

www.astesj.com 536

Malware classification using XGboost-Gradient Boosted Decision Tree

Rajesh Kumar *, Geetha S

School of Computer Science & Engineering, VIT University, Chennai campus, 600128, India

A R T I C L E I N F O A B S T R A C T

Article history:

Received: 31 July, 2020

Accepted: 06 September, 2020

Online: 26 September, 2020

 In this industry 4.0 and digital era, we are more dependent on the use of communication

and various transaction such as financial, exchange of information by various means. These

transaction needs to be secure. Differentiation between the use of benign and malware is

one way to make these transactions secure. We propose in this work a malware

classification scheme that constructs a model using low-end computing resources and a

very large balanced dataset for malware. To our knowledge, and search the complete

dataset is used the first time with the XGBoost GBDT machine learning technique to build

a classifier using low-end computing resources. The model is optimized for efficiency with

the removal of noisy features by a reduction in features sets of the dataset by domain

expertise in malware detection and feature importance functionality of XGboost and

hyperparameter tuning. The model can be trained in low computation resources at less time

in 1315 seconds with a reduction in feature set without affecting the performance for

classification. The model gives improved performance for accuracy with the tuning of the

hyperparameter and achieve higher accuracy of 98.5 and on par AUC of .9989.

Keywords:

Malware

Machine learning

Gradient boost decision tree

XGBoost

1. Introduction

Most of the cybersecurity issues are related to malware.

Malware is malicious software. The first malware, “Morris worm”

which is also a virus appeared in 1989-90. Malware is used to

collect personal, financial data of a user and give control of ICT

(Information Communication Technology) devices mobiles,

computers, and systems to command and control centers managed

by hacker groups. Malware is at the helm of the cybersecurity

issue. The goal of hacker groups or hackers is to make the

malware reach the system, network gear, and then use it for their

ulterior motives. It may cost millions of dollars if one malware

goes undetected [1]. As society becomes increasingly dependent

on the computing system, it is important to detect malicious

software (Malware). Specific code sequences, signature, executed

by a virus are used by antivirus to detect the malware. Finding

such code sequences is not matching with the speed at which new

malware is being generated with greater use of ICT systems in

varieties of areas ranging from individual, business, industrial.

Nowadays with the Internet of Things (IoT), Industry 4.0, the use

of ICT has grown at a very large rate and so has the attraction of

hackers to hack them by use of malware, software with

disingenuous intention, such as virus, worm, rootkit, key logger,

Trojan horse, ransomware, spyware, etc. To detect this malware

using traditional methods such as using a signature base [2] will

leave much malware undetected, resulting in security issues. A

signature-based approach is used in antivirus software. A

signature is set with static and/or dynamic analysis manually to

identify the malware. Malware authors keep the same

functionality but polymorph the malware. Such polymorphed

malware cannot be detected by antivirus as the signature is

different. This problem is currently rampant. New polymorphed

malware can be detected by a machine learning approach. The

signature-based approach is insufficient as millions of new

malware appear almost on an everyday basis. A technique needs

to be developed that generalizes to new malware. Hence,

detection of malware using machine learning is the right choice.

Efficient automated malware detectors are required to classify

software, application as malware, or benign.

The dataset for malware research is not available publicly due

to privacy concerns. Few online databases of malware [3] allow

limited use of data. Many malware detection research is done using

unbalanced data, the number of malware is very high compared to

benign software. There may be discrepancies in malware data

collected and that may be possible in a real environment. For

effective malware research, one needs the large, balanced recent,

and right mix of families of malware database [4]. With a large

database with many attributes related to malware, one needs to use

ASTESJ

ISSN: 2415-6698

*Corresponding Author: Rajesh Kumar; Email: rajesh.kumar@vit.ac.in

Corresponding Author: Sarun Duangsuwan, KMITL Prince of Chumphon

Campus, Tel: +66-99186-4411; Email: sarun.du@kmitl.ac.th

Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 536-549 (2020)

www.astesj.com

https://dx.doi.org/10.25046/aj050566

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj050566

R. Kumar et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 536-549 (2020)

www.astesj.com 537

expensive, complex, and high-end computing machines. In this

research, we plan to use one such large database [5], which is

shared publicly and low computing resources to build a matching

or better malware detection system. Here we aim at extracting low

dimension, effective features that contribute to learning and result

in effective classifiers to detect malware. XGboost using Gradient

Boost Decision Tree (GBDT) algorithm is used to extract few

effective features from a large database with large attributes. To

our knowledge, the complete dataset is not used with the XGboost

GDBT algorithm. We use this combination to extract the features,

which can be used with low-end computing resource to build

effective malware classifier. This paper is organized with a

background related to malware detection in section 2, the literature

survey in section 3, methodology in section 4, experiments, and

results in section 5, and conclusion in section 6.

2. Background

For malware, detection features may be extracted from the

file format they are packed in. The executable, libraries, objects

are packed using Common Object File Format (COFF). For the

Windows operating system, it is Portable Executable 32/64

(PE32/64) [6,7]. It may also be possible to find file agnostic

features such as histogram of bytes in the program, byte entropy

of various parts of a program [8], or strings available in the

program [9]. The string may include URL accessed, registry

accessed, deleted, modified, or files accessed, deleted or modified

or IP address accessed, files accessed, created, deleted and

modified, registry created, modified, and deleted. It may be

possible to find a set of features for the detection of malware. A

neural network can help achieve a higher-level representation of

malware. The sequence classifier takes n bytes, n-gram, as input

in [10]. However, it is limited to a few bytes or kilobytes.

However, for malware, it may have to take millions of bytes, as

the size of executable programs. The efficient extraction of

features leads to efficient malware detection. Deep learning

models use a complete executable without the need for features

from domain knowledge [11]. It takes high-end computing

resources and a large amount of time.

2.1. Portable executable

Windows binary consists of PE header [6], code, data, and
resource part. The PE header has a COFF Header, optional header,
and section tables. Each of these has subparts and further subparts.
COFF header consists of 24 bytes and has signature 0x50450000,
Machine, Number of sections, TimeDate. The Optional header
has a standard COFF field of 28 bytes, windows specific field of
68 bytes, and data directories of 144 bytes data directories. The
standard COFF consists of magic, major, minor linker version,
size of code, initialized data, uninitialized data, address of entry
point, the base of code, data, etc. Windows-specific field consists
of image base, section, file alignment, major, minor OS version,
major, minor image version, major, minor subsystem version,
win32 version value, size of image, header, checksum, subsystem,
DLL characteristics, size of stack reserved, commit, size of heap
reserve, commit, loader flags, number of RVA and sizes. The data
directory consists of various table and size of tables such as
location and size Export table, Import table, Resource table,
Exception table, Certificate table, Base relocation table, Debug,
architecture data, TLS table, Load Config, Bound Import, Import
Address Table (IAT), Delay import descriptor, CLR runtime

header, Global ptr. Each of the section tables consists of 40 bytes
and contains information such as name, Virtual size, and address,
location, and size of Raw data, Number of relocations, Number of
line number, characteristics. There may be more than one section.
Name of sections are .text, .rdata, .data, .idata, .rsro, .rsrc etc.
There are several methods to extract these fields. The technique
employed here is to use LIEF (Library for Instrumenting
Executable Files) [12].

2.2. Techniques used for malware detection

Malware can be detected using a static or dynamic detection
method. The Static method [13,14] identifies the malware before
the execution of the file and serves as a critical defense
mechanism. Static malware detection does not execute the
malware and uses the structural information as file format [6, 15]
available in applications. One has to identify efficient features to
be used to build malware detection systems. If we get information
from a binary program using techniques such as Portable
Executable 32/64 (PE32/64) header information for windows
program. Polymorphic, Metamorphic malware is created by
malware authors with minor changes to avoid detection by
antiviruses, which uses signature-based detection. In
Polymorphism, the malware authors use a combination of data
prepend, data append, and encryption, decryption to generate
malware in large numbers. In metamorphism, the malware
themselves change code by a combination of dead code, code
transposition, register reassignment, and instruction substitution
can generate a large amount of malware. As the signature changes
in polymorphic malware, the antivirus is unable to detect malware.
As malware authors use various means to avoid detection such as
obfuscated code [16], convoluted systems library calls, detection
of malware has a limitation. At times, code is obfuscated by non-
standard, private methods [7,16] to make the detection more
difficult even by domain experts. Such complexity in detection
may be avoided by dynamic malware detection [17-19].

