in-
spires the adaptive learning-based optimisation techniques, where
the learning rates may be a learnable hyperparameter. The adaptive
optimisers are discussed as follows.

4.3.7 AdaGrad

The AdaGrad optimiser is an adaptive gradient algorithm proposed
by [1], and it represents another vital optimiser which has adaptive
parameter specific learning rates that are updated relative to the
frequency of parameter updates during training. The lower learning
rates implies more parameter updates during training and vice versa.
The main features of the AdaGrad include fast convergence, and it
considers every parameter when selecting learning rates when com-
pared to the gradient descent techniques where one single learning
rate is used for all features. This creates the flexibility of increasing
or decreasing the learning rate depending on the considered feature
properties.

The AdaGrad algorithm update formulation is obtained first
by defining the parameters, where gt = gradient at a time step of
t, When the partial derivative of the loss function with respect to

parameter θi, at time step t, is given by gt,i, we can deduce the
following update relationships for AdaGrad

gt, i = ∆θJ(θt,i) ; ∆xt = −
η√∑t
r=1 g2

τ

· gt (14)

Where η is a global learning rate shared by all dimensions, and the
denominator computes an ι2 norm of all the past gradients on each
dimensional basis. g(t, i) = the gradient of the loss function with
respect to parameter θ(i) at t time step.

Generally, AdaGrad modifies the general learning rate η at ev-
ery iteration of time step t for all parameters θ(i) based on the past
computed gradients for θ(i). The main identified limitations of
AdaGrad includes fixing the global learning rate to a default value,
the continued drop or decaying of the learning rate throughout the
learning process [39] as well as the AdaGrad not been optimised for
non-convex functions [2].

4.3.8 AdaDelta

The AdaDelta is another robust adaptive learning based optimiser
proposed mainly to address a significant limitation of AdaGrad by
reducing the aggressiveness of AdaGrad through reduction of the
optimiser learning rate. The AdaDelta optimiser uses restricted win-
dows of past gradients, to a fixed size w, to update the learning rates
rather than accumulating all the past gradients in the network [39].
Rather than storing all the inefficient previous squared gradients w,
it uses the sum of exponentially decaying average of the squared
gradients. At time t, the running average E[g2]t is given by

E[g2]t = ρE[g2]t−1 + (1 − ρ)g2
t (15)

Where ρ is the decay constant. The update is given by

∆xt = −
RMS [∆x]t−1

RMS [g]t
· gt (16)

Where ∆ is the sum of the numerator term, t = time, and g = gra-
dient. The authors enumerated the benefits of AdaDelta to include
the elimination of manual fixing of learning rates, different dynamic
learning rates per dimension of the parameters, less computation
compared to gradient descent, robust to large gradients noise and
architectures among other benefits. The author further highlighted
that the hyperparameters do not require tuning, which makes the
AdaDelta optimiser, a more straightforward algorithm to imple-
ment. The AdaDelta has recently been used in the design of a CNN
architecture for automated image segmentation[40].

4.3.9 Root Mean Square Propagation (RMSProp)

The RMSProp is the root mean square optimisation technique which
can be viewed as a modification of AdaGrad, that is optimised to
perform on the non-convex setting by altering the gradient accumu-
lation into a weighted exponential moving average. The RMSProp
splits the learning rate by using an exponentially decaying average
of squared gradients, and this optimiser is obtained by [2, 31]

E[g2] = γE[g2]t−1 + (1 − γ) g2
t ; θt−1 = θt −

η√
E

[
g2]

t + ε
· gt (17)

Where the appropriate values of γ = 0.9 and the learning rate η =

0.001. The RMSProp works well in stationary and online settings

www.astesj.com 568

http://www.astesj.com

C. Enyinna / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 563-577 (2020)

[31] but suffers similar drawback like most of the non-adaptive
optimisers as the learning rates are manually fixed or handcrafted.
An advantage provided by RMSProp is that it requires less tun-
ing compared to the SGD[35]. Besides, the RMSProp has been
used in different DL architectures including to optimise the param-
eters of a combined deep CNN and LSTM for classifying protein
structures[41] as well as the design of a new deep convolutional
spiking neural network for time series classification[42].

4.3.10 Adam

Adam coined from adaptive moment estimation is another first-order
gradient optimisation algorithm for stochastic objective functions
based on adaptive estimates of moments of lower-order degrees.
Adam is well suited for large-scale parameters and data as well
as offering improved computational efficiency, improved memory
requirement and invariant to the diagonal rescaling of gradients
[31]. The Adam optimiser is designed to combine the properties
of RMSProp and AdaGrad optimisers to obtain the first and sec-
ond moments estimates which represent the mean and uncentred
variance of respective gradients using

m̂t =
mt

1 − βt
1

; v̂t =
vt

1 − βt
2

(18)

Where m̂t is the gradient and v̂t is the squared gradient and β1, β2
are hyperparameters that control the exponential decay rate of these
moving averages, typically β1, β2 ∈ [0, 1]. The gradient updates
are estimated directly from running average of this first and second
moment of a gradient to produce the update rule as

θt+1 = θt −
η

√
vt + ε

m̂t (19)

The authors outlined that the appropriate values of the parameters
β1 and β2 are 0.9 and 0.999 respectively, while ε= 10−8. Further-
more, they highlighted that Adam performs well in practice and
compares favourably with stochastic based optimisation techniques.
It also converges fast and provided a solution for the majority of
the challenges faced by different optimisers which include slow
convergence and vanishing gradients. The Adam optimiser has been
used in the design of a new gated branch neural network for an
advanced driver assistance system[43] as well as been the most used
optimiser in the recent DL model developments and has been used
across diverse industrial applications[44, 45].

4.3.11 AdaMax

The AdaMax optimiser is a variant of Adam with infinity norm. The
velocity parameter of the algorithm scales the gradient inversely
to the ι2 norm of the previous gradients through the vt and current
gradient | gt |

2 terms. The gradient is obtained by the relationship
[32]

vt = β2vt−1 + (1 − β2) | gt |
2 (20)

The AdaMax convergence of the gradient with ι∞ norm is

vt = β∞2 vt−1 + (1 − β∞2) | gt |
∞ = max(β2 · vt−1, | gt |) (21)

The final update rule for the AdaMax is computed as

θt−1 = θt −
η

ut
m̂t (22)

Where ut depends on the max operation. Default values for η =

0.002, β1 = 0.2 and β2 = 0.999. The AdaMax has been incorporated
in the design of a deep CNN based Light Detection and Ranging
(LiDAR) system application [46].

