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 This paper deals with a multi closed-loop adaptive neuro-fuzzy inference system (ANFIS) 
design for the under-actuated quadrotor systems. First, the training data set for the fuzzy 
inference system is obtained using a proportional integral derivative controller. Then, an 
initial ANFIS controller is designed, where the integral control action is preserved in the 
multi-closed-cloop ANFIS for each quadrotor system state. Thereafter, scaling gains are 
added to the controller inputs/outputs, and a multidimensional PSO algorithm is used to 
tune all the control parameters. Besides, using a simulation example, the aerial vehicle 
performances are investigated in the presence of an unknown payload mass parameter. 
Specifically, the position tracking performances of the proposed multi closed-loop PSO-
based ANFIS plus integral control strategy is compared with the classical PID, 
conventional ANFIS, and non-optimized ANFIS plus integral controllers. Thus, using the 
conducted simulation results, it results that the multi closed-loop PSO-based ANFIS plus 
integral can achieve perfect translational trajectory-tracking and ensure better attitude 
stabilization despite unknown quadrotor payload mass parameter. Therefore, the proposed 
new multi closed-loop PSO-based control strategy may be considered as an efficient 
controller when considering an arbitrary trajectory-tracking problem for the quadrotor 
system. 
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1. Introduction  

In recent years, a growing number of researchers have been 
interested in quadrotor aerial vehicles as a result of their vertical 
take-off and landing (VTOL) ability, accurate hovering, good 
behavior even in case of severe maneuverability, and low cost. 
Then, the growing utilization of these unmanned aerial vehicles 
(UAV) has begun for all types of tasks.  For instance, these aerial 
vehicles are commonly utilized in smart farming [1], real-time 
mapping while exploring confined spaces such as tunnels and 
mines [2], and air travel [3]. However, although the quadrotor has 
become a successful UAV, this aerial robot is an underactuated and 
coupled system. Thus, to control this nonlinear system, several 
approaches have been presented. However, designing an efficient 
control strategy for this aerial vehicle is still a difficult task. In the 
literature, different methods have been used to ensure the 
quadrotor flight stabilization. First, prominent control approaches 
for quadrotor attitude stabilization and trajectory-tracking control 

include the proportional-integral-differential (PID) controller [4]. 
However, despite this control approach could ensure flight 
stabilization for hovering state, it cannot stabilize the quadrotor in 
presence of external disturbances. Also, using a simplified 
dynamic model, the position control could be achieved using a 
nested loop based backstepping control strategy [5]. Furthermore, 
the backstepping technique was combined with integral control, 
which allows bringing together the backstepping robustness 
against disturbances, with the integral control robustness against 
model uncertainties (see e.g. [6], [7], and [8]). The result was an 
integral backstepping control (IBC) scheme that could be used for 
attitude stabilization as well as for trajectory tracking control. 
However, although the altitude control objective was ensured, the 
vehicle hovering still shows attitude oscillations (see e.g. [9]).  

Besides, as a powerful tool for controlling nonlinear systems, 
many (integral) sliding mode controllers were designed for 
stabilizing the quadrotor attitude (see e.g. [10]). However, a 
persistent shattering effect was observed on the vehicle attitude, 
although the stable hovering was achieved. Therefore, due to its 
switching control behavior, which is not acceptable by quadrotor 
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dynamics, perfect autonomous quadrotor flight cannot be ensured 
using a sliding mode control strategy. Then, to compensate for 
parameter uncertainty, many adaptive control strategies are also 
proposed for controlling the quadrotor position (see e.g. [11]), with 
satisfactory results despite the yaw angle was poorly stabilized. 

Interestingly, several fuzzy logic controllers (FLC) are also 
proposed for the autonomous quadrotor flight control (see e.g. 
[12], [13]). Indeed, to achieve the attitude stabilization as well as 
position tracking control, fuzzy logic control is usually utilized. To 
test the proposed fuzzy control performances, a few results have 
shown that efficient position control may are obtained for smooth 
trajectory tracking, despite poor vehicle attitude stabilization. 
Roughly, using only fuzzy logic controllers, the quadrotor attitude 
and its vertical position control problem could be solved using a 
reduced intelligent fuzzy-based controller (see e.g. [14]). 
Specifically, combining the two above controllers with a 
metaheuristic optimization tool permits obtaining better 
performances. For instance, a PID-like structure consists of using 
a fuzzy controller that utilizes the error, its derivative, and its 
integral as input signals. Interestingly, each input is applied 
through a block whose gain is adjustable. Moreover, the control 
action (i.e. the controller output) may also be applied through a 
block whose gain could be tuned. Thus, using an optimization 
algorithm, all the scaling-gains could be independently adjusted, 
which allows improving the controller performances. Namely, the 
provided simulation results show good attitude stabilization and 
stable reference trajectory tracking for the (x,y,z)-position and 𝜓𝜓-
yaw rotation (see e.g. [15] [16]). However, the robustness of the 
proposed controllers was not sufficiently highlighted. Besides, 
artificial neural networks (ANN) have shown their effectiveness in 
controlling unmanned aerial vehicles [17]. Specifically, the fuzzy 
logic controller utilizes expert knowledge in establishing the rule-
base [18], while artificial neural networks learn system operations 
utilizing neurons in almost a similar way the human beings do [19]. 
Interestingly, a new control strategy denoted adaptive neuro-fuzzy 
inference system (ANFIS) has appeared, which allows benefiting 
from FLC as well as ANN control approaches. For instance, using 
quadrotor tests, the ANFIS was shown to be as good as a type-2 
fuzzy controller [20]. Then, compared to conventional 
proportional-integral-differential control, a multi-disturbance 
simulation scenario has shown that the ANFIS controller can 
enhance the quadrotor trajectory-tracking performances [21]. 
Indeed, to implement its inner fuzzy inference subsystem, the 
ANFIS approach can construct its knowledge utilizing training 
data from any classical controller. Interestingly, while designing 
the ANFIS controller, adding (input-output) scaling-gains can 
improve the control system robustness, which necessitates using 
an optimization or teaching-learning algorithm [22]. Especially, 
the particle swarm optimization still proves its high efficiency in 
ANFIS design, whether for tuning the membership functions [23] 
or for tuning the rule base of the inference mechanism [24]. 

Considering the above presentation, this work presents the 
ANFIS design steps for controlling a quadrotor UAV whose 
payload mass parameter is assumed to be unknown during the 
aerial vehicle flight. Thus, we first present the learning ANFIS 
controller design step, where the necessary training data set is 
collected from a classical proportional-integral-differential 
controller. Then, the other ANFIS design steps are described in 

detail. Specifically, this work presents an improved structure of the 
ANFIS control strategy, namely the multi closed-loop ANFIS plus 
integral control action, where an additional integral control action 
is shown to be improving the quadrotor control system 
performances. Roughly, as the steady-state operation of a 
quadrotor is hovering, it results that an integral control can 
compensate for unmodeled dynamics and parameter deviations. 
For this reason, the initial integral control action is maintained as 
an additional component in the proposed ANFIS, which makes the 
proposed control strategy a new multi closed-loop control structure 
[25]. Then, to improve the ANFIS performances, the state error 
signals are applied to the controller inputs through linear blocks 
whose scaling factors could be optimized. Besides, after the 
optimization process, the resulting control system performances 
are compared to those obtained using a classical PID and the 
conventional (non-optimized) ANFIS controllers. It turns out that 
the multi closed-loop PSO-based ANFIS plus integral controller 
can show better tracking control performances and better 
compensation for external disturbances. 

