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The paper presents a description and justification of the correctness of fuzzy recognition by a
logic-predicate network. Such a network is designed to recognize complex structured objects
that can be described by predicate formulas. The NP-hardness of such an object recognition
requires to separate the learning process, leaving it exponentially hard, and the recognition
process itself. The learning process consists in extraction of groups of features (properties
of elements of an object and the relations between these elements) that are common for
objects of the same class. The main result of a paper is a reconstruction of a logic-predicate
recognition cell. Such a reconstruction allows to recognize objects with descriptions not
isomorphic to that from a training set and to calculate a degree of coincidence between the
recognized object features and the features inherent to objects from the extracted group.

1 Introduction

This paper is an extension of work originally presented in confer-
ence CSIT-2019 [1].

The term “logical approach to solving Artificial Intelligence
(AI) problems” is usually understood as data notation in the form
of a binary string that defines the values of some object properties
under study. In this case, if the object is represented as a set of its
elements that have some properties and are connected by given rela-
tions, then when describing it as a binary string, firstly, the structure
of the object itself is lost, and secondly, you have to store a large
number of “unnecessary” information that the element a j does not
have the properties pi1 , . . . , pik , that the elements a j1 , a j2 are not in
the relations qi1 , . . . , qil , etc.

Consider objects composed of smaller elements with preas-
signed properties, and some smaller object having preassigned rela-
tions. In such a case predicate formulas are an adequate description
language.

The use of predicate calculus and automatic proof of a theorem
for AI problems solving was offered by many authors [2]-[4] in
the 70-th years of the XX century. At the same time the notion of
NP-completeness was introduced and began to be actively used by
the scientific community [5].

In 2003 the use of predicate calculus and automatic proof of a
theorem for AI problems solving (without complexity bounds) was
described in [6].

In particular, in that book it is shown that if a binary string sim-
ulates a description of an economic problem in which interaction

agents have given properties and are in given relations then the
notation length of such a string is exponential of the length of the
description of the same problem input data by setting properties
of these agents and relations between them, i.e. in fact, using the
language of predicate calculus.

In 2007 the author of this paper has proved NP-completeness of
recognition problems described in the terms of predicate formulas
and upper bounds of number of steps for two solving algorithms [7].
When such problems are solved by an exhaustive search algorithm,
their computational complexity coincides with the length of their
input data encoding using a binary string [6].

A hierarchical level description of classes was suggested in [8]
to decrease the computational complexity of these problems. For-
mulas which are isomorphic to “frequently appeared” sub-formulas
of “small complexity” are extracted from class descriptions in order
to construct such a level description. This allows to decompose
the main problem into a series of similar problems with input data
with the smaller length. An instrument for this extraction is partial
deduction of a predicate formula [9],[10].

Later, the author noticed that the level description is actually a
recognition network, which, after training (having exponential com-
putational complexity), can quickly solve the recognition problem.

The concept of “network” is increasingly used both in theoret-
ical and in practical research, particularly, when solving pattern
recognition problems. Research and practical applications of neu-
ral networks [11],[12], Bayesian networks [13]-[15], technical net-
works [16] are widespread. The inputs of such networks are usually
signals characterizing the properties of the studied objects or pro-
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cesses, and expressed, as a rule, by numerical characteristics, which
can be encoded by binary strings. The processing of binary strings
in the most cases is carried out in linear or polynomial (usually
quadratic) number of steps under the length of these strings. A
convenient model for processing such strings is propositional logic
(Boolean functions).

As noted above, the use of binary strings in the recognition of
complex structured objects has disadvantages. To recognize such
objects, the author offered the notion of a logic-predicate network
using level description of classes [17]. Such a network contains
two blocks: a training block and a recognition block. The training
block run is based on the extraction from a class of objects de-
scription such fragments, which are inherent in many objects of the
class. Recognition block run is reduced to the sequential solution of
problems of the same type with a smaller length of the input data.

The disadvantage of such a recognition network is that it is
able to recognize only objects that differ from those included in the
training set (TS) by renaming the elements of the object (objects
with isomorphic descriptions). But such a network can be retrained
by adding unrecognized objects to the TS. This was the reason for
modification of the logic-predicate network permitting to recognize
objects, that not coincide but only similar to the objects from a
training set. Such a modification was offered in [1, 18]. The degree
of coincidence for description of an object part and the formula,
satisfiability of which is checking in the cell, is calculated. Such a
fuzzy network allows not only quickly enough to recognize objects
isomorphic to those represented in the TS, but also to calculate the
degree of coincidence that a “new” object belongs to one or another
class. If necessary, it can be retrained using such a “new” object.