In dynamic malware detection, the application is allowed to
run in a protected virtual environment. The application unfolds all
the obfuscation, convoluted means of making systems call, and
the effects of malware can be observed. For dynamic analysis, the
malware cannot be executed on a normal system, as it will infect
the system. It has to be run in a sandbox or special customized
virtual environment to restore the system to a previous state when
the malware was not run. The computational needs are high in a
virtual environment or machine. Malware author builds features
in malware to detect such a virtual machine environment. Once
the malware detects such a virtual environment, the malware
changes its behavior and behaves as normal benign software.
There have been efforts to avoid the detection of the virtual
environment by malware [20, 21]. An expert may declare such
malware as benign, which causes unprecedented destruction, loss
in a real normal working environment. The dynamic malware
detection uses effects caused by malware such as files created,
modified, deleted, or registries created, modified, deleted, or
network connection set up to specific IP addresses to command
and control centers of malware authors or to download next set of
malware. It is time-consuming to run the malware in a virtual
environment and observe the effects of each malware. Doing this
exercise for a large number of malware generated these days due
to polymorphism and metamorphism requires a large time and a
large number of domain experts. In addition to the challenge of
changing the behavior of malware on detection of the virtual
environment, both time and domain experts are not available.

http://www.astesj.com/

R. Kumar et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 536-549 (2020)

www.astesj.com 538

Hence, it emphasizes the use of deep learning and machine
learning techniques for malware detection.

Deep learning [11, 22-25] and machine learning [5,10, 26-29]
has been used to make automated detectors to identify the
malware and the family of malware. In most cases dataset used
[26] are not available, unbalanced or detectors work with an
unavailable specific setting and specific datasets. A private
emulation environment is required to overcome challenges
imposed by dynamic analysis. It also makes it difficult, as a
private, non-public environment is not available. As the data and
the parameters used for building models are not available, it is not
possible to compare the results, accuracies across the works. Our
work uses the open dataset [5]. It is a balanced dataset with 300k
malware, 300k benign applications with 2351 hashed features
[28,30] derived using LIEF [12] and portable executable file
format [6] for training and separate 100k malware and 100k
benign software with the same number of hashed feature sets for
testing. The statistical summary of benign files is used to reduce
the privacy concern. SVM with nonlinear kernel needs O(N**2)
multiplication for one iteration. N is the number of samples in the
dataset. K-NN needs not only computation at the same level but
also all the labels in memory. Hence, these methods are not
scalable. Scalable alternatives are the neural network, ensemble
decision tree. The ensemble algorithm has been effective with
large samples and features. Gradient Boosting Decision Tree
(GBDT) algorithm used in XGboost [31, 32], LightGBM [33,34]
will be more effective for large dataset with large feature sets.
There are multiple times, maybe twenty-plus, improvement in the
training process.

3. Literature survey

In [17] author used a list of Dynamic Link Library (DLL)

from the PE header and list of functions imported from those DLL

as features. Besides, they used few more PE header features as

well on a dataset of 4206 samples. It had 3265 malware. They

achieved a 97.76 % detection rate. In [13], PE Miner framework,

author used 189 features consisting of section size, features from

the COFF section, resource table, and import of DLL as binary

features. All the features were derived from the PE header.

Specific DLL group's functions used for a specific purpose and

import of DLL indicates the intent of the software. They achieved

the Area Under Curve (AUC) of .991 and False Positive (FP) rate

< 0.5% for on dataset of 15000 samples. In [35] author used a

dataset of 116000 samples consisting of 100000 malware and

remaining benign software. They started with 100 features from

the PE header and iterated to finalize of 7 most influencing

features. It is also termed as Adobe malware classifier. They

achieved a TP rate of 98.56% and an FP rate of 5.68% on 1/5th of

the dataset using tenfold cross-validation. The High FP rate is also

reported in [5] by using the specified 7 features from the PE

header. In [36], SAVE (Static Analyzer of Vicious Executables),

author use the API calling sequence of specific identified packed

obfuscated malware to find similarity measures with other

samples to detect malware. They use Euclidean distance to

generate similarity report and detect new malware as one of the

families of malware compared with. They use a 32-bit vector

consisting of DLL name as 16 bit and each API in a DLL as

another 16 bits.

In [37] author extract the behavior attributes of 10 different

families of ransomware aggregating to 150 samples. Three

different machine learning algorithms J48 Decision tree, KNN,

Naive Bayes are used for classification. They use Virustotal [3] to

get the behavioral report of each ransomware sample. It is like

getting features and their value using the dynamic analysis. They

achieve a classification accuracy of 78% by reducing the number

of attributes to 12 from 27. In [18] author extract API calls of

malware by dynamic analysis method and use fours step

methodology to determine suspicious behavior. The suspicious

behavior is identified by copy, delete, search, move, read, write,

and change attributes operations on a file. They use calling

sequence and statistical analysis to identify the malware. 386

samples are used of which 77% were packed using Armadilo,

UPX, PE lock, Upack, KKrunchy. In [38] author use Hidden

Markov Model using API calls and opcode. All combinations of

static and dynamic analysis for the training phase and test phase

are experimented such as static analysis data for training and static

analysis data for testing, static analysis data for training, and

dynamic analysis data for testing. They use 745 malware samples

from 6 families of malware and report various AUC-ROC and

AUC-PR (Area Under Curve - Precision-Recall) results. In [24],

MtNet (A multi-task neural network), author use an anti-malware

engine to extract the sequence of API and parameters used in

those API and null-terminated objects from system memory. They

believe the majority of null-terminated objects are unpacked

strings and indicate a code fragment of malware. Many events to

one event mapping are performed considering multiple API

achieve the same results. Besides API trigram is made for three

API calls. 50,000 feature sets are reduced to 4,000 and random

projection is used to further reduce the training time of the neural

network. Very large size database of 6.5 Million samples used in

this project. It has a training data sample of 4.5 million consisting

of 1.3 Million malware from 98 families, 1.55 Million generic

malware, and 3.65 benign software. The test data is separate 2

Million samples. They experiment with the effects of hidden

layers on accuracy and report an accuracy of 99.51% and low FP

and FN rate. In [39] author uses dynamic analysis and CNN to

build classifiers using 9 families of malware, each with 1000

malware. They achieve 99% Precision, Recall, and F1 score and

FPR of 1%. Malware variants of one family have the same type

of API calling sequence. Hence, feature image build using color-

coding resembles and this similarity of the image is detected using

CNN.

In [40] author uses malware image fingerprints using the

concept of GIST – Global Image Descriptor to compact image

features and store malware in a large database of 4.3 million

malware. New malware is pre-processed to compact image

features as done with each of the malware in the database and

search the database for in 3 seconds to find the matching image.

In [41] author used 8 bits of a byte of executable a vector for

building a greyscale image of fixed width. Image visualization of

the binary value of executable gives more information about

different sections and structures of malware. Even change in small

code from polymorphed, meta morphed malware may also be

identified as some pattern, change in the pattern of the image.

They achieved 98% malware family classification accuracy using

a dataset of 9,458 samples of 25 different malware families.

Signal processing techniques are used to get noise-free signals in

other areas of electronics. In [42] author use these techniques to

get a noise-free signature of polymorphic malware to detect

malware. They have used 1.2 Million samples consisting of

http://www.astesj.com/

R. Kumar et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 536-549 (2020)

www.astesj.com 539

packed and unpacked malware and good ware. The trained model

is used for recent daily malware. They can detect 50% malware

with 99.5% accuracy. In [43] author observes the malware can be

hidden by steganography in image or audio files. Such images,

audio, maybe part of many websites. 2019 Symantec threat

intelligence report identifies one in 10 websites as malicious. A

Hybrid of image visualization and dynamic analysis feature is

used in [44]. Features of images from packed malware are

extracted using a pre-trained CNN model and visualized using t-

Distributed Stochastic Neighbor Embedding (t-SNE). Besides,

API calls sequences derived from the deobfuscated program code

of each sample are used to compute eight different distance

metrics such as Manhattan, Cosine, Bray-Curtis, Canberra,

Hamming, Euclidean, Correlation, and Chebyshev. SVM with

four different kernels uses the distance computed between known

and unknown samples to detect malware. They report 98.6%

accuracy.

In [25] author attempts deep learning for features extracted

using dynamic analysis. The malware family is identified using

60 kernel APIs and a sequence of calls as a feature from dynamic

analysis. Convolution and LSTM were used for malware

detection.

A comparison with the n-gram model is a suboptimal

approach [26] as the malware author may manipulate the n-grams

and it will make the feature disappear. Just a single byte change

can make the feature disappear from consideration in the model.

The model is built on a PE header and there was a difference in

performance. It is explained as a feature used across the model

was different, resulting in a difference in performance.

Whole program files as malware or benign are used as input

in [11] and referred to as Malconv. Malware as an executable is

very large data to feed in a deep learning model compared to other

uses of deep learning. It does it to prove that the required features

will be extracted using deep learning without domain expertise.