4.3.12 Nesterov accelerated Adaptive Moment Estimation
(NAdam)

The NAdam optimiser combines the properties of Adam optimiser
and NAG optimiser to obtain an improved optimiser. It modifies
the momentum term m̂t, and instead of adding the momentum term
twice, the gradient is updated as gt alongside updating the param-
eters θt−1. The Nadam new update rule is written in the following
form [47]

m̂t ←− (1 − µt)gt + µt+1mt ; θt ←− θt−1 − η
m̂t
√

vt + ε
(23)

The Nadam optimiser was tested successfully on MNIST dataset,
and it showed remarkable results [47].

4.3.13 AMSGrad

The AMSGrad combines the benefits of Adam and RMSProp as
a moving average optimiser to guarantee convergence of learning
systems. It uses lower learning rates when compared to Adam along-
side incorporating slowly decaying gradients on the learning rate
[48]. It also uses the maximum of past squared gradients instead of
the commonly used exponential averages, to update the parameters
of the optimiser where this maximum past gradient is obtained by

v̂t = max(ˆvt−1, v̂t) (24)

The new update rule for the AMSGrad becomes

θt−1 = θt −
η

√
v̂t + ε

mt (25)

The authors outlined that the results from the testings of this AMS-
Grad outperformed the Adam optimiser in most cases; however,
to see the practical performance of AMSGrad on more difficult
datasets is still not proven. The AMSGrad has been successfully
implemented for optimising the weights of deep Q-learning(DQL)
used in the energy management of some hybrid electric vehicles[49].

4.3.14 Rectified Adam (RAdam)

The RAdam optimisation approach was proposed to address the
large variance problem in the early stages of the adaptive learning
rates by reducing the variance of the network parameters. This is
achieved by rectifying the variance of the adaptive learning rate [50].
The rectified variance term is given by

rt =

√
(pt − 4)(pt − 2)p∞
(p∞ − 4)(p∞ − 2)pt

(26)

www.astesj.com 569

http://www.astesj.com

C. Enyinna / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 563-577 (2020)

The value of p∞ should be p∞ ≤ 4. The authors outlined that RAdam
can obtain better accuracy or an accuracy identical to Adam, with a
fewer number of epochs compared to the standard Adam optimiser.
The RAdam showed excellent prospects and was tested on large
scale datasets to highlight the performance.

4.3.15 Lookahead

The Lookahead optimiser is another optimiser that iteratively up-
dates two sets of weights. The unique property of the Lookahead
optimiser is that it works alongside another optimiser. It updates by
choosing a search direction by looking ahead at some sequence of
fast weights produced by another optimiser [51]. The fast weight
update rule is

θt,i+1 = θt,i + A(L, θt,i−1, d). (27)

Where A = optimisation algorithm, L = objective function, and d
= current mini-batch training example. The authors outlined the
new benefits provided by the Lookahead optimiser to include that it
improves learning scalability and lowers variance with some little
memory and computation cost.

4.4 Second-Order Optimisers (SOO)

The SOO uses second-order derivatives to improve model optimisa-
tion. These derivatives often referred to as Hessian matrix approxi-
mations of Hessian is useful to obtain optimal parameters during the
training of NNs. These second-order models are inherently faster
when the second-order derivative is known but are always costly
and slower to compute in terms of memory and time. Some of the
different SOO techniques used in DL are discussed in the following
sections.

4.4.1 Newton’s Method

This is a second-order optimisation technique that uses second-
order Taylor series expansion to approximate J(θ) near some point
θ0 while ignoring the higher-order derivatives. The approximation
relationship gives Newton’s method optimisation as

J(θ) ≈ J(θ0) + (θ − θ0)T∇θJ(θ0) +
1
2

(θ − θ0)T H(θ − θ0) (28)

Where H is the Hessian of J with respect to θ computed at θ0. The
update rule is obtained by solving the critical point of this function
given by

θ∗ = θ0 − H−1∇θJ(θ0) (29)

From the update rule, it is evident that Newton’s method involves
two stages which includes computing the inverse Hessian and sec-
ondly, updating the other parameters accordingly using the itera-
tively computed inverse Hessian. However, this method can only
work when the Hessian is positive, and this is not the case for DNNs
that have built-in non-convex objective functions with saddle points,
that Newton’s method cannot manage effectively without modifica-
tion. A modification of Newton’s method to include a regularisation
term on the Hessian is a possible solution [2]. This is achieved
by adding a constant along the diagonal of the Hessian thereby
changing the update rule to

θ∗ = θ0 − [H(f (θ0)) + αI]−1∇θ f (θ0) (30)

This strategy works well as long as the negative eigenvalues of
the Hessian remain very close to zero. Some authors have pointed
out that the use of this method for training DNNs imposes a huge
computational burden. By implication, it possible to train networks
with a small number of parameters in practical case using Newton’s
method [2], but limited in deep learning application.

4.4.2 Quasi-Newton’s Methods (QNM)

The QNM is another second-order optimisation technique used
in nonlinear programming applications where Newton’s method
of optimisation is difficult to use due to implementation timing
constraints. They are used to find the global minimum of twice
differentiable functions. The QNM requires only the gradient of
the objective function to be computed during each iteration. The
method is computationally cheaper and faster than the original New-
ton’s method approach as it does not require the computation of the
inverse Hessian as well as solving systems of linear equations. The
Broyden-Fletcher-Goldfarb-Shannon (BFGS) algorithm is one of
the popular QNM optimisation algorithms that approximate New-
ton’s update rule as [2]

θ∗ = θ0 − H−1∇θJ(θ0) (31)

Where H is the Hessian of J with respect to θ computed at θ0. The
BFGS algorithm approximates the inverse of a matrix Mt, and once
the inverse Hessian is updated, the direction of the descent ρt is
determined by the relationship

ρt = Mtgt (32)

A line search in the direction of the descent is performed to deter-
mine the step size ε∗ , with the final update rule as

θt+1 = θt + ε∗ρt (33)

The need to store the Hessian matrix results makes the use of the
BFGS algorithm computational expensive and unrealistic for deep
learning models having millions of parameters for computation dur-
ing training [2]. However, more recent research using the QNM
approach has been applied successfully to train DNNs on large-scale
datasets[52].