The structure of the paper is as follows.
Section 2 “Logic-predicate approach to AI problems” contains

2 subsections: “Problem Setting” and “Important Definitions”. This
section describes the results previously obtained by the author and
defines the terminology previously introduced by the author, which
are necessary for understanding the further presentation.

Section 3 “Level description” presents the basic idea of con-
structing a level description of classes. It contains two sub-sections
“Construction of a level description of classes” and “The use of level
description of a class”. They give algorithms for constructing a
level description of classes and the use of such a description for
object recognition. These algorithms are further used in construct-
ing the logic-predicate network. It is shown that the computational
complexity of an object recognition decreases while using a level
description of a class.

Section 4 “Logic-predicate network” describes the structure of
such a network.

Section 5 “Example of logic-predicate network” describes an
example illustrating the formation of a network, recognizing of an
object with the use of a network, and its retraining. It consists of 4
sub-sections “Training Block Run: Extraction of Sub-Formulas”,
“Training Block Run: Forming a Level Description”, “Recognition
Block Run” and “Retraining the Network”.

Section 6 “Fuzzy recognition by a logic-predicate network” de-
scribes the changes that need to be made to the logic-predicate
network in order to recognize objects that are not isomorphic to

those presented in the TS. A description of the contents of a fuzzy
network cell is given. A cell of this type replaces each cell in the
logic-predicate network in which the logical sequence of the tar-
get formula from the description of an object is checked. In this
case, the degree of coincidence is calculated that the fragment being
tested partially (and to what extent) satisfies the target formula.

Section 7 “Model example of fuzzy recognition” presents an
example of fuzzy recognition of a “new” object.

In comparison with [1], the setting of problems that can be
solved in the framework of logic-predicate approach are described
in the presented paper in more details. A justification for the in-
troduction of a level description is given. Algorithms for a level
description construction and a level description use are described.
Scheme 1 of a common up to the names of arguments sub-formulas
extraction is added. A section 5 has been added with an example of
constructing and modifying a logic-predicate network. It describes
in details how a network is formed by the training set, a new object
is recognized, and the network is rebuilt. The scheme of a fuzzy
logic-predicate network cell is presented. An example of fuzzy
recognition is described in more details.

2 Logic-Predicate Approach to AI Prob-
lems

A detailed presentation of the logic-predicate approach to solving
AI problems is available in [19]. In this paper only a general setting
of problems and main methods for their solving are formulated.

2.1 Problem Setting

As it was mentioned in the Introduction, if an object to be recognized
is a complex structured one, then predicate formulas are a convenient
language for its description and recognition. Let an investigated
object ω be represented as a set of its elements ω = {ω1, . . . , ωt} and
be characterized by predicates p1, . . . , pn which define some prop-
erties of its elements or relations between them. The description
S (ω1, . . . , ωt) of the object ω is a set of all constant literals (atomic
formulas or their negations) with predicates p1, . . . , pn which are
valid on ω.

Let the set of all investigated objects Ω be is divided into classes
Ω1, . . . ,ΩK such that Ω = ∪K

k=1Ωk. Logical description of the class
Ωk is such a formula Ak(x)1 that if the formula Ak(ω) is true then
ω ∈ Ωk. The class description may be represented as a disjunction
of elementary conjunctions of atomic formulas.

Many AI problems may be formulated as follows with the use
of such descriptions.

Identification problem. To pick out all parts of the object ω
which belong to the class Ωk

S (ω)⇒ ∃xk,Ak(xk)2. (1)

Classification problem. To find all such class numbers k that
ω ∈ Ωk

S (ω)⇒ ∨K
k=1Ak(xk). (2)

1Here and below the notation x is used for an ordered list of the set x.
2To denote that there exist distinct values for variables from the list x the notation ∃x,Ak(x) is used.
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Analysis problem. To find and classify all parts τ of the object
ω which may be classified

S (ω)⇒ ∨K
k=1∃xk,Ak(xk). (3)

In fact, instead of the quantifier ∃ (whether exists) a symbol ?
(for what) must be written. But if one uses a constructive method of
its proof (an exhaustive search algorithm or logical methods such as
derivation in a sequential predicate calculus or resolution method
for predicate calculus) then not only existence of such arguments
would be proved but the values of them would be found.