It is worth noticing that the ingredients of the proposed idea 
have been presented in previous authors’ work [26]. However, the 
main idea of the present paper is fully rewritten to make the 
proposed control strategy concisely designed with a complete 
quadrotor system model, without using the small-angle 
assumption. Besides, to show the robustness and the effectiveness 
of the proposed multi closed-loop ANFIS plus integral control 
strategy, both internal, as well as external disturbances, are here 
taken into account and shown to be compensated for. 

This work comprises five sections. First, the quadrotor 
mathematical model is described in section 2. Then, in section 3, 
the PSO-based adaptive neuro-fuzzy inference system plus integral 
design steps are described. To show the effectiveness of the 
enhanced ANFIS control strategy, a simulation example is 
provided and commented in section 4. Finally, a concluding 
summary ends the paper. 

2. Quadrotor Mathematical Model 

The main actuation of a quadrotor is based on the rotors that 
are equidistant from the vehicle center of gravity (COG). Thus, this 
aerial vehicle motion is usually controlled utilizing the relative 
speed of its four actuators. However, the three rotations around the 
(𝜑𝜑,𝜃𝜃,𝜓𝜓) Euler angles, and the linear motions along the (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) 
three axes, make the quadrotor a six-degree-of-freedom (6DOF) 
system. For this reason, the quadrotor is said under-actuated 
because it has only four control inputs. 

2.1. Quadrotor kinematic model 

The quadrotor is a symmetrical structure, which can rotate 
around its three axes. Then, studying its dynamics involves two 
frames. First, the body-fixed frame 𝓕𝓕𝐵𝐵 = �𝐺𝐺, 𝑒𝑒𝑏𝑏𝑏𝑏, 𝑒𝑒𝑏𝑏𝑏𝑏 , 𝑒𝑒𝑏𝑏𝑏𝑏�, where 
𝐺𝐺 is the vehicle center of gravity. Then, the inertial frame 𝓕𝓕𝐸𝐸 =
�𝑂𝑂, 𝑒𝑒𝑖𝑖𝑏𝑏 , 𝑒𝑒𝑖𝑖𝑏𝑏 , 𝑒𝑒𝑖𝑖𝑏𝑏�, where O is an arbitrarily chosen origin in the 
space (see Figure 1).  

Thus, w.r.t  𝓕𝓕𝐸𝐸 -frame, let 𝝃𝝃 ≔ [𝑥𝑥 𝑦𝑦 𝑧𝑧]𝑇𝑇  denote the 
absolute vehicle CoG position, and 𝜼𝜼 ∶= [𝜑𝜑 𝜃𝜃 𝜓𝜓]𝑇𝑇 denote the 
vehicle attitude and orientation, where ( 𝜑𝜑 , 𝜃𝜃 , 𝜓𝜓 ) denote 
respectively the roll, pitch, and yaw Euler angles. However, to 
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avoid the gimbal lock problem, let us consider the following usual 
assumption: 

A1. −𝜋𝜋 2⁄ < 𝜑𝜑 < 𝜋𝜋 2⁄ ,−𝜋𝜋 2⁄ < 𝜃𝜃 < 𝜋𝜋 2⁄  

 
Figure 1: Quadrotor X-structure and frames 

Now, let us notice that the well-known rotation matrix from  
𝓕𝓕𝐵𝐵-frame to 𝓕𝓕𝐸𝐸-frame is given by [27]: 

 𝑹𝑹(𝜂𝜂) = �
𝑐𝑐𝜃𝜃𝑐𝑐𝜓𝜓 𝑠𝑠𝜑𝜑𝑠𝑠𝜃𝜃𝑐𝑐𝜓𝜓 − 𝑐𝑐𝜑𝜑𝑠𝑠𝜓𝜓 𝑐𝑐𝜑𝜑𝑠𝑠𝜃𝜃𝑐𝑐𝜓𝜓 + 𝑠𝑠𝜑𝜑𝑠𝑠𝜓𝜓
𝑐𝑐𝜃𝜃𝑠𝑠𝜓𝜓 𝑠𝑠𝜑𝜑𝑠𝑠𝜃𝜃𝑠𝑠𝜓𝜓 + 𝑐𝑐𝜑𝜑𝑐𝑐𝜓𝜓 𝑐𝑐𝜑𝜑𝑠𝑠𝜃𝜃𝑠𝑠𝜓𝜓 − 𝑠𝑠𝜑𝜑𝑐𝑐𝜓𝜓
−𝑠𝑠𝜃𝜃 𝑠𝑠𝜑𝜑𝑐𝑐𝜃𝜃 𝑐𝑐𝜑𝜑𝑐𝑐𝜃𝜃

� (1) 

with 𝑐𝑐𝛼𝛼: =  𝑐𝑐𝑐𝑐𝑠𝑠(𝛼𝛼) , 𝑠𝑠𝛼𝛼 ≔ 𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼). This means that 

 �̇�𝝃 = 𝑹𝑹(𝜂𝜂)𝑽𝑽𝒃𝒃  (2) 

where �̇�𝝃 ≔ [𝑣𝑣𝑏𝑏 𝑣𝑣𝑏𝑏 𝑣𝑣𝑏𝑏]𝑇𝑇  and 𝑽𝑽𝑏𝑏 ≔ [𝑢𝑢 𝑣𝑣 𝑤𝑤]𝑇𝑇 denote 
respectively the earth-fixed and body-fixed vehicle linear 
velocities. 

Now, concerning angular velocities, the transformation matrix 
from the 𝓕𝓕𝐸𝐸-frame to the 𝓕𝓕𝐵𝐵-frame is denoted the transfer matrix 
and is given by [27] 

 𝑻𝑻(𝜂𝜂) = �
1 0 −𝑠𝑠𝜃𝜃
0 𝑐𝑐𝜑𝜑 𝑠𝑠𝜑𝜑𝑐𝑐𝜃𝜃
0 −𝑠𝑠𝜑𝜑 𝑐𝑐𝜑𝜑𝑐𝑐𝜃𝜃

� (3) 

Then, it follows that 

 𝜴𝜴𝑏𝑏 = 𝑻𝑻(𝜂𝜂)�̇�𝜼  (4) 

where �̇�𝜼 ≔ [�̇�𝜑 �̇�𝜃 �̇�𝜓]𝑇𝑇  denotes the Euler angles rates, and 
𝛀𝛀𝑏𝑏 ≔ [𝑝𝑝 𝑞𝑞 𝑟𝑟]𝑇𝑇 denotes the body-fixed angular velocity. 

2.2. Quadrotor dynamic model 

Assuming that the quadrotor rotors do rotate at 𝜔𝜔𝑖𝑖  (𝑠𝑠 = 1 … 4),   
it results that each quadrotor actuator generates a thrust force that 
is given by 𝑓𝑓𝑖𝑖 ∶= 𝑘𝑘𝜔𝜔𝑖𝑖

2, (𝑘𝑘 > 0), w. r. t  𝓕𝓕𝐵𝐵. Thus, the total upward 
thrust writes: 

  𝑭𝑭𝑏𝑏 ≔ [0 0 𝑇𝑇]𝑇𝑇 (5) 

where 𝑇𝑇 ∶= 𝑘𝑘 ∑ 𝜔𝜔𝑖𝑖
24

𝑖𝑖=1 . Then, considering the 𝓕𝓕𝐸𝐸 -earth-fixed 
frame, and using solid mechanics, the total upward thrust writes: 

 𝑭𝑭𝑒𝑒 ∶= 𝑹𝑹(𝜂𝜂)𝑭𝑭𝑏𝑏  (6) 

Thus, using Newton formalism for translational motions, the 
quadrotor translational dynamics are described by: 

 𝑚𝑚�̈�𝝃 = 𝑭𝑭𝑒𝑒 −𝑾𝑾𝑔𝑔 (7) 

where m denotes the aerial vehicle total mass, and 𝑾𝑾𝑔𝑔 denotes the 
quadrotor weight vector, which is given by: 

 𝑾𝑾𝑔𝑔 ≔ [0 0 𝑚𝑚𝑚𝑚]T  (8) 

where 𝑚𝑚 stands for the gravity acceleration.  