4.4.3 Sum of Functions Method

The sum of functions is another second-order optimisation approach
that combines the SGD and BFGS algorithms to provide improved
optimisation of DNNs [52]. The authors presented a method of min-
imising the sum of functions that combines the efficiency of SGD
with the second-order curvature information used in QNM, thereby
maintaining an independent Hessian approximation, for each con-
tributing function in the sum, for computational traceability. This
optimisation approach works with mini-batches of data, alongside
the deep architectures with the approximation of the series function
Gt(x), defined by the intended approximate relationship

Gt(x) =

N∑
i=1

gt
i (34)

www.astesj.com 570

http://www.astesj.com

C. Enyinna / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 563-577 (2020)

Where t = learning iteration, gt
i(x) = quadratic approximation cor-

responding to fi(x). For a vector xt obtained by minimising the
approximate objective function Gt−1(x), we have that

xt = argminxGt−1(x) (35)

We also know that Gt−1(x) = sum of quadratic functions gt−1
i (x),

Thus, the function can be minimised using a Newton’s step given by

xt = xt−1 − ηt(Ht−1)−1 δG
t−1(xt−1)
δx

(36)

Where Ht−1 is the Hessian of Gt−1(x) and step length ηt = 1. There-
fore, the update rule becomes

gt
i(x) =

{
gt−1

i (x) for i , j and gt
i(x) =

 fi(xt)
+(x − xtT fi(xt)

+ 1
2 (x − xtT Ht

i (x − xt)

 for i = j (37)

Where the quadratic term Ht
i is set using the BFGS algorithm. The

sum of function optimiser was successfully used to train large
datasets.

4.4.4 Conjugate Gradient Methods

The conjugate gradient is a Hessian free second-order optimisation
technique. It avoids the use of second-order Hessian matrix in op-
timising gradient computation by iteratively descending conjugate
directions. Though this optimisation technique is an old optimisa-
tion technique, modified versions have been successfully applied in
DL research [25]. The conjugate gradient minimises the objective
function with respect to parameter θ and iteratively updates the
approximation of each step is given by

Mθn = f (θn) + f ′(θn)Tδn + δT
n Bδn/2 (38)

Where B is the Gauss-Newton matrix and δn represents the search
direction for updating the parameter θn.[36] The conjugate gradient
method finds a search direction that is conjugate to the previous line
search direction and during the training iteration t, the new search
direction takes the form [2]

dt = ∇θJ(θ) + βtdt−1 (39)

Where βt = coefficient that controls how much direction of dt−1 that
is added to the current search direction. The value of βt can be
computed using different techniques among the major ones include
Polak-Ribieri and Fletcher-Reeves algorithms. The computation
formula of these respective techniques is given by [2]

βt =
(∇θJ(θt) − ∇θJ(θt−1))T∇θJ(θt)

∇θJ(θt−1)T∇θJ(θt−1)
≈

βt =
∇θJ(θt)T∇θJ(θt)
∇θJ(θt−1)T∇θJ(θt−1)

(40)

An important note is that for a quadratic surface, the conjugate di-
rection ensures that the magnitude of the gradient along the previous
direction does not increase. However, some researchers suggested
that the second-order optimisers generally do not favour DL applica-
tions [38], and the authors highlighting the following as the reasons
for that assertion about the second-order models.

• The stochastic nature of ∇ ft(xt).

• The ill-conditioning of parameter f.

• The presence of saddle points caused by the geometric struc-
ture of the parameter space.

This makes the first-order optimisation algorithms and techniques
more useful when considering deep learning-based model parameter
optimisation.

Nevertheless, another technique to improve DL model training is
regularisation where dropout, dropconnect and norm regularisation
techniques are used to reduce the computational cost of the model.
More detailed discussions on these regularisation techniques are de-
scribed in the literature[34]. Besides, other optimisation techniques
include the second-order Newton’s Method, Conjugate Gradient,
and Quasi-Newton’s Method (QNM), as well as the‘ parallel com-
puting, and sum of functions. These techniques aim to improve the
convergence speed of large-scale machine learning datasets. Con-
versely, these second-order optimisers are not always used in DL
applications because of the computational burden it causes for large
networks with a significant number of parameters, making them dif-
ficult for DL models having millions of parameters for computation
during training [2]. However, they are gaining attention recently
with researchers exploring the QNM approach to train a DNN on
large-scale datasets successfully[52].

4.5 Swarm Intelligence Optimisers (SIO)

The swarm intelligence (SI) optimisers are generally computational
techniques for solving distributed problems inspired by biological
behavioural examples of ants, honey bees, wasps, termites, birds
flocking, and many others. The SIO provides fast and reliable
techniques for finding solutions on numerous real and complex
problems[53]. Typical examples of SIO include ant colony optimi-
sation, particle swarm optimisation, firefly algorithms, artificial fish
swarm optimisation and many others. A very detailed survey of
these dynamic SIO and algorithms can be found in this literature
[54]. However, our focus lies in these optimisers that have been
implemented in DL research.

4.5.1 Grey Wolf Optimiser (GWO)

The GWO is a SI optimiser that has recently been applied to DL
research where the GWO was used to optimise the number of hidden
layers and weights of the neural network [55]. It is proposed by
[56], and it mimics the grey wolves internal leadership hierarchy
in-which four key categories of wolves including alpha, beta, omega
and delta was used to represent the best individual as alpha, the
second-best individual as beta, the third-best individual is recorded
as delta, and the remaining individuals are considered as omega.
The hunting is guided by alpha, beta and delta [53]. The positions
of the wolves are obtained using optimisation relationships

~D = | ~C · ~XP(t) − ~X(t)|

~X(t + 1) = ~XP(t) − ~A · ~D (41)

www.astesj.com 571

http://www.astesj.com

C. Enyinna / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 563-577 (2020)

where ~A and ~C are the coefficient vector, t represents the t − th
iteration, ~X is the wolf vector position and ~XP is the prey vector
position. The vectors ~A and ~C is obtained by

~A = 2a · ~r1 − ~a

~C = 2 · ~r2 (42)

where ~r1 and ~r2 are random vectors located in the slope of [0, 1] and
the value of ~a lies between 0and2.

The GWO has been recently applied in optimising flight mod-
els, especially to identify the flight state using CNNs [57] as well
as modifying the hidden parameters of the SAE architecture[55].
Researchers suggest that the GWO is simple in design, fast with
very high search precision, thereby making it easy to realise and
implement in practical engineering applications[53]. The GWO was
applied to the stacked auto-encoder (SAE) architecture for sorting
different kinds of cotton [55] as well as for classifying extracted
features of diabetic retinopathy dataset[58]. The GWO exploration
has provided numerous improved versions, with the first being the
improved Grey Wolf Optimiser (IGWO), proposed[53], as well as
the multi-objective criteria version named multi-objective grey wolf
optimizer (MOGWO) for DL application. The MOGWO was im-
plemented in the long short term memory (LSTM) architecture on
time series data to develop hybrid forecasting systems. Also, the
use Harris hawk optimisation, which is a nature-inspired population-
based optimiser, and GWO is combined based on the mutation and
hierarchy properties to produce a hybrid SI optimiser named MH-
HOGWO and applied in the multi-step ahead short-term forecasting
of wind speeds [59].