The architecture of Malconv uses Convolution Neural Network

architecture (CNN). The malware may have high positional

variation at the PE32 header information, location variance due to

macro-level reordering of function at code section leading to

macro-level reordering in binary to polymorph the malware or to

avoid detection of malware. The architecture of Malconv takes

care of a high amount of positional variations and location

variance in a file by a mandatory combination of CNN

architecture and global max pooling. Global max pooling is an

enhancer of CNN. For independent feature location, global max

pooling is done before a fully connected convolution layer. It can

make a model regardless of the location of features in the file.

Hence, it addresses the activation of features irrespective of the

location of features. Raff observed batch normalization made the

model not to learn due to discontinuity at function level and

missing correlation across large ranges. It uses a wider breadth of

input patterns with embedding and shallow CNN.

Deep learning has dramatically improved the state of art in

object classification. It infers the most useful features

representation for the task such as by raw images, text, or speech

waveforms as input to the machine-learning model. However,

image processing, signal processing techniques in machine

learning cannot be applied to the malware domain. CNN is used

to be in line with a high level of location in variations. The holes

in dilated convolution can be interpolated for spatially consistent

image processing, but does not apply to or can be interpolated for

malware detection. This error signal is easily missed with the

nature of malware available in real life.

However, handcrafted features continue to give improved

results for malware detection as per publish literature [5] and we

also find the same. There is a constant emergence of new malware

in large numbers by minor changes in existing malware. Besides,

new techniques are discovered to use the vulnerabilities of

hardware and software at different levels. These new techniques

and vulnerability at different levels in hardware and software

require the expertise of domain knowledge and difficult to fulfill

by deep learning. The structured format of PE continues to make

handcrafted features as relevant even if state or art shifts to end

deep learning in the future. It will be good to combine the use of

broad handcrafted features and deep learning.

There is a lack of public datasets for comparison with other

machine learning techniques used. Hence, the results obtained

remain applicable to that study and cannot be extended to other

datasets. A comparison has been done in [5] and the J48 adobe

malware model [35] to get an 8% False Negative Rate (FNR) and

53% False Positive Rate (FPR).

4. Methodology

We select XGBoost [32], a GBDT implementation, and a

publicly available dataset [5] to build the classifier that can

operate on a low complexity computation machine to give

matching or better results.

Ember dataset is large data with a separate training set and

test set. Both the training and test set have balanced (equal)

malware and benign software. Each sample in the dataset has a

large number of features from PE header which are file form type.

The data has file form agnostic features also. These file form

agnostic features are derived from the whole file and non-PE

header part. We use XGBoost to extract useful features that

contribute to building an efficient model for malware

classification. These selected, reduced feature sets bring down the

complexity of computation. These reduced feature sets are used

to build a classifier using the XGBoost algorithm. A comparison

is performed to demonstrate the performance of such a classifier.

4.1. Gradient Boosted Decision Tree (GBDT)

Boosting is a process in which a weak learner can be modified

to become better. It makes a poor hypothesis into a very good

hypothesis. The focus is on developing new weak learner that can

handle remaining difficult observations. New weak learner

focusses on training difficult to classify instances, patterns and get

added to the previous weak learner. Weak learners are used

successively, equation (1) to get a series of hypotheses. Each

hypothesis is focused on the sample examples that have not been

covered by the previous hypothesis or have been misclassified the

sample. Hence, a weak learner is better than a random choice. The

boosting has it’s beginning in adaptive boosting that puts more

weight on data points that are not classified, misclassified, or hard

to predict. It puts less weight on instances already classified. The

weak learners are sequentially added to classify the unclassified

patterns. In other words, difficult instances keep on getting higher

𝑧𝑖
(0)

= 0

 𝑧𝑖
(1)

= 𝑓1(𝑥𝑖) = 𝑧𝑖
(0)

+ 𝑓1(𝑥𝑖)

http://www.astesj.com/

R. Kumar et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 536-549 (2020)

www.astesj.com 540

𝑧𝑖
(2)

= 𝑓1(𝑥𝑖) + 𝑓2(𝑥𝑖) = 𝑧𝑖
(1)

+ 𝑓2(𝑥𝑖)

𝑧𝑖
(𝑡)

= ∑ 𝑓𝑘(𝑥𝑖)

𝑡

𝑘=1

= 𝑧𝑖
(𝑡−1)

+ 𝑓𝑡(𝑥𝑖) (1)

𝑜𝑏𝑗(𝑡) ≃ ∑ [𝑙(𝑦𝑖 , 𝑧𝑖
(𝑡−1)

) + 𝑔𝑖𝑓𝑡(𝑥𝑖) +
1

2
ℎ𝑖𝑓𝑡

2(𝑥𝑖)]

𝑛

𝑖=1

+ Ω(𝑓𝑡)

+ 𝑐 (2)

where

𝑔𝑖 = 𝜕𝑧(𝑡−1)𝑙(𝑦𝑖 , 𝑧𝑡−1), ℎ𝑖 = 𝜕𝑧(𝑡−1)
2 𝑙(𝑦𝑖 , 𝑧𝑡−1)

 Ω(𝑓𝑡) + 𝑐 (3)

Ω(𝑓𝑡) = 𝛾𝑇 +
1

2
𝜆 ∑ 𝜔𝑗

2 (4)

𝑇

𝑗=1

weightage until it is classified. It follows an accurate prediction
by using a moderately inaccurate rule of rough and moderate
heuristics. Adaptive boosting is upgraded to Adaptive,
Reweighing, and Combine (ARC) algorithm. It re-computes the
classifier and weighted inputs. Next, this was put into a statistical
framework for numerical optimization to minimize the loss model
by adding the weak learner and using the gradient descent
procedure to make a gradient boosting machine. As one weak
learner is added at a time there are two approaches, Stage wise
additive model and Stepwise additive model. In the stage-wise
additive model, the weak learner remains unchanged, frozen as
new weak learners are added.

In the stepwise approach, the previous weak learners are
readjusted on the entry of new weak learners. A decision tree is
used as a weak learner in gradient boosting. It may have decision
stumps or larger trees going up to 4 to 8 levels. The weak learners
are constrained by the maximum layer, number of nodes,
maximum number of splits, maximum number of leaf nodes. It
follows a stage-wise additive approach in which existing trees are
not changed and one tree is added at a time greedily. The best split
points are divided on the gain index or to minimize the loss. A
gradient descent model minimizes the loss while adding the trees.
In general, the gradient descent is used to minimize a set of
parameters e.g. the coefficient of a regression equation or weights
in a neural network. The loss or error is computed and the weights
are updated to minimize the error. Various differentiable loss
functions such as classification error, an area under curve,
logarithmic loss, mean square error, mean error, etc. may be used
for binary or multiclass classification. Here we have the weak
learner as sub-models in place of parameters. After calculating
error or loss add a tree to reduce the error. This adds a tree to reduce
error is like applying gradient descent boost procedure. This is
done by parametrizing the tree. The parameters of the tree are
modified to reduce the loss function. This is called gradient descent
with function or functional gradient descent.

Gradient descent in functional space is used to find the

weighted combination of classifiers. The type of problem guides

the use of a loss function. One can select a loss function depending

on the problem under consideration.

The function must be differentiable. The loss functions

selected for this problem are classification error, area under curve,

logarithmic loss. A new boosting algorithm is not required for

each loss function. The framework is generic such that any

differentiable loss function can be used. Area Under Curve (AUC)

[45] is a good parameter for comparison in machine learning

performance and is used here. It is invariant to the classification

threshold, giving quality of prediction irrespective of the

threshold chosen. Besides, it is scale-invariant. Predictions are

made by majority votes of weak learners and weighted by

individual accuracy. Another parameter used for the performance

efficiency of the classifier is logloss. Logloss is one of the

performance parameters used in [27].
Gradient boosting is a greedy algorithm. The dataset can

quickly overfit the model. Regularization method equation (3)
penalizes various parts of the algorithm and improves performance
by reducing overfitting. It makes the model more general. The
weight of the leaf node may be regularized using regularization
functions such as L1 (linear average), L2 (squared mse)
regularization of weights. This additional regularization helps
smooth the final learned weight to avoid overfitting.

4.2. XGboost GBDT

XGboost, Extreme Gradient boosting, uses a gradient

boosting decision tree algorithm. XGboost is designed for speed

and performance. It has an engineering goal to push the limits of

computational resources, for boosted tree algorithms. There are a

variety of interfaces to access XGboost such as C++, Python, R,

Java, Scala, etc. In this work, we have used the python interface.

Data structure and algorithms use cache optimization for better

efficiency. The algorithm uses the efficiency of computation time

and memory resources. It makes the best uses of resources to train

the model. It automatically handles the missing values in the

dataset but not applicable to the dataset used here. We can further

boost the existing model with new data by further training. It is

fast compared to other implementation of gradient boosting

benchmarking random forest implementation. It is memory

efficient, fast, and of high accuracy.