Now, to describe the aerial vehicle rotation motion, let us recall 
that the above thrust forces do also produce the following torques: 

 𝑼𝑼𝜂𝜂 ≔ [𝜏𝜏𝜑𝜑 𝜏𝜏𝜃𝜃 𝜏𝜏𝜓𝜓]𝑇𝑇,  (9) 

with 

 �
𝜏𝜏𝜑𝜑
𝜏𝜏𝜃𝜃
𝜏𝜏𝜓𝜓
� ∶= �

𝑘𝑘𝑘𝑘(−𝜔𝜔2
2 + 𝜔𝜔42)

𝑘𝑘𝑘𝑘(−𝜔𝜔12 + 𝜔𝜔3
2)

𝑑𝑑( −𝜔𝜔12 + 𝜔𝜔2
2 − 𝜔𝜔3

2 + 𝜔𝜔42)
� (10) 

where  𝑘𝑘 denotes the distance between each rotor and the quadrotor 
center of mass. (𝑑𝑑 > 0) denotes the drag constant.  

 Thus, using Newton formalism for rotational motions, the 
aerial vehicle rotation dynamics are described by: 

 𝑱𝑱�̇�𝜴𝑏𝑏 = 𝑼𝑼𝜂𝜂 − 𝜴𝜴𝑏𝑏 x 𝑱𝑱𝜴𝜴𝑏𝑏 (11) 

where 𝑱𝑱 ≔  𝑑𝑑𝑠𝑠𝑑𝑑𝑚𝑚(𝑗𝑗𝑏𝑏, 𝑗𝑗𝑏𝑏 , 𝑗𝑗𝑏𝑏)  denotes the inertia matrix, and 𝛀𝛀𝑏𝑏 
denotes the above body-fixed angular velocity defined in (4).  

Then, let us notice that, using the following vectors: 

 �
𝑼𝑼 ∶= [𝑇𝑇 𝜏𝜏𝜑𝜑 𝜏𝜏𝜃𝜃 𝜏𝜏𝜓𝜓]𝑇𝑇         
𝛀𝛀𝑠𝑠 ∶= [𝜔𝜔12 𝜔𝜔2

2 𝜔𝜔3
2 𝜔𝜔42]𝑇𝑇 (12) 

and considering the following actuation matrix: 

 𝐌𝐌𝑎𝑎 ∶= �
𝑘𝑘    𝑘𝑘

   0   −𝑘𝑘𝑘𝑘
  𝑘𝑘 𝑘𝑘
   0 𝑘𝑘𝑘𝑘

−𝑘𝑘𝑘𝑘 0
−𝑑𝑑  𝑑𝑑

𝑘𝑘𝑘𝑘 0
−𝑑𝑑 𝑑𝑑

�  (13) 
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it results that the control distribution from the actuating motors 
may be described by: 

 𝑈𝑈 = M𝑎𝑎Ω𝑠𝑠 (14) 

Ultimately, according to (4), (7), and (11), the quadrotor 
dynamics can be summarized as follows: 

 

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧
�̇�𝑥 = 𝑣𝑣𝑏𝑏
�̇�𝑦 = 𝑣𝑣𝑏𝑏
�̇�𝑧 = 𝑣𝑣𝑏𝑏

                                    

�̇�𝑣𝑏𝑏 = ( 𝑐𝑐𝜑𝜑 𝑠𝑠𝜃𝜃 𝑐𝑐𝜓𝜓 + 𝑠𝑠𝜑𝜑𝑠𝑠𝜓𝜓) 𝑇𝑇
𝑚𝑚

�̇�𝑣𝑏𝑏 = ( 𝑐𝑐𝜑𝜑 𝑠𝑠𝜃𝜃 𝑠𝑠𝜓𝜓 − 𝑠𝑠𝜑𝜑𝑐𝑐𝜓𝜓) 𝑇𝑇
𝑚𝑚

�̇�𝑣𝑏𝑏 = �𝑐𝑐𝜑𝜑𝑐𝑐𝜃𝜃�
𝑇𝑇
𝑚𝑚
− 𝑚𝑚               

�̇�𝜑  = 𝑝𝑝 + 𝑞𝑞 𝑠𝑠𝜑𝜑 𝑡𝑡𝜃𝜃 + 𝑟𝑟 𝑐𝑐𝜑𝜑 𝑡𝑡𝜃𝜃
�̇�𝜃  = 𝑞𝑞𝑐𝑐𝜑𝜑 − 𝑟𝑟𝑠𝑠𝜑𝜑                     

�̇�𝜓 =  𝑞𝑞 𝑠𝑠𝜑𝜑
𝑐𝑐𝜃𝜃

 + 𝑟𝑟 𝑐𝑐𝜑𝜑
𝑐𝑐𝜃𝜃

                   

�̇�𝑝 =  𝜏𝜏𝜑𝜑
𝑗𝑗𝑥𝑥

+ 𝑗𝑗𝑦𝑦−𝑗𝑗𝑧𝑧
𝑗𝑗𝑥𝑥

𝑞𝑞𝑟𝑟

�̇�𝑞 =  𝜏𝜏𝜃𝜃
𝑗𝑗𝑦𝑦

+ 𝑗𝑗𝑧𝑧−𝑗𝑗𝑥𝑥
𝑗𝑗𝑦𝑦

𝑝𝑝𝑟𝑟

�̇�𝑟 =  𝜏𝜏𝜓𝜓
𝑗𝑗𝑧𝑧

+ 𝑗𝑗𝑥𝑥−𝑗𝑗𝑦𝑦
𝑗𝑗𝑧𝑧

𝑝𝑝𝑞𝑞

                

 (15) 

Now, considering the above quadrotor dynamics, and using 
enhanced fuzzy control strategies, our objective is guaranteeing the 
tracking-control of arbitrary 𝜉𝜉𝑑𝑑𝑒𝑒𝑠𝑠  position for any 𝜓𝜓𝑑𝑑𝑒𝑒𝑠𝑠 -yaw 
orientation, and ensuring the stabilization of  (𝜑𝜑, 𝜃𝜃) attitude angles, 
in presence of unknown aerial vehicle payload mass parameter. 

3. Multi Closed-loop PSO-based ANFIS plus Integral 
Controller 

3.1. Problem statement 

From the above objective, let us design the system inputs, 
namely the vector  𝑼𝑼 ∶= [𝑇𝑇 𝜏𝜏𝜑𝜑 𝜏𝜏𝜃𝜃 𝜏𝜏𝜓𝜓]𝑇𝑇 , which allows 
ensuring the tracking of (𝑥𝑥des, 𝑦𝑦des, 𝑧𝑧des)-reference trajectory for 
arbitrary 𝜓𝜓𝑑𝑑𝑒𝑒𝑠𝑠 -yaw orientation, and the stabilization of (𝜑𝜑,𝜃𝜃) 
quadrotor attitude, despite random payload mass change during the 
vehicle flight, which also means a change of the matrix inertia. 
More concisely, we aim to stabilize the quadrotor system while 
tracking a position reference trajectory with the constraint to keep 
small overshoot and small rise and settling times, despite the 
presence of external disturbances. Then, it is worth noticing that 
because of quadrotor under-actuation, the control system structure 
may be designed using two control subsystems. Namely, an 
upstream control subsystem whose role is to ensure the reference 
trajectory tracking, and a downstream control subsystem whose 
role is stabilizing the vehicle attitude. 