4.5.2 Multi-swarm particle swarm optimizer and Improved Firefly
Algorithm (MSPSO-ImFFA)

The MSPSO is another SI optimiser that has a modified version
applied in DL research. This new adaptive MSPSO includes the
improved firefly algorithms(ImFFA) that help the DNN to overcome
the global and local minima as well as avoidance of premature
converging during training. The MSPSO-ImFFA derivations and
code can be found in the original paper[60]. The algorithms were
used to train a DL backpropagation neural network (DLBPNN) for
detecting and classifying lungs cancer nodules.

4.5.3 Particle Swarm Optimisers (PSO)

The PSO optimiser is another SI optimisation technique that has the
ability to control the search by changing standard deviation (SD) and
mean of a Gaussian distribution where the search area is linked to its
SD. It uses a specific set of candidate solutions denoted by particles,
that make-up the swarm population of the entire search space[61].
The improved ladder and long-tail (LLT) denoted as LLT-PSO is
designed to cater for the internal setting as well as the external
part of the multi-view fusion of the model. However, the model
has two convolutional, and two fully-connected layers in all might
not represent a typical deep architecture. The PSO has also been
improved by [62] with the Adaptive Cooperative Particle Swarm
Optimisation (ACPSO) proposed, which incorporates a learning
automata to adaptively split the sub-population of cooperative PSO,

thereby making the decision variables with strong coupling connec-
tion to enter the same sub-population. Conversely, other SI based
optimisers explored for DL include the salp-swarm optimiser [63],
harmony search optimiser on variational stacked autoencoders[64],
whale optimisation algorithm(WOA) using bidirectional RNN [65],
the Artificial Bee Colony (ABC) for optimizing hyperparameters
for LSTM models, the AC-Parametric WOA (ACP-WOA) [66] for
predicting biomedical images, symbiotic organisms search (SOS)
algorithm [67], lion swarm optimiser(LSO) [68], and many others.
Nevertheless, a comparison of the performance of these genetic al-
gorithms shows that the GWO convergence rate is fastest compared
to the Genetic Algorithm (GA), and PSO [69]. However, there is
no holistic comparison of the performance of these SI optimisers
found in the literature.

4.6 Parallel Computing Optimisation

Parallel computing is another optimisation approach aimed at im-
proving the convergence speed of large-scale machine learning
datasets. A popular SGD parallelised method was proposed by
[70] where multi-core setting with tight coupling of the processing
units ensures low latency between processors used in computing
gradient updates. The parallel optimisation approach includes the
synchronous and asynchronous techniques where the computation
in the synchronous machines are affected by slow computers and ma-
chines on the networks causing delays [70], the asynchronous does
not and it is the design model for most parallel connected devices.
The parallelised SGD optimisation improves the standard SGD op-
timisation for application in deep learning [71]. The parallelised
SGD optimiser is given by

vi = S GD(c1,cm,T, η,w0) for i ∈ 1,, k (43)

Where T = number of instances per machine. The overall sum of
all gradients provide the aggregate from all computers as

v =
1
k

k∑
i=1

Vi (44)

The asynchronous process speeds up the training process by dis-
tributed processing with many central processing units (CPU) and
graphics processing unit (GPU); however, the combination of the
multiple GPU with asynchronous SGD accelerated the training pro-
cess hugely [72], with the improvements in speed put at 3.2 times
for four GPU’s compared to single GPU [73]. The parallelised
optimisation approach has become the default approach for train-
ing very DNNs for large datasets in recent time. Conversely, the
SGD has also explored the high-performance computing cluster
(HPCC) for distributed and parallelised DL applications and has
been successfully implemented and tested on standard DL libraries
[74].

5 Discussion
Optimisers and optimisation techniques have witnessed tremendous
and advanced research results, of which there are observable trends.
These trends in methods and algorithms show that there is no single

www.astesj.com 572

http://www.astesj.com

C. Enyinna / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 563-577 (2020)

existing optimiser or optimisation technique that can be used as a
stand-alone optimiser for all DL research application. To achieve a
holistic optimisation, the use of multiple optimisation approaches
at different stages of the development and deployment of DL based
models is necessary and this aligns with the no free lunch theorem
that no single meta-heuristic optimisation technique can satisfy all
cases and applications [75]. In a typical DL model, which involves
five key stages, as shown in Figure 5. Research has shown that
each of these specific stages can be optimised in one way or another.
However, some of the techniques involve optimising the model
design using weight initialisation, gradients, and parallel comput-
ing, as well as other model improvement techniques not discussed
which include data augmentation, regularisation, dropout, batch
normalisation among other methods for DL.

Deep
Computational

Model

Test and Eval-
uate Model

Train Model

Prepare Data

Gather Data

Improve Model

Figure 5: Typical deep learning model

The current application of these optimisation algorithms and
techniques cuts across different industries that use neural networks
to develop and deploy applications. For the stochastic gradient de-
scent based optimisers, convergence may not be attainable when
the performance of the model stops improving. A remedy to this
challenges is early stopping in the case where the optimisation
process is halted based on the performance of the validation set
during training[76]. A proper early stopping criterion guarantees
that the model training process continues as long as the network
generalisation ability is improved and overfitting is avoided.

Perhaps, the current practices in the use of optimisers adopt
multiple optimisation techniques where there are batch normalisa-
tion, weight and bias initialisation, data augmentation, mini-batch
gradient descent, parallel computing and many other optimisation
techniques involved in training a single DNN architecture. This
makes most of the applications complex for development and de-
ployment.

5.1 Application Areas

The application areas where the new optimisers are tested spans
across image recognition, text classification, NLP, neural machine
translation (NMT), regression-based problems. A summary table
of the application areas of these optimisers are outlined. Besides,
the most recent application trend is the use of SI optimisers in DL.

This optimisation approaches represent the new research direction
for improving DL model performances. The summary of these opti-
misers alongside the test dataset are outlined in Table 2, showing
the original test datasets for these optimisers.