Existing models are boosted with a new model to reduce the

error made by the existing model. The sequence of addition

continues until the error is reduced to the required level or the

number of addition in the model has reached the constraint set. In

gradient boosting machine, new models are added for using

residual or error data points to make final predictions.

In Equation (1) symbol zi is the prediction for i th input. In

the beginning, round 0, there is no prediction. In round 1 equation

(1) prediction is by 𝑓1(𝑥𝑖) [32, 46]. More trees are required in a

model if there are more constraints for trees. Similarly, less

constraint on trees requires less number of trees. For a good model,

𝑜𝑏𝑗(𝑡) ≃ ∑ [𝑔𝑖𝑓𝑡(𝑥𝑖) +
1

2
ℎ𝑖𝑓𝑡

2(𝑥𝑖)]

𝑛

1

+ 𝛾𝑇 +
1

2
𝜆 ∑ 𝜔𝑗

2 (5)

𝑇

𝑗=1

𝑜𝑏𝑗(𝑡) ≃ ∑ [(∑ 𝑔𝑖

𝑖∈𝐼𝑗

) 𝜔𝑗 +
1

2
(∑ ℎ𝑖

𝑖∈𝐼𝑗

+ 𝜆) 𝜔𝑗
2] + 𝛾𝑇

𝑇

𝑗=1

(6)

 𝑜𝑏𝑗(𝑡) ≃ ∑ [𝐴𝑗 𝜔𝑗 +
1

2
(𝐵𝑗 + 𝜆)𝜔𝑗

2]𝑇
𝑗=1 + 𝛾𝑇, (7)

http://www.astesj.com/

R. Kumar et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 536-549 (2020)

www.astesj.com 541

ℎ𝑒𝑟𝑒 𝐴𝑗 = ∑ 𝑔𝑖 , 𝐵𝑗 = ∑ ℎ𝑖

𝑖∈𝐼𝑗

𝑖∈𝐼𝑗

there must be a weak learner with skills but should remain weak.
The model over fits as more and more trees are added. Hence, trees
should be added only until no further improvement in the model is
there. Shorter trees in depth are preferred, as deeper trees make the
weak leaner stronger and they are no weaker. Several nodes
constraint the size of the tree. The tree is not symmetric if other
constraints are used. Another constraint on adding a tree may be a
minimal improvement to loss function at any split added to a tree.
The learning rate of trees can be set by weight assignment to each
tree which finally leads to predictions. The combination of each
tree can be weighted and added for predictions. There is a trade-
off between the learning rate and the number of trees. If the
learning rate is low, more trees need to be added, and take longer
to train the model. The shrinkage, learning rate, reduce the
influence of each tree so that in future better trees can be added. It
gets name gradient boosting because it uses a gradient descent
algorithm to reduce the loss to a minimum when adding a new
model. With each addition of a new model, the prediction keeps on
improving. From (1) using Taylor expansion the objective of the
gradient descent model in a boosted tree is given in (2). (2)
Includes the regularization (3) for generalization of the tree [36,
49]. In XGboost, the regularization objective will select a model
that has simple prediction functions. Equation (5) is derived from
(3). Equation (6) is concerning the number of trees. Equation (8)
gives the roots of (7). Using the roots solution of (7) is in (8). As
we split the tree on the left and right side, it can be written as (10).
AL, BL are weights of the leaves on the left side of the tree, and AR,
BR is weights of the leaves in the right [46]. To optimize the cost
of the final output of the model, the output of the new tree is added
to the output of the existing sequence of trees. This process is
followed until the loss reaches to required one or keeps adding the
member of trees until the maximum number of add is reached. The
loss keeps reducing as more and more trees are added and stops at
the maximum number of trees are reached. It is also described in
Algorithm1.

𝜔𝑗
∗ = −

𝐴𝑗

𝐵𝑗 + 𝜆
 (8)

𝑓(𝑜𝑏𝑗) = −
1

2
∑

𝐴𝑗
2

𝐵𝑗 + 𝜆

𝑇

𝑗=1

+ 𝛾𝑇 (9)

𝐺𝑎𝑖𝑛 =
1

2
[

𝐴𝐿
2

𝐵𝐿 + 𝜆
+

𝐴𝑅
2

𝐵𝑅 + 𝜆
+

(𝐴𝐿 + 𝐴𝑅)2

𝐵𝐿 + 𝐵𝑅 + 𝜆
] − 𝛾(10)

Algorithm1: XGBoost GBDT Algorithm

Input: Dataset

Output: XGBoost GBDT Model

1. Each iteration adds a tree. Start with a tree of depth 0.

2. Compute gi, hi from (2) Aj, Bj from (7)

3. Add a split for tree

A. Rules for split finding and adding split

B. Enumerate over all the features

C. For each node, Enumerate over all the features

D. For each feature, sort the instances by the feature value

E. Use a linear scan to decide the best split along with the

feature

F. Take the best split solution along with all the features by

Computing the gain as in (10)

4. Stop if the gain is negative

5. Continue the steps to max depth = 3 (default)

6. 𝑧𝑖
(𝑡)

= 𝑧𝑖
(𝑡−1)

+ 𝑓𝑡(𝑥𝑖)

7. 𝑦𝑖
(𝑡)

= 𝑦𝑖
(𝑡−1)

+ 𝜀𝑓𝑡(𝑥𝑖)

8. 𝜀 = .1 Learning rate or shrinkage by a tree, one weak learner

Repeat the steps 1-6 for adding more tree until n_estimator =
100 (default)

4.3. Time Complexity

For GBDT time complexity is O(nfd log n). O(n log n) is time
complexity to sort n samples. There are several features and levels
of depth of the tree. This needs to be done for each feature and
depth level. The default max_depth in XGBoost GBDT is 3.
Using GBDT it can be further optimized using approximation or
caching the sorted features. Hence, it can scale to a very large
dataset and features. In machine learning, nonlinear SVM kernel
needs O(N**2) multiplication during each iteration, and with a
large dataset pursuing the method brings resource constraints in
terms of computation, memory, and time taken to train the model.
K-NN needs not only computation but storage of all the label
samples during prediction and not scalable.

5. Experiments and results

5.1. Dataset

We use the EMBER [5] dataset consisting of 1.1 million
entries with a label for malware, benign, and some parts left as
unknown. The Dataset has a training set for 900K samples and an
exclusive separate test set for 200K samples. The training data set
is balanced with 300K malware, 300k benign, and 300k entries
left as unlabelled. The test data set has 100k malware and 100k
benign entries. The equal number of malware and benign in
training and test makes this dataset a balanced dataset for building
a good classifier to classify the malware. The balanced test set
further adds to good testing. Many datasets used in malware
classification are unbalanced and prone to erroneous results. Each
of the entries has 2351 feature sets taken from software that may
be malware or benign. The features are from PE header (General

Table 1: Data Set Used

Sl

n.

Label type Malware Benign Unknown/Un

labelled

1 Training data
set

300K 300K 300K

2 Test data set 300K 100K 0

(COFF), Optional header, and sections), API called by them
from various DLLs. Some of the features are from file agnostic
such raw byte histogram, byte entropy, and strings embedded in
the software. Table 1 summarizes the datasets.

http://www.astesj.com/

R. Kumar et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 536-549 (2020)

www.astesj.com 542

Figure 1: Systems Block for selection data

5.2. Experiment design

The objective of the proposed work is to build a classifier with
low computing resources and achieve improved or comparable
accuracy, AUC using XGBoost classifier for the large data set.
We tried to reduce the features in using the following four
experiments.

• Experiment Part1: Subdivide the feature sets based on a few
parts of the PE header.

• Experiment Part2: Subdivide the features sets based on file
form agnostic part.

• Experiment Part3: Use domain knowledge to eliminate a few
features.

• Experiment Part4: Feature importance associated with
building the GBDT.

Low-end compute machine with an i5 processor, 8 GB RAM
with Windows 10 is used for various training and testing.

Experiment design Part1, Part2

Figure 1 shows the block diagram for this research. Feature
sets can be derived from executable of any operating system in
various formats using the LIEF library. The features sets include
API calls, DLLs, and PE header fields. More file form agnostic
features may be added. If the number of features for a part is very
large in number. They can be hashed or one hot encoded as may
be required. All these hashed, hot encoded make 2351 features in
the dataset[1]. All the features are categorized and identified in
many sets such as set#1, set#2, … set#n. The Dataset has 600K
samples training sets and separates 200K samples in the test set.
These samples are balanced for malware and benign software. For
each sample in the training dataset and test, dataset identified
features are used to make a sub dataset. These sub-datasets are
used with the XGBoost algorithm to build a model and to build
the knowledge base. Test sub-datasets are used for testing the
model and compare the results.