3.2.  PSO-based ANFIS plus integral algorithm 

Now, we briefly describe the proposed PSO-based adaptive 
neuro-fuzzy inference system plus integral (ANFIS+I) control 
strategy that is based on a Multi-Closed-loop ANFIS controller, 
where the additional control scaling gains are optimized using a 
multidimensional PSO algorithm. For clarity, algorithm 1 

enumerates the main steps of the code to implement using a 
simulation tool (e.g. Matlab). For clarity, the methodology of the 
PSO-based ANFIS+I control design may be summarised using 
algorithm 1. 

Algorithm 1: PSO-based ANFIS+I control algorithm 
Collect training data  
Generate ANFIS controller 
ANFIS Enhancement with integral control 
ANFIS+I scaling factors optimization using PSO 

3.3. ANFIS architecture 

The adaptive neuro-fuzzy inference system (ANFIS) algorithm 
was firstly introduced by Jang in 1993 [28], which was considered 
as an intelligent hybrid algorithm based on the benefits of both 
fuzzy logic control (FLC) and artificial neural network (ANN) 
approaches. The idea started from the fact that to design a suitable 
FLC for the considered plant, we need a minimum of knowledge 
upon the system functioning, which allows us to define the fuzzy 
rules of the controller. Then, we should define the membership 
function type and degree. For this reason, the design of this control 
is considered a complicated task despite the wide use of the FLC 
system in control engineering [29]. Thus, to compensate for the 
disadvantages of the FLC system, the artificial neural network 
(ANN) is also used. Roughly, the ANN algorithm may be utilized 
during the learning process, which can approximate an unknown 
function from the system inputs and outputs data set, using a 
multitude of neurons in a similar way of a human-being brain. 

Indeed, through five layers of the ANN algorithm, the system 
output 𝑦𝑦 is computed from (𝑥𝑥1, 𝑥𝑥2) inputs using several inference 
system parameters such as the fuzzy rules number and the 
membership function type and degree. For clarity, Figure 2 shows 
the ANFIS architecture model. 

 
Figure 2: ANFIS architecture with two membership function 

Now, the learning process of the ANFIS algorithm may be 
described as follows: 

First, in the fuzzification layer, the output of each node is 
computed from the following equation: 

 �
𝑂𝑂𝑖𝑖1 = 𝜇𝜇𝐴𝐴𝑖𝑖(𝑥𝑥1)
𝑂𝑂𝑖𝑖1 = 𝜇𝜇𝐵𝐵𝑖𝑖(𝑥𝑥2)

 (16) 

where (𝑥𝑥1, 𝑥𝑥2) are the inputs, (𝐴𝐴𝑖𝑖 , 𝐵𝐵𝑖𝑖) are the node linguistic label, 
where 𝑠𝑠 varies from 1 to the membership function number. 

Then, to compute the output node of the second layer, we use 
the product of each input entering into the node as follows: 
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   �
𝑂𝑂𝑗𝑗2 = 𝑤𝑤𝑗𝑗                           
𝑤𝑤𝑗𝑗 = 𝜇𝜇𝐴𝐴𝑖𝑖(𝑥𝑥1) ∗ 𝜇𝜇𝐵𝐵𝑖𝑖(𝑥𝑥2) (17)       

where 𝑗𝑗 varies from 1 to the fuzzy rule number 𝑠𝑠 and 𝑤𝑤𝑗𝑗  is a rule-
coefficient that stands for the firing strength. 

Now, to compute the value of each node in the normalization 
layer, each firing strength is divided by the sum of all firing 
strength, which is denoted by the normalized firing strength 
according to the following equation: 

 �
𝑂𝑂𝑗𝑗3 = 𝑤𝑤�𝑗𝑗          

𝑤𝑤�𝑗𝑗 =
𝑤𝑤𝑗𝑗

∑ 𝑤𝑤𝑗𝑗
9
𝑗𝑗=1

    (18) 

where 𝑗𝑗 varies from 1 to 𝑠𝑠 

Then, in the defuzzification layer, using the normalized firing 
strength 𝑤𝑤�𝑗𝑗 and the consequent parameters �𝑝𝑝𝑗𝑗 , 𝑞𝑞𝑗𝑗 , 𝑟𝑟𝑗𝑗�, we compute 
a weighted value of each fuzzy rule using the following equation: 

 �
𝑂𝑂𝑗𝑗4 = 𝑤𝑤�𝑗𝑗𝑓𝑓𝑗𝑗                               
𝑤𝑤�𝑗𝑗𝑓𝑓𝑗𝑗 = 𝑤𝑤�𝑗𝑗(𝑝𝑝𝑗𝑗𝑥𝑥1 + 𝑞𝑞𝑗𝑗𝑥𝑥2 + 𝑟𝑟𝑗𝑗)   (19) 

Thus, the final unique node value obtained in the output layer 
is computed by adding the incoming inputs according to the 
following equation: 

 𝑂𝑂15 = ∑ 𝑤𝑤�𝑗𝑗𝑓𝑓𝑗𝑗𝑛𝑛
𝑗𝑗=1      (20) 

3.4. ANFIS algorithm design 

To design the ANFIS controller, the first step is the collection 
of learning data. Indeed, this learning process is very important 
while designing the ANFIS controller. In this work, we choose to 
select the training data set from a proportional-integral-differential 
controller. Then, benefiting from the symmetrical structure,  to 
control the six-state quadrotor system, namely (𝑥𝑥,𝑦𝑦, 𝑧𝑧,𝜑𝜑, 𝜃𝜃,𝜓𝜓) , 
only four P(I)D controllers are necessary. Roughly, similar PD 
controllers are used for the horizontal positions 𝑥𝑥 and 𝑦𝑦, similar 
controllers are used for the attitude Euler angles 𝜑𝜑 and 𝜃𝜃, a PID 
control structure is used for the quadrotor altitude 𝑧𝑧,  and for 
controlling the 𝜓𝜓-yaw quadrotor orientation (see Figure 3). Then, 
to get the necessary training data for the ANFIS controller, the 
responses of the four P(I)D controllers are collected. Especially,  
in this work, the training data is a 3-dimensional vector, namely, 
the (𝑒𝑒 , �̇�𝑒) controller inputs and the 𝑦𝑦-controller output. Roughly, 
two steps are needed during the design of the ANFIS controller: 
the training and the testing process. Moreover, the initial training 
data is arbitrarily separated into a training data  𝑉𝑉𝑡𝑡𝑡𝑡𝑎𝑎𝑖𝑖𝑛𝑛  (70% of 
initial data) and the testing data  𝑉𝑉𝑡𝑡𝑒𝑒𝑠𝑠𝑡𝑡 ( 30% of initial data). Then,  
to transform the (𝑒𝑒, �̇�𝑒 )-inputs into the 𝑦𝑦-output, we should select 
several parameters of the ANFIS algorithm.  

Moreover, to approximate the fuzzy inference system (FIS) 
from the initial data set, the type and degree of the input-output 
membership functions (MFs) should be defined. 