From Table 2, it is evident that ImageNet, MNIST and CIFAR-
10/100 datasets rank among the most dormant datasets used in
testing the new optimisation algorithms. This is as a result of the
CNN architectures used for recognition applications. Although this
trend is quite impressive, other datasets have also been used for
NLP, and regression-based models like PT, NMT, EEG recordings
and word2vec.

5.2 Model Testing Architectures

The DL architecture used in testing these novel optimisers is out-
lined, which include the CNN, SAE, DBN, RNN, and multi-layer
neural networks (MLP), among other DNN architectures. The spe-
cific test per optimiser is presented in Table 3.

A remarkable trend in the architectures shows that major recent
optimisers are tested on CNN architectures while the earliest op-
timisers were tested both on the MLP architectures. Also, the SI
optimisers have found applications in RNN and SAE architectures,
with some architectures not explicitly outlined by the authors of the
original papers.

However, the use of optimisers among researchers has witnessed
different researchers, selecting other datasets for testing the perfor-
mance of new and ground-breaking development results. Testing
these new and emerging optimisers with the same datasets or the
down-sampled versions would present a reasonable and level ap-
proach to ascertain the reported results of the latest algorithm im-
provements. A gold standard for image recognition has been the Im-
ageNet dataset, which one would suggest maybe the best for testing
optimisers for image-based datasets alongside using the full dataset
or the down-sampled versions which were used by some researchers
to test their algorithm performances. A suggestion that new opti-
misation research and tests should use these four primary datasets
including the ImageNet, MNIST and CIFAR-10/100 datasets for
image-based analysis, alongside standard text and speech datasets,
which will harmonise reporting of new ground-breaking results.

Conversely, comparing the SI optimisers alongside the adaptive
and gradient-based optimisers is a future research mostly impor-
tantly to compare these optimisers on similar datasets. This is
because most of the biological optimisers were tested on different
datasets compared to the gradient-based optimisers, which were
tested on mostly the four primary standard datasets.

5.3 Choosing An Optimiser

The choice of an optimiser for a specific application is a very chal-
lenging task; however, the choice is dependent on how well the
model traverses or fits on a particular task. An approach to choosing
one is to consider the model architecture, the shape of the expected
loss function, and picking an optimiser that can appropriately fit
the data on the function. Another important consideration is the
notable trade-off on the speed of convergence, training, and gener-
alisation. These considerations were also outlined by [2], as being
essential for effective optimisation. A fast convergent model that

www.astesj.com 573

http://www.astesj.com

C. Enyinna / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 563-577 (2020)

Table 2: Application areas of the various optimisation algorithms

Optimiser Application Area / Datasets
SGDM [21] ImageNet
SGDR [38] EEG, ImageNet, CIFAR-10/100
AdaGrad [1] ImageNet, MNIST, RCVI, UCI

AdaDelta [39] NLP, MNIST,
Adam [31] ImageNet

AMSGrad [48] MNIST, CIFAR-10
RAdam [50] NLP, ImageNet and CIFAR-10
Nadam [47] MNIST, word2vec, Penn Treebank(PT)

Lookahead [51] ImageNet, CIFAR-10/100, NMT, PT
GWO [56] -

MOGWO [77] Electrical power and Wind speed.
MSPSO-ImFFA [60] LIDC and clinical datasets

LLT-PSO [61] Left ventricle and mammography

Table 3: Architectures for testing the developed optimisation algorithms

Optimiser CNN RNN SAE DBN MLP
SGDM [21] ∗

SGDR [38] ∗

AdaGrad [1] - - - - -
AdaDelta [39] ∗ ∗

Adam [31] ∗ ∗

AMSGrad [48] ∗

RAdam [50] ∗ ∗

Nadam [47] ∗ ∗

Lookahead [51] ∗ ∗

GWO [56] ∗

MOGWO [77] ∗

MSPSO-ImFFA [60] ∗

LLT-PSO [61] ∗

cannot generalise is not very useful, therefore finding that balance
between convergence and generalisation is critical. If the training
speed is the most important factor, then the Adam optimiser ranks
amongst the fastest optimisers, with reasonable generalisation capa-
bility. Perhaps, if the model can train for a longer time, the SGDM
can provide better convergence.

Nevertheless, the use of the SI optimisers has not been tested on
the very large datasets like ImageNet and therefore, we cannot say
that the SI optimisers can perform optimally on huge datasets. This
limits the proposition of the most appropriate and ideal optimiser
suitable for every application. An excellent approach is to test the
different optimisers heuristically. This approach guarantees that the
best optimiser is selected for an application.

6 Conclusion and Future Work

The DL research has witnessed a remarkable breakthrough in the
development of optimisers for improving the training process of
DNNs. The different optimisers used in DL research have been
presented, including gradient, adaptive, hessian, and swarm-based
optimisers amongst the various optimisation techniques discussed.

Besides, we outlined the different test application of these optimis-
ers, alongside the datasets and architectures used for testing most of
the discussed optimisers.

The use of compound optimisation techniques is an emerging
trend in SI based optimisation research. It looks to be a future
research direction while the approach might improve the gradient-
based optimisation techniques. Among the investigated optimisers,
first-order optimisers, especially Adam, has been the dominant
optimiser, used for most DL research. It is the best performing opti-
miser for training very DNN architectures as validated by numerous
researchers[78, 79]. However, the gradient descent-based optimisers
and other adaptive optimisers have also performed remarkably in
different application areas. For sparse datasets, the adaptive optimis-
ers perform better compared to the SGD based optimisers alongside
the accelerated optimisers like NAG and momentum-based optimis-
ers. Besides, new research advances in DNN optimisation, more
optimisation algorithms and techniques are being developed and
with the most recent optimisers focusing on the challenges of the
current optimisation algorithms.

In the future, the testing and comparing the gradient-based, adap-
tive, hessian and swarm optimisation techniques in DNN application
will be performed to analyse and present the overall performance of

www.astesj.com 574

http://www.astesj.com

C. Enyinna / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 563-577 (2020)

these optimisers in deep learning.

References
[1] J. Duchi, E. Hazan, Y. Singer, “Adaptive subgradient methods for online

learning and stochastic optimization,” Journal of Machine Learning Research,
12(Jul), 2121–2159, 2011.

[2] I. Goodfellow, Y. Bengio, A. Courville, Y. Bengio, Deep learning, volume 1,
MIT press Cambridge, 2016.

[3] J. Turian, J. Bergstra, Y. Bengio, “Quadratic features and deep architectures
for chunking,” in Proceedings of Human Language Technologies: The 2009
Annual Conference of the North American Chapter of the Association for
Computational Linguistics, Companion Volume: Short Papers, 245–248, Asso-
ciation for Computational Linguistics, 2009.