Table 2: datasets for selection set#1 to set#6

Sl.

no

Description Train Test No. of

feature

s

1 Rawbyte histogram 300k Malware

300K Benign

100k Malware

100K Benign

256

2 Byte entropy 300k Malware

300K Benign

100k Malware

100K Benign

256

3 Strings, 300k Malware

300K Benign

100k Malware

100K Benign

104

4 Strings,

General(COFF),Opti
onal Header, Section

300k Malware

300K Benign

100k Malware

100K Benign

431

5 Imports_of_-API

with DLL

300k Malware

300K Benign

100k Malware

100K Benign

1280

6 Exports_of API 300k Malware

300K Benign

100k Malware

100K Benign

128

The feature sets in the dataset [5] are broadly divided into

information from the file format of executable and file format
agnostic features of executable. The file format for executable is
from PE header [6-7, 15, 47]. They are having five groups General
(COFF), Optional Header, Sections, API Imports, and API
Exports. The file format agnostic features are in three groups such
as raw byte histogram, byte entropy histogram, and string
extraction. Each of the groups is hashed into a fixed number of
bins. The groups have been identified to eliminate noisy features.
A significant amount of domain expertise is required to perform
the feature engineering. The contribution of various features in the
detection of malware will be divided into six parts as per the PE
header, and file form agnostic part. Three of these will be based
on file form agnostic parts and three will be based on the PE
header part. The regrouping is selected based on domain
knowledge of malware. In [23] author has used entropy for
building classifiers. Besides, [8] were the motivation to use group
1 and 2. The strings features alone can give a better classifier.
Hence, one, group#3 is made for strings alone. In [39] author had

http://www.astesj.com/

R. Kumar et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 536-549 (2020)

www.astesj.com 543

used 7 features from the general and header part of the PE header.
These features were used in [5] and did not give good
performance in their experiment. Hence, another group of larger
features is made of strings, General (COFF) part of PE header,
optional header, and section part from PE header. Many
researchers have used imports of API along with DLL [18, 26, 50].
The malware tends to export its API rather than using the API
from standard DLL. This aspect prompted us to use group#6.
Datasets will be reorganized as per groups identified. The
regrouping is done to build an efficient classifier model for
predictions considering the computation power, low memory.
This will generate multiple datasets as a subgroup of original
datasets. The model needs to be built for each selectionset# of a
dataset for comparison. The datasets are reorganized as following
and details in Table 2.

1. Raw byte histogram

2. Byte entropy

3. Strings extracted

4. Strings Extracted, General(COFF), Optional Header,
Sections

5. Imports of API with DLL

6. Exports of API

Each group identified above are selectionset#1, selectionset#2,
selectionset#3, selectionset#4, selectionset#5, selectionset#6. This
sub section covers the first two bullets identified in the
methodology section.

Experiment design Part3

Each of the executable, applications has MZ as the signature in
the first word of PE header as per PE format. There should be only
one MZ in an executable. If there is more than one MZ string in an
executable, it may indicate the executable has embedded more
application or program as obfuscated code and indicate a malware.
Hence, it was predicted that the feature that represents more than
one “MZ” signature string in a dataset, the feature will contribute
to efficient malware prediction.

Experiment design Part 4

XGboost gives feature importance while building the model.
The relative importance of a feature is higher if it used more time
to make key decisions in building a gradient boosted decision tree.
This attribute can be ranked and compared with each other. There
is an explicit calculation for each feature in the dataset for a model
made using XGboost. There are more ways in which feature
importance may be computed such as improvement in
performance measure at each split point, and many rows, samples,
covered at each split point. The performance measure is averaged
for all the decision trees in the XGboost model. Figure 2 shows the
block diagram for building a classifier model using the selected
features that contribute to building the tree in previous experiment
part 1, and 2. The selected features, contributing to building the
model, will be used to make separate the train and test select
datasets. The dataset will have only the important features
identified while building the XGBoost model in the previous
experiment. This updated dataset will be used to build the
XGBoost GBDT model again and the performance will be
compared. It is expected that this updated model build using

selected features should be more efficient in terms of computation
resources, faster and yield higher performance results.

The feature importance of the model made using the base data
set was compared and it was found that only 276 features among
2351 hashed features contribute to making the model. The rest of
the hashed feature 2351 – 276 = 2075 features do not contribute to
making the model. A new select dataset was constructed using the
276 hashed feature that contributes to the building model. The
remaining 2075 hashed features with zero contribution,
representing noise, were excluded from the select dataset. Table 3
shows the dataset built using block model as in Figure 2 and used
for experiment part 4.

Table 3: Datasets for Selected Important Features

Description Train Test Number of

features

Selected

Important

Features

300k Malware

300K Benign

100k Malware

100K Benign

276

Table 4 lists all the 276 important features derived from

experiment part 1 and experiment part2. The file form agnostic
features Histogram of bytes in the executable, 2-dimensional byte
entropy for executable, and the string are hashed. Hence the index
of these three features is listed in the table. The COFF features,
Optional header features that could be identified along with their
indexes had been identified and named in the table. Few of the PE
header section features are identified which are not hashed. The
API imported and API exported are hashed and specific API and
DLL cannot be identified. Among the 276 features that contribute
to making an efficient model, there were features from all groups.
But there was no feature from the export group of feature sets.

All the 128 hashed features derived from the export group of
features were noisy. It also confirms the observation as in Table 2
for Set #6 feature which represents export system call features in a
hash bin.

5.3. Experimental results

Results Experiment part1, part2

Models are built using XGboost for each regrouped datasets
and compared for prediction efficiency. The prediction efficiency
is measured in terms of accuracy, area under curve, and logloss.
The results are tabulated in Table 5.

 It was expected that group4 with strings extracted,
general(COFF), header, and section regrouped dataset will be
highly efficient as these parameters contribute more to the
identification of malware in manual static analysis. This proved to
be true with the experimental results is given in Table 2. The AUC
is very close to the overall AUC of the base dataset and the
accuracy part is less than 3% down from the base dataset with the
number of features reduced to 431 from 2351. With all 2351
features with XGBoost, the accuracy was 97.09. Compare this with
431 selected features the accuracy is down <2%. It demonstrates
the subgroup of features was nearly equal to the full features of the
dataset. The performance of the model using the exports part of the
regrouped dataset was very poor and was excluded from further
experiments. Group#4 with Strings, General(COFF), Optional
Header, and Sections have the highest accuracy among all the
groups of regrouped feature sets.

http://www.astesj.com/

R. Kumar et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 536-549 (2020)

www.astesj.com 544

Figure 2: Model Block diagram using XGBoost feature importance

Table 4: Index of Selected 276 Import Features

Description Number of

features

Index number of features

Raw byte

histogram

66 1, 2, 3, 6, 10, 15, 19, 21, 22, 27, 29, 31, 32, 33, 35, 37, 40, 41, 43, 45, 46, 50, 54, 63, 64, 65, 66, 68, 69, 74, 76, 88, 89, 90, 93,

95, 105, 106, 107, 111, 112, 113, 116, 123, 125, 128, 131, 133, 135, 181, 182, 196, 198, 199, 204, 209, 214, 217, 218, 219,
223, 231, 239, 245, 253, 255

Byte Entropy 46 256, 303, 312, 318, 326, 328, 335, 338, 357, 360, 362, 372, 373, 375, 377, 378, 385, 386, 388, 389, 392, 396, 399, 401, 410, 411,

413, 417, 426, 431, 447, 456, 457, 464, 466, 470, 472, 494, 498, 499, 502, 504, 508, 509, 510, 511

Strings 34 512, 515, 521, 529, 530, 531, 532, 533, 534, 543, 551, 552, 553, 554, 558, 562, 570, 578, 583, 588, 589, 596, 597, 600, 601,
602, 604, 605, 606, 611, 612, 613, 614, 615

General

(COFF)

6 616(size), 617(v size), 618(has debug), 619(exports), 620(imports), 623(has signature)

Optional
Header,

16 626(Time Stamp),632(Machine), 637(characteristics), 640, 654(subsystem), 655, 658(DLL characteristics), 660, 677, 678,
679, 680, 681, 682, 683, 685,

Sections 27 688(name of section),689(size), 691(v size), 692(properties), 693(section size), 707, 712, 734, 736, 748(section entropy hash),

770, 771, 775, 784, 785, 786, 797(section v size hash), 798, 803, 825, 827, 834, 836, 843, 906, 930, 940

Imports of API

with DLL

81 951, 954, 986, 994, 1011, 1043, 1060, 1073, 1162, 1190, 1197, 1225, 1254, 1263, 1303, 1309, 1312, 1316, 1342, 1343, 1360,

1362, 1366, 1377, 1387, 1388, 1396, 1399, 1404, 1445, 1451, 1455, 1476, 1482, 1484, 1505, 1526, 1545, 1546, 1597, 1629, 1656,

1663, 1685, 1689, 1693, 1704, 1712, 1724, 1756, 1773, 1775, 1799, 1807, 1815, 1836, 1886, 1892, 1901, 1949, 1969, 1973, 1991,

2004, 2006, 2018, 2034, 2047, 2052, 2078, 2083, 2097, 2110, 2114, 2125, 2140, 2159, 2180, 2184, 2188, 2210

Exports of API 0

It was used for further enhancement by hyperparameter
tuning of n_estimator. n_estimator hyperparameter in XGboost is
cunt of trees to fit. It is also number epochs the algorithm is run to
add a tree until the number of trees reaches n_estimator count to
further improve the accuracy[14,36] of the model. The default
value of n_estimators is 100. For group 4, Figure 3 shows
classification error, Figure 4 shows area under the curve for
n_estimator =100 and Figure 5 log loss with n_estimator=100. It
shows that the model is not overfitting and has room for
improvement. Hence, further hyperparameter tuning is done for
group4, selectionset#4, with n_estimators = 200, 300, and
thereafter with 400.