 

 
Figure 3: Quadrotor system controlled by the PD plus integral controllers 

However, it is worth noticing that the choice of the membership 
functions degree significantly affects the necessary computational 
time for designing the controller. This means that choosing a small 
MFs degree is beneficial to the controller computing time. Then,  
in the proposed ANFIS controller, only three inputs MFs and three 
output MFs, are configured to implement each fuzzy inference 
system (FIS) of the controller. Furthermore, compared to other 
MFs types such as the trapezoidal, triangular, and bell, the 
Gaussian MFs type is characterized by the less complexity and 
high precision (see e.g. [30], and [31]). Thus, the (Gaussian) MFs 
that are chosen as inputs MFs type are defined by: 

 𝜇𝜇𝐴𝐴𝑖𝑖(𝑥𝑥) = 𝑒𝑒
−
�𝑐𝑐𝑖𝑖−𝑥𝑥�

2

2𝜎𝜎𝑖𝑖
2  (21) 

where 𝑐𝑐𝑖𝑖(𝜎𝜎𝑖𝑖), (𝑠𝑠 = 1, 2, 3), are the center(width) of the fuzzy set 
for each MF. Finally, the other inference parameters are chosen as 
shown in Table 1: 

Table 1: Inference system parameters 

Fuzzy type Defuzzification 
method Inference engine 

Takagi-Sugeno weighted 
average (wtaver) prod-max 

Indeed, to design the ANFIS controller, we should select 
additional ANFIS parameters such as training epoch number 𝑠𝑠𝑒𝑒𝑒𝑒, 
training error goal  𝐸𝐸𝑡𝑡𝑡𝑡𝑎𝑎𝑖𝑖𝑛𝑛  and optimization method. Practically, 
we used the parameter values that are given in Table 2.  

Then, in quadrotor system control, the trained ANFIS 
controller is used instead of the above controllers (see Figure 3). 

3.5. Integral control action for ANFIS controller 

Each of the four resulting ANFIS controllers has two inputs 
(the error, and its derivative �̇�𝑒 ) as shown in Figure 4. Then, the 
steady-state error cannot be removed because of the non-existence 
of internal integral control. For this reason, we associate each 
ANFIS controller with an integral control action to combine the 
benefits of the ANFIS controller and the integral control, which 
allows obtaining an enhanced and robust controller that is denoted 
ANFIS+I. 
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Table 2: ANFIS algorithm parameters 

Training epoch 
number 𝑠𝑠𝑒𝑒𝑒𝑒 

Training error 
goal 𝐸𝐸𝑡𝑡𝑡𝑡𝑎𝑎𝑖𝑖𝑛𝑛 

Optimization 
method 

20 0 
Last-squares and 
back-propagation 
gradient descent  

 

 

Figure 4: Selection of training data set for ANFIS controller 

For this reason, two inputs of each initials controllers (error 𝑒𝑒 , 
and its rate �̇�𝑒 ) are used to design the ANFIS controller while the 
integral action (∫ 𝑒𝑒(𝑡𝑡) ) is maintained in the designed ANFIS 
controller with the same parameter 𝐾𝐾𝑖𝑖. Thus, due to the additional 
integral control, the controller results in a multi closed-loop control 
structure, which permits obtaining better performance for the 
quadrotor control system [25]. 

Furthermore, to enhance the performance of the ANFIS+I 
controller, three inputs and output scaling gains are added as 
shown in Figure 5. Then suitable values should be determined for 
each scaling gain. Specifically, as three scaling parameters should 
be simultaneously tuned for each ANFIS+I state-controller, in the 
next subsection, the multidimensional particle swarm optimization 
(PSO) algorithm is proposed.  

3.6. Multidimensional PSO algorithm description 

Based on the observation of birds flying, the particle swarm 
optimization (PSO) metaheuristic algorithm was initiated by J. 
Kennedy and R. C. Eberhart in 1997 [32]. Thus, the theory of this 
algorithm is based on the arbitrary choice of particles to design the 
initial population in a fixed search space [16]. Then, at each new 
iteration, a different population is selected according to the 
position and velocity of each particle.  

Therefore, as stated by the next equations, the best values of 
the local and global fitness parameters are computed as follows: 

 �
𝑣𝑣𝑖𝑖𝑗𝑗(t + 1) =  𝑤𝑤 𝑣𝑣𝑖𝑖𝑗𝑗(t)+ c1 𝑟𝑟1 �𝜒𝜒1,𝑖𝑖𝑗𝑗(t) −  𝜒𝜒𝑛𝑛(t)�

       +c2 𝑟𝑟2�𝜒𝜒2,𝑖𝑖𝑗𝑗(t) −  𝜒𝜒𝑖𝑖𝑗𝑗(t)�
𝜒𝜒𝑖𝑖𝑗𝑗(t + 1) = 𝜒𝜒𝑖𝑖𝑗𝑗(t) + 𝑣𝑣𝑖𝑖𝑗𝑗(t + 1)                             

 (22) 

where  𝑠𝑠 = 1. . .𝑠𝑠 denotes the particle number of populations, 𝑗𝑗 =
1. . .𝑚𝑚  assigns the parameter to tune in dimension 𝑚𝑚 . 𝑐𝑐1 and 

𝑐𝑐2 denote the cognitive and social constants, respectively. 𝑟𝑟1 and 
𝑟𝑟2 are arbitrary scalars in the interval [0,1]. 𝑤𝑤 is the inertia weight 
that is used to balance the effect of the previous velocity to the 
actual value. Thus, at each specific time t, for each particle 𝑠𝑠 in 
each dimension 𝑗𝑗,  several parameters are to consider: the velocity 
𝜈𝜈𝑖𝑖𝑗𝑗𝑡𝑡 , the position 𝜒𝜒𝑖𝑖𝑗𝑗𝑡𝑡 , the local best fitness 𝜒𝜒1,𝑖𝑖𝑗𝑗

𝑡𝑡 , and the global best 
fitness 𝜒𝜒2,𝑖𝑖𝑗𝑗

𝑡𝑡 . Then, to design the four PSO-based ANFIS+I 
controller, a code was developed using Matlab Environment. The 
main steps of this code are presented in Algorithm 2. 

Algorithm 2: Multidimensional PSO algorithm steps  
Result: Optimum parameters 

Set the search space, the particles number n, the number 
of iteration niter; 

Repeat: 
Generate a random population  
Evaluate the objective function 
Evaluate the local and global best fitness 
Compute the velocity and position of particles 

according to equation (22) 
Until the maximum number of iterations (niter) is reached 

 

 

Figure 5: ANFIS+I controller scaling gains tuning using multidimensional PSO 
algorithm 

The objective is to find the optimal values of the PSO-based 
ANFIS+I scaling gains for each controlled state (𝑥𝑥, 𝑧𝑧,𝜑𝜑, and 𝜓𝜓) 
(see Figure 5). Then, the optimization algorithm starts by selecting 
the multidimensional PSO parameters such as the population 
number (𝑠𝑠) , the tune dimension (𝑚𝑚) , the maximum iterations 
number  (𝑠𝑠𝑖𝑖𝑡𝑡𝑒𝑒𝑡𝑡), and the search space. 

In this work, to reduce the tuning dimension using the 
multidimensional PSO algorithm, we utilize the same PSO-based 
ANFIS+I controller for the horizontal position 𝑥𝑥  and 𝑦𝑦 as well,  
and for the attitude angle 𝜑𝜑  and 𝜃𝜃  as well, which permits 
simplifying the optimization dimension to three scaling factors 
𝐺𝐺𝑒𝑒 ,𝐺𝐺𝑑𝑑  and 𝐺𝐺𝑢𝑢  for only four ANFIS+I controllers. Thus, 
dimension 𝑚𝑚 could be reduced to twelve parameters. Besides, we 
choose 500 as the population number, 5 as the maximum number 
of iterations, and [0.1 , 5] as bounds of the search space. 