[4] M. Kolbæk, Z.-H. Tan, S. H. Jensen, J. Jensen, “On loss functions for su-
pervised monaural time-domain speech enhancement,” IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing, 28, 825–838, 2020,
doi:10.1109/TASLP.2020.2968738.

[5] A. Cassioli, A. Chiavaioli, C. Manes, M. Sciandrone, “An incremental least
squares algorithm for large scale linear classification,” European Journal of
Operational Research, 224(3), 560–565, 2013, doi:10.1016/j.ejor.2012.09.004.

[6] V. Cevher, S. Becker, M. Schmidt, “Convex optimization for big data: Scal-
able, randomized, and parallel algorithms for big data analytics,” IEEE Signal
Processing Magazine, 31(5), 32–43, 2014, doi:10.1109/MSP.2014.2329397.

[7] Y. LeCun, Y. Bengio, G. Hinton, “Deep learning,” nature, 521(7553), 436,
2015, doi:10.1038/nature14539.

[8] S. V. Albrecht, J. W. Crandall, S. Ramamoorthy, “Belief and truth in
hypothesised behaviours,” Artificial Intelligence, 235, 63–94, 2016, doi:
10.1016/j.artint.2016.02.004.

[9] A. Cauchy, “Méthode générale pour la résolution des systemes d’équations
simultanées,” Comp. Rend. Sci. Paris, 25(1847), 536–538, 1847.

[10] D. E. Rumelhart, G. E. Hinton, R. J. Williams, et al., “Learning represen-
tations by back-propagating errors,” Cognitive modeling, 5(3), 1, 1988, doi:
10.1038/323533a0.

[11] D. Bradley, Learning in modular systems, Ph.D. thesis, The Robotics Institute,
Carnegie Mellon University, 2009.

[12] C. Nwankpa, W. Ijomah, A. Gachagan, S. Marshall, “Activation functions:
Comparison of trends in practice and research for deep learning,” CoRR,
abs/1811.03378, 2018.

[13] E. Okewu, P. Adewole, O. Sennaike, “Experimental comparison of stochas-
tic optimizers in deep learning,” in International Conference on Computa-
tional Science and Its Applications, 704–715, Springer, 2019, doi:10.1007/

978-3-030-24308-1 55.

[14] S. Reddy, K. T. Reddy, V. ValliKumari, “Optimization of Deep Learning Using
Various Optimizers, Loss Functions and Dropout,” Int. J. Recent Technol. Eng,
7, 448–455, 2018.

[15] P. Kanani, M. Padole, “Deep Learning to Detect Skin Cancer using Google Co-
lab,” International Journal of Engineering and Advanced Technology Regular
Issue, 8(6), 2176–2183, 2019, doi:10.35940/ijeat.F8587.088619.

[16] J. Howard, S. Gugger, “Fastai: A layered API for deep learning,” Information,
11(2), 108, 2020, doi:10.3390/info11020108.

[17] A. Wadhawan, P. Kumar, “Deep learning-based sign language recognition
system for static signs,” Neural Computing and Applications, 1–12, 2020,
doi:10.1007/s00521-019-04691-y.

[18] S. Mothe, A. Teja, B. Kakumanu, R. Tata, “A Model for Assessing the Nature
of Car Crashes using Convolutional Neural Networks,” International Jour-
nal of Emerging Trends in Engineering Research, 8(3), 859–863, 2020, doi:
10.30534/ijeter/2020/41832020.

[19] P. Arunsuriyasak, P. Boonme, P. Phasukkit, “Investigation of Deep Learn-
ing Optimizer for Water Pipe Leaking Detection,” in 2019 16th International
Conference on Electrical Engineering/Electronics, Computer, Telecommuni-
cations and Information Technology (ECTI-CON), 85–88, IEEE, 2019, doi:
10.1109/ECTI-CON47248.2019.8955355.

[20] M. N. Halgamuge, E. Daminda, A. Nirmalathas, et al., “Best optimizer selec-
tion for predicting bushfire occurrences using deep learning,” Natural Hazards:
Journal of the International Society for the Prevention and Mitigation of Natural
Hazards, 1–16, 2020, doi:10.1007/s11069-020-04015-7.

[21] A. Krizhevsky, I. Sutskever, G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in neural information processing
systems, 1097–1105, 2012.

[22] I. Sutskever, J. Martens, G. Dahl, G. Hinton, “On the importance of initializa-
tion and momentum in deep learning,” in ICLR, 1139–1147, 2013.

[23] D. Mishkin, J. Matas, “All you need is a good init,” CoRR, abs/1511.06422,
2015.

[24] K. He, X. Zhang, S. Ren, J. Sun, “Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification,” in Proceedings of the
IEEE international conference on computer vision, 1026–1034, 2015.

[25] J. Martens, “Deep learning via hessian-free optimization.” in ICML, volume 27,
735–742, 2010.

[26] A. M. Saxe, J. L. McClelland, S. Ganguli, “Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks,” CORR, abs/1312.6120,
2013.

[27] D. Mishkin, J. Matas, “All you need is a good init,” in Proceedings of the ICLR,
2016.

[28] X. Glorot, Y. Bengio, “Understanding the difficulty of training deep feedfor-
ward neural networks,” in Proceedings of the 13th international conference on
artificial intelligence and statistics, 249–256, 2010.

[29] D. Sussillo, L. Abbott, “Random walks: Training very deep nonlinear feed-
forward networks with smart initialization,” CoRR, abs/1412.6558, 287, 300–
302, 2014.

[30] R. Jozefowicz, W. Zaremba, I. Sutskever, “An empirical exploration of recur-
rent network architectures,” in International conference on machine learning,
2342–2350, 2015.

[31] D. P. Kingma, J. Ba, “Adam: A method for stochastic optimization,” in ICLR,
2015.

[32] S. Ruder, “An overview of gradient descent optimization algorithms,” CoRR,
abs/1609.04747, 2016.

[33] H. Robbins, S. Monro, “A stochastic approximation method,” The annals of
mathematical statistics, 400–407, 1951.

[34] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang,
G. Wang, J. Cai, et al., “Recent advances in convolutional neural networks,”
Pattern Recognition, 77, 354–377, 2018, doi:10.1016/j.patcog.2017.10.013.