Table 5: Comparison of Prediction Efficiency for Regrouped Data

Sl

no.

Name of datasets Accuracy AUC

1 Raw byte histogram 93.28% .978743

2 Byte Entropy 90.69% .967944

3 Strings 92.2845% .97618

4 Strings, General, Optional

Header, Sections

95.4405% .992099

5 Imports of API with DLL 92.05% .977229

6 Exports of API 58.8985 .597902

7 Base dataset with LightGBM[1] 98.162% .999112

8 With All features as in Base

dataset

97.09 .99571

Table 6: Group 4 Performance Parameter

Sl

n.

n_es

tima

tor

Accuracy AUC logloss Classificatio

n error

1 200 96.537% .995015 .10523 .03462

2 300 97.07% .996472 .08768 .02713

3 400 97.49% .997261 .07675 .02445

Table 6 shows the improvement in performance parameters for
accuracy, AUC, and logloss. The accuracy and AUC for group4
with merely 431 features are comparable to the performance of the
base dataset with 2351features. Figure 6 shows classification error,
Figure 7 shows AUC, and Figure 8 shows log loss for
n_estimator=400. Table 6 shows the accuracy and AUC for
n_estimator 200, 300, 400. The accuracy for just 431 features is
97.495 higher than the accuracy with all the 2351 features 97.09 %

Sl no. Name of datasets Accuracy AUC

1 Raw byte histogram 93.28% .978743

2 Byte Entropy 90.69% .967944

3 Strings 92.2845% .97618
4 Strings, General,

Optional Header,

Sections

95.4405% .992099

5 Imports of API with

DLL

92.05% .977229

6 Exports of API 58.8985 .597902

7 Base dataset with
LightGBM[1]

98.162% .999112

8 With All features as in

Base dataset

97.09 .99571

http://www.astesj.com/

R. Kumar et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 536-549 (2020)

www.astesj.com 545

using XGBoost with n_estimator = 400. Further feature selection
has been done that matches the performance of the base dataset or
improves in some performance parameters for classification.

Figure 3: XGBoost classification Error for n_estimator = 100

Figure 4: XGBoost AUC for n_estimator = 100

Figure 5: XGBoost Logloss for n_estimator = 100

Results Experiment part3

Inclusion or exclusion of features representing more than one
MZ had no effects on prediction efficiency. On further

investigation using the SHA-256 signature at virustotal [3], it was
found that benign application may package up to 32 executable for
software upgrade purposes

Figure 6: XGBoost classification Error for n_estimator = 400

Figure 7: XGBoost AUC for n_estimator = 400

Figure 8: XGBoost logloss for n_estimator = 400

Results Experiment part4

A model was built with these selected 276 features and
prediction efficiency were explored. The accuracy, AUC, and
logloss parameters for the n_estimators 600 are tabulated in Table
5 and compared with base datasets. The accuracy has given a 1%
increase compared with only subset#4 in Table 7. It has exceeded
the accuracy of all the features in the base dataset by 1.41% (98.5%
vs 97.09%). It has also exceeded the accuracy compared to the base
set at 98.2% as reported by author in [5]. The AUC value is
marginally less .999112 vs .99872.

http://www.astesj.com/

R. Kumar et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 536-549 (2020)

www.astesj.com 546

Figure 9:Feature importance selected 276 features, number times called

Table 7: Accuracy, Auc for Base Dataset and 276 Features as Per Feature

Importance

Sl

no.

n_estimator Accuracy AUC logloss Classification

error

1 Base dataset [1]

using
LightGBM

98.162% .999112 NA NA

2 With All

features as in
Base dataset

97.09 .99571 NA NA

3 Select 276

feature sets,

n_estimator=600

98.5% .998972 .046314 .014157

4 Group4 feature

sets,

n_estimator=600

97.49% .997261 .076753 .024453

5.4. Further reduction in important features

The feature importance of these selected 276 is further studied.
It was found that all the selected features contributed to building
the classifier model. Unlike with base dataset, in which there were
2075 features were noisy and did not contribute to building the
model. None of the selected 276 falls into the category which does
not contribute to building the model using XGboost.

Figure 9 gives how many times a feature is used for generating
the GDBT model using the XGboost method. The actual figure is
not legible due to the 276 feature. Hence, the only top part of the
results of the feature is shown in each figure.

5.5. Hyperparameter tuning with learning rate

We tried to optimize the model with a change in the learning
rate. The default learning rate in XGBoost is 0.1. We tried with a
learning rate of 0.01 and n_estimator=600. The model build gave
slow movement to performance parameters as in the default
learning rate. We used learning rate of 0.15 and .2 with
n_estimators = 600. It indicates that the model gives the same
efficiency but at a different rate. Hence, performance parameters

are not affected at n_estimator = 600 for various learning rates.
There was no improvement in performance parameters.

Table 8: Performance of XGBoost with other classification algorithm

Models Accuracy

(%)

Precision Recall F-

score

Time in

Second

Gaussian Naïve

Bayes

51.82 0.43 0.10 0.17 470.37

KNN 56.38 0.52 0.88 0.65 307.66

Linear SVC 49.98 0.48 0.99 0.65 115.62

Decision Tree 89.62 0.85 0.94 0.89 177.43

AdaBoost 89.24 0.87 0.91 0.89 105.06

Random Forest 93.6 0.9 0.98 0.93 141.54

ExtraTrees 94.68 0.92 0.98 0.94 47.62

GradientBoosting 93.16 0.89 0.98 0.93 72.83

XGBoost 93.04 0.89 0.98 0.93 106.89

XGB with trained

model 1

97.72 0.98 0.97 0.98 63.24

XGB with trained

model 2

98.22 0.99 0.98 0.98 61.44

5.6. Comparison with other classification algorithm

Eight other classification algorithms were compared with the
XGBoost classification algorithm on a sub dataset of 5000K
Training and 5000k test datasets with selected 276 features. The
performance of these algorithms is listed in table 8. XGBoost
indicates classification performance without hyperparameter

http://www.astesj.com/

R. Kumar et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 536-549 (2020)

www.astesj.com 547

tuning, XGB with trained model 1 is the tuned model with
n_estimator = 400 and XGB with trained model 2 is the tuned
model with n_estimator = 600. It indicated the performance score
of XGB with trained model 2 is best among all the classification
algorithm. XGBoost is better than Gaussian naïve Bayes, K-
Nearest Neighbour (KNN), Linear SVC, Random forest, and
Decision tree in terms of the time to make model and test for sub
dataset. Extratrees, GradientBoosting, Adaboosts are better than
XGBoost in terms of time to train and test the model for the
identified sub dataset.

Figure 10: Algorithm comparison with Accuracy with 10-fold cross validation

5.7. K-fold Cross-validation of algorithms

Cross-validation is a statistical method to validate the
classification algorithm. 10 fold cross-validation was done with the
same sub data set as above with 5000 K training data set with
selected 276 features and eight different classification algorithms.
Figure 6 displays a whisker and box plot for the accuracy of eight
different classification algorithms and a trained XGBoost model.
The XGBT is the label for the trained XGBoost model. The cross-
validation for the model makes the smallest box in the Figure 10.
It means the model does not have much variation for the accuracy
while performing the 10 fold cross-validation. It indicates the
model is optimized well with hyperparameter tuning.