Then, the optimization process starts by initializing a random 
population 𝑝𝑝i𝑗𝑗 , where 𝑠𝑠  ( 1 ≤ 𝑠𝑠 ≤ 𝑠𝑠)  represents a  population 
particle, and 𝑗𝑗  ( 1 ≤ 𝑗𝑗 ≤ 𝑚𝑚)  denotes the number of tuned 
parameters. Then, at each iteration 𝑘𝑘  ( 1 ≤ 𝑘𝑘 ≤ 𝑠𝑠𝑖𝑖𝑡𝑡𝑒𝑒𝑡𝑡) , the 
algorithm generates a new population 𝑝𝑝i𝑗𝑗  after evaluating the best 
local and global fitness, which is based on computing two 
parameters: position and velocity of each particle according to 
equation (22). Of course, these computations are repeated until the 
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maximum of iteration number ( 𝑠𝑠. 𝑒𝑒  𝑠𝑠𝑖𝑖𝑡𝑡𝑒𝑒𝑡𝑡)  is reached and the 
smallest value of the objective function criterion is obtained. Thus, 
the algorithm ends and provides the suitable scaling gains that 
correspond to an optimal ANFIS+I controller.  

3.7. Objective function criterion choice 

As described in the above subsection, the multidimensional 
PSO algorithm role is to optimize the scaling gains of the (four) 
ANFIS+I controllers, which ends by obtaining a minimum value 
of an objective function criterion. For this reason, several criteria 
can be used such as the overshoot (𝑀𝑀𝑝𝑝), the settling time (𝑇𝑇𝑠𝑠),  the 
rise time (𝑇𝑇𝑟𝑟) [20], the integral of absolute error (𝐼𝐼𝐴𝐴𝐸𝐸), the integral 
of squared error (𝐼𝐼𝐼𝐼𝐸𝐸), the integral of time-weighted squared error 
(𝐼𝐼𝑇𝑇𝐼𝐼𝐸𝐸), and the integral of time-weighted absolute error (𝐼𝐼𝑇𝑇𝐴𝐴𝐸𝐸) 
[33]. However, 𝐼𝐼𝐴𝐴𝐸𝐸 and 𝐼𝐼𝐼𝐼𝐸𝐸 objective function criteria do ignore 
the time when computing the difference between the desired signal 
and the actual signal (i.e, error e), which could result in high 
settling time and unacceptable overshoot [34], while  𝐼𝐼𝑇𝑇𝐴𝐴𝐸𝐸  and 
𝐼𝐼𝑇𝑇𝐼𝐼𝐸𝐸 objective function criteria do compute the error through the 
time and allow improving the system performances.  

Therefore, in this work, we use the well-known   𝐼𝐼𝑇𝑇𝐴𝐴𝐸𝐸 
objective function criterion. Then, for each state, to evaluate the 
ANFIS+I scaling gains, we consider the ITAE criterion that is 
defined by: 

 𝐼𝐼𝑇𝑇𝐴𝐴𝐸𝐸 = ∫ 𝑡𝑡|𝑒𝑒(𝑡𝑡)| 𝑑𝑑𝑡𝑡∞
0   (23) 

4. Simulation Results 

In this section, the simulation tests are provided to show the 
efficiency of the proposed PSO-based ANFIS+I controller. For 
clarity, the quadrotor system parameters are given in Table 3 [4]. 

To check the robustness of the proposed control strategy, four 
different controllers are implemented for controlling the quadrotor 
system. 

Table 3: Quadrotor system parameters 

Symbol Description Value 
g Gravitational acceleration 9.81 m.s-2 
m Quadrotor mass 0.65 Kg 
l Distance from center to motor 0.23 m 
jx Moment of inertia about x-axis 7.5 10-3 Kg.m2 
jy Moment of inertia about y-axis 7.5 10-3 Kg.m2 
jz Moment of inertia about z-axis 1.3 10-2 Kg.m2 
k Propeller force constant 3.13 10-5 N.s2 
d Propeller torque constant 7.5 10-7 N.s2 

 
First, we collect the training data set that is used to design the 

fuzzy inference system. Thus, the first simulation scenario consists 
in controlling the quadrotor system by the classical PID control 
approach. For simplicity, for each quadrotor state (𝜑𝜑, 𝜃𝜃,𝜓𝜓, 𝑥𝑥, 𝑦𝑦, 𝑧𝑧), 
the suitable control parameters are determined using the Matlab 
PID Tuner. These parameters are summarized in Table 4.  

Thereafter, the ANFIS controller is implemented using the data 
collected from the quadrotor system dynamic response when it is 
controlled by the PID control approach. In this step, an initial 

ANFIS controller is designed using the generated fuzzy inference 
system. Roughly, two MATLAB functions are available: genfis1, 
which returns the initial membership functions set, and anfis, 
which gives the fuzzy inference system.  

Table 4: Parameters of PID controller 

 𝑥𝑥 𝑦𝑦 𝑧𝑧 𝜑𝜑 𝜃𝜃 𝜓𝜓 
𝑘𝑘𝑒𝑒 0.011 -0.011 3.09 0.4 0.4 3.7 
𝑘𝑘𝑖𝑖  0 0 1.5 0.15 0.15 7.5 
𝑘𝑘𝑑𝑑  0.12 -0.12 4.5 0.11 0.11 0.56 

 
Then, to improve the ANFIS controller, we kept the initial 

integral control action in the designed controller, which allows 
guaranteeing more robustness to the closed-loop system.  

 In the next step, to improve the quadrotor control system 
performances, we use the multidimensional PSO algorithm to 
optimize the ANFIS+I scaling gains (𝑠𝑠. e 𝐺𝐺𝑒𝑒 ,𝐺𝐺𝑑𝑑 , and 𝐺𝐺𝑢𝑢).  Table 5 
gives the value of the obtained scaling gains for each quadrotor 
state after the optimization process. 

Table 5: ANFIS+I scaling gains tuned by multidimensional PSO algorithm 

 𝑥𝑥 𝑦𝑦 𝑧𝑧 𝜑𝜑 𝜃𝜃 𝜓𝜓 
𝐺𝐺𝑒𝑒 4.82 -4.82 2.21 4.56 4.56 4.26 
𝐺𝐺𝑑𝑑 0.73 -0.73 1.26 0.36 0.36 2.66 
𝐺𝐺𝑢𝑢 4.4 -4.4 2.31 0.95 0.95 2.21 
 
For comparison purposes, Table 6 shows the performance 

results of the four control strategies: classical PID,  ANFIS 
(without the integral control, (non-optimized) ANFIS+I, and 
multidimensional PSO-based ANFIS+I controllers. 

 
Figure 6: x-state tracking control response 

Figures 6, 7, and 8 show the simulation results for x, y, and z  
quadrotor system states, respectively. The comparison of the four 
control strategies permits claiming that the PSO-based ANFIS+I  
controller can provide better control performances than the other 
control strategies. Except for the altitude (z) rise time, the proposed 
controller gives the smallest overshoot and the minimum rise and 
settling times.   