[35] C. Garbin, X. Zhu, O. Marques, “Dropout vs. batch normalization: an empirical
study of their impact to deep learning,” Multimedia Tools and Applications,
1–39, 2020, doi:10.1007/s11042-019-08453-9.

[36] S. Sigtia, S. Dixon, “Improved music feature learning with deep neural net-
works,” in 2014 IEEE international conference on acoustics, speech and signal
processing (ICASSP), 6959–6963, IEEE, 2014, doi:10.1109/ICASSP.2014.
6854949.

[37] N. Qian, “On the momentum term in gradient descent learning algorithms,”
Neural networks, 12(1), 145–151, 1999, doi:10.1016/S0893-6080(98)00116-6.

[38] I. Loshchilov, F. Hutter, “Sgdr: Stochastic gradient descent with warm restarts,”
in ICLR, 2017.

www.astesj.com 575

http://www.astesj.com

C. Enyinna / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 563-577 (2020)

[39] M. D. Zeiler, “ADADELTA: an adaptive learning rate method,” CORR,
abs/1212.5701, 2012.

[40] R. Hemke, C. G. Buckless, A. Tsao, B. Wang, M. Torriani, “Deep learning
for automated segmentation of pelvic muscles, fat, and bone from CT studies
for body composition assessment,” Skeletal Radiology, 49(3), 387–395, 2020,
doi:10.1007/s00256-019-03289-8.

[41] S. Zhou, H. Zou, C. Liu, M. Zang, T. Liu, “Combining Deep Neural Networks
for Protein Secondary Structure Prediction,” IEEE Access, 8, 84362–84370,
2020, doi:10.1109/ACCESS.2020.2992084.

[42] A. Gautam, V. Singh, “CLR-based deep convolutional spiking neural net-
work with validation based stopping for time series classification,” Applied
Intelligence, 50(3), 830–848, 2020, doi:10.1007/s10489-019-01552-y.

[43] Y. Dou, Y. Fang, C. Hu, R. Zheng, F. Yan, “Gated branch neural network for
mandatory lane changing suggestion at the on-ramps of highway,” IET Intelli-
gent Transport Systems, 13(1), 48–54, 2018, doi:10.1049/iet-its.2018.5093.

[44] K. Gopalakrishnan, S. K. Khaitan, A. Choudhary, A. Agrawal, “Deep con-
volutional neural networks with transfer learning for computer vision-based
data-driven pavement distress detection,” Construction and Building Materials,
157, 322–330, 2017, doi:10.1016/j.conbuildmat.2017.09.110.

[45] S. Das, S. Mishra, “Advanced deep learning framework for stock value predic-
tion,” International Journal of Innovative Technology and Exploring Engineer-
ing, 8(10), 2358–2367, 2019, doi:10.35940/ijitee.B2453.0881019.

[46] F. H. Nahhas, H. Z. Shafri, M. I. Sameen, B. Pradhan, S. Mansor, “Deep learn-
ing approach for building detection using lidar–orthophoto fusion,” Journal of
Sensors, 2018, 2018, doi:10.1155/2018/7212307.

[47] T. Dozat, “Incorporating nesterov momentum into adam,” in ICML, 2016.

[48] S. J. Reddi, S. Kale, S. Kumar, “On the convergence of adam and beyond,” in
ICLR, 2018.

[49] G. Du, Y. Zou, X. Zhang, T. Liu, J. Wu, D. He, “Deep reinforcement learning
based energy management for a hybrid electric vehicle,” Energy, 117591, 2020,
doi:10.1016/j.energy.2020.117591.

[50] L. Liu, H. Jiang, P. He, W. Chen, X. Liu, J. Gao, J. Han, “On the variance of
the adaptive learning rate and beyond,” in ICLR, 2020.

[51] M. R. Zhang, J. Lucas, G. Hinton, J. Ba, “Lookahead Optimizer: k steps
forward, 1 step back,” CoRR, abs/1907.08610, 2019.

[52] J. Sohl-Dickstein, B. Poole, S. Ganguli, “Fast large-scale optimization by
unifying stochastic gradient and quasi-Newton methods,” in ICML, 604–612,
2014.

[53] J.-S. Wang, S.-X. Li, “An improved grey wolf optimizer based on differential
evolution and elimination mechanism,” Scientific reports, 9(1), 1–21, 2019,
doi:10.1038/s41598-019-43546-3.

[54] M. Mavrovouniotis, C. Li, S. Yang, “A survey of swarm intelligence for dy-
namic optimization: Algorithms and applications,” Swarm and Evolutionary
Computation, 33, 1–17, 2017, doi:10.1016/j.swevo.2016.12.005.

[55] C. Ni, Z. Li, X. Zhang, X. Sun, Y. Huang, L. Zhao, T. Zhu, D. Wang, “Online
Sorting of the Film on Cotton Based on Deep Learning and Hyperspectral
Imaging,” IEEE Access, 8, 93028–93038, 2020, doi:10.1109/ACCESS.2020.
2994913.

[56] S. Mirjalili, S. M. Mirjalili, A. Lewis, “Grey wolf optimizer,” Advances in
engineering software, 69, 46–61, 2014, doi:10.1016/j.advengsoft.2013.12.007.

[57] X. Chen, F. Kopsaftopoulos, Q. Wu, H. Ren, F.-K. Chang, “A self-adaptive
1D convolutional neural network for flight-state identification,” Sensors, 19(2),
275, 2019, doi:10.3390/s19020275.

[58] T. R. Gadekallu, N. Khare, S. Bhattacharya, S. Singh, P. K. R. Maddikunta,
G. Srivastava, “Deep neural networks to predict diabetic retinopathy,” J. Ambi-
ent Intell. Humaniz. Comput, 2020, doi:10.1007/s12652-020-01963-7.

[59] W. Fu, K. Wang, J. Tan, K. Zhang, “A composite framework coupling multi-
ple feature selection, compound prediction models and novel hybrid swarm
optimizer-based synchronization optimization strategy for multi-step ahead
short-term wind speed forecasting,” Energy Conversion and Management, 205,
112461, 2020, doi:10.1016/j.enconman.2019.112461.

[60] M. Revathi, I. J. S. Jeya, S. Deepa, “Deep learning-based soft computing
model for image classification application,” Soft Computing, 1–20, 2020, doi:
10.1007/s00500-020-05048-7.

[61] K. Lan, L. Liu, T. Li, Y. Chen, S. Fong, J. A. L. Marques, R. K. Wong,
R. Tang, “Multi-view convolutional neural network with leader and long-
tail particle swarm optimizer for enhancing heart disease and breast cancer
detection,” Neural Computing and Applications, 1–20, 2020, doi:10.1007/

s00521-020-04769-y.