5.8. Comparison with other works

Table 9 compares the result of this research with other similar
work, identified with reference in the column, which have used
either the dataset given in [5] in part or full or other very large
datasets for building malware classifier. The accuracy is
marginally low compared to [48] as they have used 1/3 of the
samples. It is also low compared to author using deep convolution
malware classifier in [49, 50]. They have used high-end computing
resources with 1711 features. In [50] author saves computation
time by detecting malware during the static analysis and prevent
dynamic analysis of malware in the Security Operation Center.
Such work to use the large dataset with low-end computing is not
available at this time and is one of the contributions. We have
achieved higher accuracy using low computing resource of intel i5
processor and reduced 276 number of features compared other
works which use high-end computing.

Table 9: Comparison with Other Works
 Robust

intelligent

MWD using

DL[48]

Ember

[5]

Malconv[11] The Need for

speed,

Brazillian

MWC[26]

DEEP

CONVOLUTIONAL

MALWARE

CLASSIFIERS [49]

Static PE

Malware

Detection[50]

XGBoost A hybrid static

tool for dynamic

detection of MW

[51]

Size of

Data

70148
Benign,

69860

malware
Static

Analysis part

800K 2 Million 21116 Benign
29704

Malware

20 Million 800K 800K 195,255 Benign,
223,352 malware

Results -

Accuracy

98.9 highest
by DNN

98.2 92.2 98 97.1 99.394 98.5 98.73%

AUC Not Specified 0.99911 0.99821 Not Specified 76.1 for interval 0-

.001

0.999678 0.998972 Not Specified

Processor

Used

Intel Xeon Intel i7 Not

Specified

Not Specified Not Specified 24 v CPU

Google Compute

Engine

Intel i5 Not Specified

No of

features

Not Specified 2351 not

applicable

25 PE header

+ 2 hash

538, 192 1711 2351, (276) 4002 features

from static
analysis. 4594

features from

dynamic analysis

GPU Yes, NO 8 x DGX-1 Not Specified Not specified NO NO Not specified

Train Data 42140 Benign

41860

Malware

300K

Benign

300K
Malware

2 Million .5x21116

Benign

.5x29704
Malware

20 Million 300K Benign

300K Malware

300K Benign

300K Malware

Not specified

Time Not available 20 Hours 25 hours

/Epoch

250 Hours

Not available Not available 5 minutes 1315 seconds

without hyper

parameter
tunning

Not specified

http://www.astesj.com/

R. Kumar et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 536-549 (2020)

www.astesj.com 548

6. Conclusion

Dataset had been regrouped into various groups with domain
expertise in malware detection to build efficient models with low
computational resources without GPUs. The regrouped data with
strings extraction, general, header, section with just 431 feature
sets compared to 2351 gives comparable efficiency in prediction
performance at n_estimator=400. The model is further improved
considering the feature importance as given by XGBoost and
selected 276 features from 2351 features in base original data.
Selected features are used to generate models using XGboost, with
low-end computing resources compared to other similar work. The
model with the selected feature gives improved prediction
performance. The features learned can be widely useful if the
performance parameters are the same across datasets. All the
hashed feature derived from the export function group did not
contribute to build an efficient model and to predict the malware.

Although the open base dataset is very large and balanced, the
malware in datasets may not be exporting the API Calls or private
APIs for malware activities. Hence, the export part of the features
of the dataset did not contribute to building the model. However,
this may not be always true. Shared biases are minimized if the
data is from different sources. The sources of data for base datasets
are not known. It also gives an upper and lower bound of accuracy.

Ember dataset is for windows executable. Using LIEF
methodology in [12], we can generate datasets for other operating
systems such as Linux, Mac os Android, etc. The challenge
remains to get the malware samples for other OS. The techniques
described here can be used to generate a model using low
computational resources that can predict malware efficiently.
Further, the study may be possible to determine which exact
features from the PE format of application or file agnostic features
are part of the selected feature.

To our knowledge, this research is one of its kind that uses a
full dataset with the XGBoost GBDT algorithm to get matching or
higher accuracy with a low computing resource. The basic model
using the XGBoost classification algorithm was trained using low
computation resources in 1315 seconds with a reduction in the
feature set. The hyperparameter tuned model gives improved
performance for accuracy of 98.5 and on par AUC of .9989.

Conflict of Interest

The authors declare no conflict of interest.

References

[1] V. Blue, RSA: Brazil’s “Boleto Malware” stole nearly $4 billion in two

years, https://www.zdnet.com/article/rsa-brazils-boleto-m.

[2] F. Cohen, “Theory and Experiments,” 6, 22–35, 1987.
https://doi.org/10.1016/0167-4048(87)90122-2

[3] https://www.virustotal.com

[4] C. Rossow, C.J. Dietrich, C. Grier, C. Kreibich, V. Paxson, N. Pohlmann, H.
Bos, M. Van Steen, “Prudent practices for designing malware experiments:

Status quo and outlook,” Proceedings - IEEE Symposium on Security and

Privacy, (June 2014), 65–79, 2012, doi:10.1109/SP.2012.14.
[5] H.S. Anderson, P. Roth, “EMBER: An Open Dataset for Training Static PE

Malware Machine Learning Models,” 2018.

https://arxiv.org/abs/1804.04637
[6] M. Pietrek, Inside windows-an in-depth look into the win32 portable

executable file format, MSDN Magazine, 2002.

https://docs.microsoft.com/en-us/previous-
versions/bb985992(v=msdn.10)?redirectedfrom=MSDN

[7] D. Devi, S. Nandi, “PE File Features in Detection of Packed Executables,”
International Journal of Computer Theory and Engineering, (January), 476–

478, 2012, doi:10.7763/ijcte.2012.v4.512.

[8] D. Baysa, R.M. Low, M. Stamp, “Structural entropy and metamorphic
malware,” Journal in Computer Virology, 9(4), 179–192, 2013,

doi:10.1007/s11416-013-0185-4.

[9] M. Sebastián, R. Rivera, P. Kotzias, J. Caballero, Avclass: A tool for massive
malware labeling, 230–253, 2016, doi:10.1007/978-3-319-45719-2_11.

[10] E. Raff, R. Zak, R. Cox, J. Sylvester, P. Yacci, R. Ward, A. Tracy, M.

McLean, C. Nicholas, “An investigation of byte n-gram features for malware
classification,” Journal of Computer Virology and Hacking Techniques,

14(1), 2018, doi:10.1007/s11416-016-0283-1.

[11] E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, C. Nicholas,
“Malware Detection by Eating a Whole EXE,” 2017, doi:10.13016/m2rt7w-

bkok.

[12] Quarkslab, LIEF: library for instrumenting executable files,
https://lief.quarkslab.com/.

[13] M.Z. Shafiq, S.M. Tabish, F. Mirza, M. Farooq, “PE-miner: Mining

structural information to detect malicious executables in realtime,” Lecture
Notes in Computer Science (Including Subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 5758 LNCS, 121–141,

2009, doi:10.1007/978-3-642-04342-0_7.
[14] A. Moser, C. Kruegel, E. Kirda, “Limits of static analysis for malware

detection,” Proceedings - Annual Computer Security Applications

Conference, ACSAC, 421–430, 2007, doi:10.1109/ACSAC.2007.21.
[15] M.Z. Shafiq, S.M. Tabish, F. Mirza, M. Farooq, “PE-miner: Mining

structural information to detect malicious executables in realtime,” Lecture
Notes in Computer Science (Including Subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 5758 LNCS, 121–141,

2009, doi:10.1007/978-3-642-04342-0_7.
[16] F. Guo, P. Ferrie, T.C. Chiueh, “A study of the packer problem and its

solutions,” Lecture Notes in Computer Science (Including Subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5230
LNCS, 98–115, 2008, doi:10.1007/978-3-540-87403-4_6.

[17] M.G. Schultz, E. Eskin, E. Zadok, S.J. Stolfo, “Data mining methods for

detection of new malicious executables,” Proceedings of the IEEE Computer
Society Symposium on Research in Security and Privacy, (February 2001),

38–49, 2001, doi:10.1109/secpri.2001.924286.

[18] M. Alazab, S. Venkataraman, P. Watters, “Towards understanding malware
behaviour by the extraction of API calls,” Proceedings - 2nd Cybercrime and

Trustworthy Computing Workshop, CTC 2010, (July 2009), 52–59, 2010,

doi:10.1109/CTC.2010.8.
[19] M. Egele, T. Scholte, E. Kirda, C. Kruegel, “A survey on automated dynamic

malware-analysis techniques and tools,” ACM Computing Surveys, 44(2),

2012, doi:10.1145/2089125.2089126.
[20] M. Carpenter, T. Liston, E. Skoudis, “Hiding virtualization from attackers

and malware,” IEEE Security and Privacy, 5(3), 62–65, 2007,

doi:10.1109/MSP.2007.63.
[21] T. Raffetseder, C. Kruegel, E. Kirda, “Detecting system emulators,” Lecture

Notes in Computer Science (Including Subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 4779 LNCS, 1–18, 2007,
doi:10.1007/978-3-540-75496-1_1.