For simplicity, the 𝜓𝜓-yaw reference trajectory was chosen to 
be null. Then, from Figures 9, 10, and 11, it is shown that quadrotor 
Euler angles, namely (𝜑𝜑, 𝜃𝜃,𝜓𝜓) are very small, which means that 
the three quadrotor rotational motions are well stabilized. 
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Table 6: Performances of the PID, ANFIS, ANFIS+I, and PSO-based ANFIS+1                        

  PID ANFIS ANFIS+I PSO-based 
ANFIS+I 

𝑥𝑥 

𝑀𝑀𝑒𝑒(%) 5.17 5.05 5.47 4.08 
𝑇𝑇𝑡𝑡(𝑠𝑠) 2.9 3.006 3.02 2.4 
𝑇𝑇𝑠𝑠(𝑠𝑠) 26.5 26.7 26.5 15.24 
𝐼𝐼𝑇𝑇𝐴𝐴𝐸𝐸 1.003 0.99 1.01 0.15 

𝑦𝑦 

𝑀𝑀𝑒𝑒(%) 5.17 5.04 5.47 4.08 
𝑇𝑇𝑡𝑡(𝑠𝑠) 2.9 3.006 3.02 2.4 
𝑇𝑇𝑠𝑠(𝑠𝑠) 26.5 26.79 26.5 15.24 
𝐼𝐼𝑇𝑇𝐴𝐴𝐸𝐸 1.49 1.49 1.5 0.24 

𝑧𝑧 

𝑀𝑀𝑒𝑒(%) 6.95 4.04 7.008 0.61 
𝑇𝑇𝑡𝑡(𝑠𝑠) 1.68 1.75 1.68 1.8 
𝑇𝑇𝑠𝑠(𝑠𝑠) 8.23 8.11 8.24 6.05 
𝐼𝐼𝑇𝑇𝐴𝐴𝐸𝐸 0.47 0.35 0.47 0.10 

 

 
Figure 7:  y-state tracking control response 

 
Figure 8: z-state tracking control response 

 
Figure 9: 𝜑𝜑-state tracking control response 

 
Figure 10: 𝜃𝜃-state tracking control response 

 
Figure 11: 𝜓𝜓-state tracking control response 

 
Figure 12: Mass payload disturbance rejection 

Besides, additional simulation tests have been performed to 
evaluate the robustness of the proposed control strategy for the 
quadrotor system trajectory-tracking. Specifically, a payload mass 
has been added to the quadrotor system as an (unknown) external 
disturbance. Then, Figure 12 shows the effects on the quadrotor 
altitude z of 10% and 15% of total mass change, respectively. It is 
clearly shown that, in the case of the proposed controller, the fact 
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that the aerial vehicle's total mass could be modified during the air 
travel has almost no effect upon the tracking quality. This means 
that the proposed controller can efficiently compensate for external 
static-like disturbances.  

Then, from the above simulation examples, it results that the 
multi closed-loop PSO-based ANFIS+I control strategy can ensure 
the best control performances in comparison with the other control 
strategies, namely it generates the smallest overshoot and the 
smallest rise and settling times as well. 

5. Conclusion 

In this paper, a PSO-based adaptive neuro-fuzzy inference 
system plus integral (ANFIS+I) control is proposed as a new 
intelligent controller for the quadrotor trajectory tracking control 
problem. First, to collect the necessary training data set, a classical 
PID (tuned) controller is implemented for the quadrotor system. 
Then, to achieve good robustness, the (initial)  integral control 
action is preserved in the control structure in addition to the 
generated ANFIS controller. Moreover, scaling gains are added to 
the ANFIS inputs-output, and optimized using the minimization of 
the 𝐼𝐼𝑇𝑇𝐴𝐴𝐸𝐸  objective function criterion. Thus, the new control 
strategy denoted multidimensional PSO-based ANFIS plus 
integral is designed. To show the effectiveness of the proposed 
controller, several simulation tests are provided. Namely, in 
comparison with the traditional PID, the ANFIS controller, ANFIS 
plus integral control, it is shown that the proposed control strategy 
can ensure better time-domain performances in case of trajectory 
tracking problem for the quadrotor system. Particularly, the 
proposed controller can efficiently compensate for unknown mass 
modification with the smallest overshoot and good attitude 
stabilization. Therefore, the multi closed-loop ANFIS+I controller, 
where the scaling gains are optimized using the multidimensional 
PSO-algorithm, can be considered as an additional control strategy 
to solve the position tracking problem for the quadrotor system. 

References  

[1] U.R. Mogili, B. Deepak, “Review on application of drone systems in 
precision agriculture,” Procedia Computer Science, 133, 502–509, 2018. 
doi:10.1016/j.procs.2018.07.063. 

[2] E. Kaufman, K. Takami, Z. Ai, T. Lee, “Autonomous Quadrotor 3D 
Mapping and Exploration Using Exact Occupancy Probabilities,” in 2018 
Second IEEE International Conference on Robotic Computing (IRC), IEEE: 
49–55, 2018. doi:10.1109/IRC.2018.00016. 

[3] X. Liang, Y. Fang, N. Sun, H. Lin, “Dynamics analysis and time-optimal 
motion planning for unmanned quadrotor transportation systems,” 
Mechatronics, 50, 16–29, 2018. doi: 10.1016/j.mechatronics.2018.01.009. 

[4]  S. Bouabdallah, Design and control of quadrotors with application to 
autonomous flying, Ph. D Thesis, Epfl, 2007. 

[5] E. de Vries, K. Subbarao, “Backstepping based nested multi-loop control 
laws for a quadrotor,” in 2010 11th International Conference on Control 
Automation Robotics & Vision, IEEE: 1911–1916, 2010. doi: 
10.1109/ICARCV.2010.5707890. 

[6] S. Bouabdallah, R. Siegwart, “Full control of a quadrotor,” in 2007 
IEEE/RSJ International Conference on Intelligent Robots and Systems, 
IEEE: 153–158, 2007. doi: 10.3929/ethz-a-010039365. 

[7] A. Poultney, P. Gong, H. Ashrafiuon, “Integral backstepping control for 
trajectory and yaw motion tracking of quadrotors,” Robotica, 37(2), 300–
320, 2019. doi: 10.1017/S0263574718001029.  

[8] E. Chater, H. Housny, H. El Fadil, “Robust Control Design for Quadrotor 
Trajectory Path Tracking,” in 2019 8th International Conference on Systems 
and Control (ICSC), IEEE: 21–26, 2019. doi: 
10.1109/ICSC47195.2019.8950509. 

[9] J.F. Guerrero-Castellanos, N. Marchand, A. Hably, S. Lesecq, J. Delamare, 
“Bounded attitude control of rigid bodies: Real-time experimentation to a 

quadrotor mini-helicopter,” Control Engineering Practice, 19(8), 790–797, 
2011. doi: 10.1016/j.conengprac.2011.04.004.  

[10] M. Herrera, W. Chamorro, A.P. Gómez, O. Camacho, “Sliding mode control: 
An approach to control a quadrotor,” in 2015 Asia-Pacific Conference on 
Computer Aided System Engineering, IEEE: 314–319, 2015. doi: 
10.1109/APCASE.2015.62. 

[11] M. Huang, B. Xian, C. Diao, K. Yang, Y. Feng, “Adaptive tracking control 
of underactuated quadrotor unmanned aerial vehicles via backstepping,” in 
Proceedings of the 2010 American Control Conference, IEEE: 2076–2081, 
2010. doi: 10.1109/ACC.2010.5531424. 

[12] S.A. Raza, W. Gueaieb, “Fuzzy Logic based Quadrotor Flight Controller.,” 
ICINCO-ICSO, 9, 105–112, 2009.  

[13] E. Kayacan, R. Maslim, “Type-2 fuzzy logic trajectory tracking control of 
quadrotor VTOL aircraft with elliptic membership functions,” IEEE/ASME 
Transactions on Mechatronics, 22(1), 339–348, 2016. doi: 
10.1109/TMECH.2016.2614672. 

[14] M. Santos, V. Lopez, F. Morata, “Intelligent fuzzy controller of a quadrotor,” 
in 2010 IEEE international conference on intelligent systems and knowledge 
engineering, IEEE: 141–146, 2010. doi: 10.1109/ISKE.2010.5680812. 

[15] H. Housny, H. El Fadil, “New Deterministic Optimization Algorithm for 
Fuzzy Control Tuning Design of a Quadrotor,” in 2019 5th International 
Conference on Optimization and Applications (ICOA), IEEE: 1–6, 2019. doi: 
10.1109/ICOA.2019.8727622. 