[62] G. Xiao, H. Liu, W. Guo, L. Wang, “A hybrid training method of convolu-
tion neural networks using adaptive cooperative particle swarm optimiser,”
International Journal of Wireless and Mobile Computing, 16(1), 18–26, 2019,
doi:10.1504/IJWMC.2019.097418.

[63] K. Mahmoud, M. Abdel-Nasser, E. Mustafa, Z. M Ali, “Improved Salp–
Swarm Optimizer and Accurate Forecasting Model for Dynamic Economic
Dispatch in Sustainable Power Systems,” Sustainability, 12(2), 576, 2020,
doi:10.3390/su12020576.

[64] K. Chen, Z. Mao, H. Zhao, Z. Jiang, J. Zhang, “A Variational Stacked Au-
toencoder with Harmony Search Optimizer for Valve Train Fault Diagnosis of
Diesel Engine,” Sensors, 20(1), 223, 2020, doi:10.3390/s20010223.

[65] E. M. Hassib, A. I. El-Desouky, L. M. Labib, E.-S. M. El-kenawy, “WOA+

BRNN: An imbalanced big data classification framework using Whale opti-
mization and deep neural network,” soft computing, 24(8), 5573–5592, 2020,
doi:10.1007/s00500-019-03901-y.

[66] A. S. Elsayad, A. I. Eldesouky, M. M. Salem, M. Badawy, “A Deep Learning
H2O Framework for Emergency Prediction in Biomedical Big Data,” IEEE
Access, 2020, doi:10.1109/ACCESS.2020.2995790.

[67] D. Prayogo, M.-Y. Cheng, Y.-W. Wu, D.-H. Tran, “Combining machine learn-
ing models via adaptive ensemble weighting for prediction of shear capacity of
reinforced-concrete deep beams,” Engineering with Computers, 1–19, 2019,
doi:10.1007/s00366-019-00753-w.

[68] Z. Yang, C. Wei, “Prediction of equipment performance index based on im-
proved chaotic lion swarm optimization–LSTM,” Soft Computing, 1–25, 2019,
doi:10.1007/s00500-019-04456-8.

[69] D. D. Chakladar, S. Dey, P. P. Roy, D. P. Dogra, “EEG-based mental work-
load estimation using deep BLSTM-LSTM network and evolutionary algo-
rithm,” Biomedical Signal Processing and Control, 60, 101989, 2020, doi:
10.1016/j.bspc.2020.101989.

[70] M. Zinkevich, J. Langford, A. J. Smola, “Slow learners are fast,” in Advances
in neural information processing systems, 2331–2339, 2009.

[71] M. Zinkevich, M. Weimer, L. Li, A. J. Smola, “Parallelized stochastic gradient
descent,” in Advances in neural information processing systems, 2595–2603,
2010.

[72] T. Paine, H. Jin, J. Yang, Z. Lin, T. Huang, “Gpu asynchronous stochastic
gradient descent to speed up neural network training,” CoRR, abs/1312.6186,
2013.

[73] Y. Zhuang, W.-S. Chin, Y.-C. Juan, C.-J. Lin, “A fast parallel SGD for ma-
trix factorization in shared memory systems,” in Proceedings of the 7th
ACM conference on Recommender systems, 249–256, ACM, 2013, doi:
10.1145/2507157.2507164.

[74] R. K. Kennedy, T. M. Khoshgoftaar, F. Villanustre, T. Humphrey, “A parallel
and distributed stochastic gradient descent implementation using commodity
clusters,” Journal of Big Data, 6(1), 16, 2019, doi:10.1186/s40537-019-0179-2.

[75] D. H. Wolpert, W. G. Macready, “No free lunch theorems for optimiza-
tion,” IEEE transactions on evolutionary computation, 1(1), 67–82, 1997,
doi:10.1109/4235.585893.

www.astesj.com 576

http://www.astesj.com

C. Enyinna / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 563-577 (2020)

[76] Y. Yao, L. Rosasco, A. Caponnetto, “On early stopping in gradient de-
scent learning,” Constructive Approximation, 26(2), 289–315, 2007, doi:
10.1007/s00365-006-0663-2.

[77] D. Wei, J. Wang, K. Ni, G. Tang, “Research and Application of a Novel Hybrid
Model Based on a Deep Neural Network Combined with Fuzzy Time Series for
Energy Forecasting,” Energies, 12(18), 3588, 2019, doi:10.3390/en12183588.

[78] M. N. Khan, M. M. Ahmed, “Trajectory-level fog detection based on in-

vehicle video camera with TensorFlow deep learning utilizing SHRP2 natu-
ralistic driving data,” Accident Analysis & Prevention, 142, 105521, 2020,
doi:10.1016/j.aap.2020.105521.

[79] S. Remya, R. Sasikala, “Performance evaluation of optimized and adaptive
neuro fuzzy inference system for predictive modeling in agriculture,” Comput-
ers & Electrical Engineering, 86, 106718, 2020, doi:10.1016/j.compeleceng.
2020.106718.

www.astesj.com 577

http://www.astesj.com

	 Introduction
	Deep Learning
	Role of Optimisers in Deep Learning

	Research Methodology and Motivation
	Optimisation Techniques
	Weight Initialisation
	Biases
	First Order Optimisers (FOO)
	 Batch Gradient Descent (BGD)
	Stochastic Gradient Descent (SGD)
	 Mini-Batch Gradient Decent (MGD)
	Stochastic gradient Descent with Momentum (SGDM)
	 Stochastic Gradient Descent with Warm Restarts (SGDR)
	Nesterov Accelerated Gradient (NAG)
	AdaGrad
	AdaDelta
	Root Mean Square Propagation (RMSProp)
	Adam
	AdaMax
	Nesterov accelerated Adaptive Moment Estimation (NAdam)
	AMSGrad
	Rectified Adam (RAdam)
	Lookahead

	Second-Order Optimisers (SOO)
	Newton's Method
	Quasi-Newton's Methods (QNM)
	Sum of Functions Method
	Conjugate Gradient Methods

	Swarm Intelligence Optimisers (SIO)
	Grey Wolf Optimiser (GWO)
	Multi-swarm particle swarm optimizer and Improved Firefly Algorithm (MSPSO-ImFFA)
	Particle Swarm Optimisers (PSO)

	Parallel Computing Optimisation

	Discussion
	Application Areas
	Model Testing Architectures
	Choosing An Optimiser

	Conclusion and Future Work