[22] R. Pascanu, J.W. Stokes, H. Sanossian, M. Marinescu, A. Thomas, “Malware

classification with recurrent networks,” ICASSP, IEEE International
Conference on Acoustics, Speech and Signal Processing - Proceedings,

2015-August, 1916–1920, 2015, doi:10.1109/ICASSP.2015.7178304.

[23] J. Saxe, K. Berlin, “Deep neural network based malware detection using two
dimensional binary program features,” 2015 10th International Conference

on Malicious and Unwanted Software, MALWARE 2015, 11–20, 2016,

doi:10.1109/MALWARE.2015.7413680.
[24] W. Huang, J.W. Stokes, “MtNet: A multi-task neural network for dynamic

malware classification,” Lecture Notes in Computer Science (Including

Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 9721, 399–418, 2016, doi:10.1007/978-3-319-40667-1_20.

[25] B. Kolosnjaji, A. Zarras, G. Webster, C. Eckert, “Deep learning for

classification of malware system call sequences,” Lecture Notes in Computer
Science (Including Subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), 9992 LNAI, 137–149, 2016,

doi:10.1007/978-3-319-50127-7_11.
[26] F. Ceschin, F. Pinage, M. Castilho, D. Menotti, L.S. Oliveira, A. Gregio,

“The Need for Speed: An Analysis of Brazilian Malware Classifers,” IEEE

Security and Privacy, 16(6), 31–41, 2019,
doi:10.1109/MSEC.2018.2875369.

[27] R. Ronen, M. Radu, C. Feuerstein, E. Yom-Tov, M. Ahmadi, “Microsoft

Malware Classification Challenge,” http://arxiv.org/abs/1802.10135, 2018.

http://www.astesj.com/
https://www.zdnet.com/article/rsa-brazils-boleto-m
https://doi.org/10.1016/0167-4048(87)90122-2

R. Kumar et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 536-549 (2020)

www.astesj.com 549

[28] J. Jang, D. Brumley, S. Venkataraman, “BitShred: Feature hashing malware
for scalable triage and semantic analysis,” Proceedings of the ACM

Conference on Computer and Communications Security, 309–320, 2011,

doi:10.1145/2046707.2046742.
[29] J.Z. Kolter, M.A. Maloof, “Learning to detect malicious executables in the

wild,” KDD-2004 - Proceedings of the Tenth ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, 7, 470–478, 2004,
doi:10.1145/1014052.1014105.

[30] K. Weinberger, A. Dasgupta, J. Langford, A. Smola, J. Attenberg, “Feature

hashing for large scale multitask learning,” ACM International Conference
Proceeding Series, 382, 2009, doi:10.1145/1553374.1553516.

[31] Jason Brownlee, XGBoost with Python Gradient Boosted Trees with

XGBoost and sci-kit learn. Edition: v1.10
[32] https://xgboost.readthedocs.io/en/latest/python/python_api.html

[33] https://lightgbm.readthedocs.io/en/latest/Python-Intro.html

[34] Ke, G., “LightGBM: a highly efficient gradient boosting decision tree.” In:
Advances in Neural Information Processing Systems, 3149–3157 (2017).

http://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-

boosting-decision-tree
[35] K. Raman, “Selecting Features to Classify Malware,” InfoSec Southwest

2012, 1–5, 2012.

[36] A.H. Sung, J. Xu, P. Chavez, S. Mukkamala, “Static Analyzer of Vicious
Executables (SAVE),” Proceedings - Annual Computer Security

Applications Conference, ACSAC, (January), 326–334, 2004,

doi:10.1109/CSAC.2004.37.
[37] H. Daku, P. Zavarsky, Y. Malik, “Behavioral-Based Classification and

Identification of Ransomware Variants Using Machine Learning,”
Proceedings - 17th IEEE International Conference on Trust, Security and

Privacy in Computing and Communications and 12th IEEE International

Conference on Big Data Science and Engineering, Trustcom/BigDataSE
2018, 1560–1564, 2018, doi:10.1109/TrustCom/BigDataSE.2018.00224.

[38] A. Damodaran, F. Di Troia, C.A. Visaggio, T.H. Austin, M. Stamp, “A

comparison of static, dynamic, and hybrid analysis for malware detection,”
Journal of Computer Virology and Hacking Techniques, 13(1), 2017,

doi:10.1007/s11416-015-0261-z.

[39] M. Tang, Q. Qian, “Dynamic API call sequence visualisation for malware
classification,” IET Information Security, 13(4), 367–377, 2019,

doi:10.1049/iet-ifs.2018.5268.

[40] L. Nataraj, D. Kirat, B. Manjunath, G. Vigna, “SARVAM: Search And
RetrieVAl of Malware,” Ngmad, (January), 2013.

[41] L. Nataraj, S. Karthikeyan, G. Jacob, B.S. Manjunath, “Malware images:

Visualization and automatic classification,” ACM International Conference
Proceeding Series, 2011, doi:10.1145/2016904.2016908.

[42] D. Kirat, L. Nataraj, G. Vigna, B.S. Manjunath, “SigMal: A static signal

processing based malware triage,” ACM International Conference
Proceeding Series, (March 2016), 89–98, 2013,

doi:10.1145/2523649.2523682.

[43] S. Geetha, N. Ishwarya, N. Kamaraj, “Evolving decision tree rule based
system for audio stego anomalies detection based on Hausdorff distance

statistics,” Information Sciences, 180(13), 2540–2559, 2010,

doi:10.1016/j.ins.2010.02.024..
[44] S. Venkatraman, M. Alazab, “Use of Data Visualisation for Zero-Day

Malware Detection,” Security and Communication Networks, 2018, 2018,

doi:10.1155/2018/1728303..
[45] A.P. Bradley, “The use of the area under the ROC curve in the evaluation of

machine learning algorithms,” Pattern Recognition, 30(7), 1145–1159, 1997,

doi:10.1016/S0031-3203(96)00142-2.
[46] T. Chen, Introduction to Boosted Trees..

http://homes.cs.washington.edu/~tqchen/pdf/BoostedTree.pdf

[47] E. Raff, J. Sylvester, C. Nicholas, “Learning the PE header, malware
detection with minimal domain knowledge,” AISec 2017 - Proceedings of

the 10th ACM Workshop on Artificial Intelligence and Security, Co-Located

with CCS 2017, 121–132, 2017, doi:10.1145/3128572.3140442.
[48] R. Vinayakumar, M. Alazab, K.P. Soman, P. Poornachandran, S.

Venkatraman, “Robust Intelligent Malware Detection Using Deep

Learning,” IEEE Access, 7, 46717–46738, 2019,
doi:10.1109/ACCESS.2019.2906934.

[49] M. Krčál, O. Švec, O. Jašek, M. Bálek, “Deep convolutional malware

classifiers can learn from raw executables and labels only,” 6th International
Conference on Learning Representations, ICLR 2018 - Workshop Track

Proceedings, (2016), 2016–2019, 2018.

[50] H. Pham, T.D. Le, T.N. Vu, Static PE Malware Detection Using Gradient,
Springer International Publishing, 2018, doi:10.1007/978-3-030-03192-3.

[51] D. Kim, D. Mirsky, A. Majlesi-Kupaei, R. Barua, “A Hybrid Static Tool to

Increase the Usability and Scalability of Dynamic Detection of Malware,”

MALWARE 2018 - Proceedings of the 2018 13th International Conference
on Malicious and Unwanted Software, 115–123, 2019,

doi:10.1109/MALWARE.2018.8659373.

http://www.astesj.com/
https://xgboost.readthedocs.io/en/latest/python/python_api.html
https://lightgbm.readthedocs.io/en/latest/Python-Intro.html
http://homes.cs.washington.edu/~tqchen/pdf/BoostedTree.pdf

	2. Background
	2.1. Portable executable
	2.2. Techniques used for malware detection

	3. Literature survey
	4. Methodology
	4.1. Gradient Boosted Decision Tree (GBDT)
	4.2. XGboost GBDT
	4.3. Time Complexity

	5. Experiments and results
	5.1. Dataset
	5.2. Experiment design
	Experiment design Part1, Part2
	Experiment design Part3
	Experiment design Part 4

	5.3. Experimental results
	Results Experiment part1, part2
	Results Experiment part3
	Results Experiment part4

	5.4. Further reduction in important features
	5.5. Hyperparameter tuning with learning rate
	5.6. Comparison with other classification algorithm
	5.7. K-fold Cross-validation of algorithms
	5.8. Comparison with other works

	6. Conclusion
	Conflict of Interest
	References

	Word Bookmarks
	c