[16] H. Housny, H. El Fadil, “Fuzzy PID Control Tuning Design Using Particle 
Swarm Optimization Algorithm for a Quadrotor,” in 2019 5th International 
Conference on Optimization and Applications (ICOA), IEEE: 1–6, 2019. doi: 
10.1109/ICOA.2019.8727702. 

[17] S. Bansal, A.K. Akametalu, F.J. Jiang, F. Laine, C.J. Tomlin, “Learning 
quadrotor dynamics using neural network for flight control,” in 2016 IEEE 
55th Conference on Decision and Control (CDC), IEEE, Las Vegas, NV, 
USA: 4653–4660, 2016, doi:10.1109/CDC.2016.7798978.  

[18] F. Soares, J. Burken, T. Marwala, “Neural network applications in advanced 
aircraft flight control system, a hybrid system, a flight test demonstration,” 
in International Conference on Neural Information Processing, Springer: 
684–691, 2006. doi: 10.1007/11893295_75. 

[19] A. Abraham, “Beyond integrated Neuro-fuzzy systems: reviews, prospects, 
perspectives and directions,” School of Computing and Information 
Technology, Monash University, Victoria, Australia, 2002.  

[20] P. Ponce, A. Molina, I. Cayetano, J. Gallardo, H. Salcedo, J. Rodriguez, 
“Experimental Fuzzy Logic Controller Type 2 for a Quadrotor Optimized by 
ANFIS,” IFAC-PapersOnLine, 48(3), 2435–2441, 2015, 
doi:10.1016/j.ifacol.2015.06.453. 

[21] S. Rezazadeh, M.A. Ardestani, P.S. Sadeghi, “Optimal attitude control of a 
quadrotor UAV using Adaptive Neuro-Fuzzy Inference System (ANFIS),” 
in The 3rd International Conference on Control, Instrumentation, and 
Automation, IEEE, Tehran, Iran: 219–223, 2013, 
doi:10.1109/ICCIAutom.2013.6912838. 

[22] O. Ghorbanzadeh, H. Rostamzadeh, T. Blaschke, K. Gholaminia, J. Aryal, 
“A new GIS-based data mining technique using an adaptive neuro-fuzzy 
inference system (ANFIS) and k-fold cross-validation approach for land 
subsidence susceptibility mapping,” Natural Hazards, 94(2), 497–517, 2018, 
doi:10.1007/s11069-018-3449-y. 

[23] H.M.I. Pousinho, J.P.S. Catalao, V.M.F. Mendes, “Wind power short-term 
prediction by a hybrid PSO-ANFIS approach,” in Melecon 2010-2010 15th 
IEEE Mediterranean Electrotechnical Conference, IEEE: 955–960, 2010. 
doi: 10.1109/MELCON.2010.5475923. 

[24] J.P. da S. Catalão, H.M.I. Pousinho, V.M.F. Mendes, “Hybrid wavelet-PSO-
ANFIS approach for short-term electricity prices forecasting,” IEEE 
Transactions on Power Systems, 26(1), 137–144, 2010. doi: 
10.1109/TPWRS.2010.2049385. 

[25] H. Housny, E. Chater, H. El Fadil, “Multi-Closed-Loop Design for 
Quadrotor path-Tracking Control,” in 2019 8th International Conference on 
Systems and Control (ICSC), IEEE: 27–32, 2019. doi: 
10.1109/ICSC47195.2019.8950659. 

[26] H. Housny, H. El Fadil, “PSO-based ANFIS for quadrotor system trajectory-
tracking control,” in 2020 1st International Conference on Innovative 
Research in Applied Science, Engineering and Technology (IRASET), IEEE: 
1–6, 2020. doi: 10.1109/ICSC47195.2019.8950659. 

[27] R. Mahony, V. Kumar, P. Corke, “Multirotor Aerial Vehicles: Modeling, 
Estimation, and Control of Quadrotor,” IEEE Robotics Automation 
Magazine, 19(3), 20–32, 2012, doi:10.1109/MRA.2012.2206474. 

[28] J.-S. Jang, “ANFIS: adaptive-network-based fuzzy inference system,” IEEE 
Transactions on Systems, Man, and Cybernetics, 23(3), 665–685, 1993. doi: 
10.1109/21.256541. 

[29] L.A. Zadeh, Fuzzy sets and applications, 1987. 

http://www.astesj.com/
https://doi.org/10.1016/j.procs.2018.07.063
https://doi.org/10.1109/IRC.2018.00016
https://doi.org/10.1016/j.mechatronics.2018.01.009
https://doi.org/10.1109/ICARCV.2010.5707890
https://doi.org/10.1109/ICSC47195.2019.8950509
https://doi.org/10.1016/j.conengprac.2011.04.004
https://doi.org/10.1109/APCASE.2015.62
https://doi.org/10.1109/ACC.2010.5531424
https://doi.org/10.1109/TMECH.2016.2614672
https://doi.org/10.1109/ISKE.2010.5680812
https://doi.org/10.1109/ICOA.2019.8727622
https://doi.org/10.1109/ICOA.2019.8727702
https://doi.org/10.1109/MELCON.2010.5475923
https://doi.org/10.1109/TPWRS.2010.2049385
https://doi.org/10.1109/ICSC47195.2019.8950659
https://doi.org/10.1109/ICSC47195.2019.8950659
https://doi.org/10.1109/21.256541


H. Housny et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 526-535 (2020) 

www.astesj.com     535 

[30] N. Talpur, M.N.M. Salleh, K. Hussain, “An investigation of membership 
functions on performance of ANFIS for solving classification problems,” 
IOP Conference Series: Materials Science and Engineering, 226, 012103, 
2017, doi:10.1088/1757-899X/226/1/012103. 

[31] A. Sadollah, Introductory Chapter: Which Membership Function is 
Appropriate in Fuzzy System?, InTech, 2018, doi:10.5772/intechopen.79552. 

[32] J. Kennedy, R.C. Eberhart, “A discrete binary version of the particle swarm 
algorithm,” in 1997 IEEE International conference on systems, man, and 
cybernetics. Computational cybernetics and simulation, IEEE: 4104–4108, 
1997. doi: 10.1109/ICSMC.1997.637339. 

[33] T.K. Priyambodo, A. Dharmawan, O.A. Dhewa, N.A.S. Putro, “Optimizing 
control based on fine tune PID using ant colony logic for vertical moving 
control of UAV system,” in AIP Conference Proceedings, AIP Publishing: 
170011, 2016. doi: 10.1063/1.4958613. 

[34] R.A. Krohling, J.P. Rey, “Design of optimal disturbance rejection PID 
controllers using genetic algorithms,” IEEE Transactions on Evolutionary 
Computation, 5(1), 78–82, 2001. doi: 10.1109/4235.910467. 

 

 

http://www.astesj.com/
https://doi.org/10.1109/ICSMC.1997.637339
https://doi.org/10.1063/1.4958613
https://doi.org/10.1109/4235.910467

	1. Introduction
	2. Quadrotor Mathematical Model
	2.1. Quadrotor kinematic model
	2.2. Quadrotor dynamic model

	3. Multi Closed-loop PSO-based ANFIS plus Integral Controller
	3.1. Problem statement
	3.2.  PSO-based ANFIS plus integral algorithm
	3.3. ANFIS architecture
	3.4. ANFIS algorithm design
	3.5. Integral control action for ANFIS controller
	3.6. Multidimensional PSO algorithm description
	3.7. Objective function criterion choice

	4. Simulation Results
	5. Conclusion
	References