It was proved that the problems (1) and (3) are NP-complete
[7] and the problem (2) is GI-complete [20], i.e. it is polynomi-
ally equivalent to the “open” problem of Graph Isomorphism, for
which it is not proved its NP-completeness and a polynomial in time
algorithm is not found.

As the formulas Ak(xk) may be represented as a disjunction of
elementary conjunctions of atomic formulas, the checking of each of
the problems (1), (2) and (3) may be reduced to sequential checking
of the formula

S (ω)⇒ ∃x,A(x), (4)

where A(x) is an elementary conjunction. Note that in the case of
the problem (2) the number of variables in x equals to the number
of constants in ω.

The formula (4) may be checked, for example, by an exhaustive
algorithm and an algorithm based on the derivation in sequential
calculus or on the use of resolution method.

The upper bound of number of steps for an exhaustive algorithm
is O(tm)3, where t is the number of elements in ω, m is the number
of variables in A(x) [7]. This upper bound coincides with the upper
bound of a binary string simulating input data in the form of S (ω)
and A(x).

The upper bound of the number of steps for a logical algorithm
is O(sa) where s is the maximal number of atomic formulas in S (ω)
with the same predicate symbol having occurrences in A(x), a is the
number of atomic formulas in the elementary conjunction A(x) [21].

Obviously, these estimates depend exponentially on the parame-
ters of the formula A(x). That’s why it will be useful to break the
solution of the problem into a series of sub-problems of the type (4)
with a shorter right-hand side.

2.2 Important Definitions

The objects and notions satisfying the following definitions will be
used later in the text.

Definition 1: Elementary conjunctions P(a1, . . . , am) and
Q(b1, . . . , bm) are called isomorphic

P(a1, . . . , am) ∼ Q(b1, . . . , bm),

if there are an elementary conjunction R(x1, . . . , xm) and sub-
stitutions of arguments ai1 , . . . , aim and b j1 , . . . , b jm instead of
the variables x1, . . . , xm such that the results of these substitu-
tions R(ai1 , . . . , aim ) and R(b j1 , . . . , b jm ) coincide with formulas
P(a1, . . . , am) and Q(b1, . . . , bm), respectively, up to the order of
literals.

The substitutions (ai1 → x1, . . . , aim → xm) and (b j1 →

x1, . . . , b jm → xm) are called unifies of R(x1, . . . , xm) with
P(a1, . . . , am) and Q(b1, . . . , bm) and are denoted as λR,P and λR,Q,
respectively. [1], [20]

Note that concept of isomorphism of elementary conjunctions of
atomic predicate formulas differs from the concept of equivalence
of these formulas, because they can have significantly different ar-
guments. In fact, for isomorphic formulas there are permutations of
their arguments such that they define the same relationship between
their arguments.

Definition 2: Elementary conjunction C(x1, . . . , xn) is called
a common up to the names of arguments sub-formula of two
elementary conjunctions A(a1, . . . , am) and B(b1, . . . , bk) if it is iso-
morphic to some sub-formulas A′(a′1, . . . , a

′
n) and B′(b′1, . . . , b

′
n) of

A(a1, . . . , am) and B(b1, . . . , bk), respectively.
The unifiers of C(x1, . . . , xn) with A′(a′1, . . . , a

′
n) and

B′(b′1, . . . , b
′
n) will be denoted as λC,A and λC,B, respectively [19].

For example, let

A(x, y, z) = p1(x) & p1(y) & p1(z) & p2(x, y) & p3(x, z),

B(x, y, z) = p1(x) & p1(y) & p1(z) & p2(x, z) & p3(x, z).

The formula

P(u, v) = p1(u) & p1(v) & p2(u, v)

is their common up to the names of variables sub-formula with the
unifiers λP,A = (x→ u, y→ v) and λP,B = (x→ u, z→ v) because

P(x, y) = p1(x)&p1(y)&p2(x, y)

is a sub-formula of A(x, y, z) and

P(x, z) = p1(x)&p1(z)&p2(x, z)

is a sub-formula of B(x, y, z).
Definition 3: Elementary conjunction C(x1, . . . , xn) is called a

maximal common up to the names of arguments sub-formula
of two elementary conjunctions A(a1, . . . , am) and B(b1, . . . , bk) if
it is their common up to the names of arguments sub-formula and
after adding any literal to it, it ceases to be one [19].

For further presentation, the concept of partial sequence [9] is
important.

The problem of checking if the formula A(x) or some its sub-
formula A′(y) is a consequence of the set of formulas S (ω) is under
consideration in [9]. Here the list of arguments y′ is a sub-list of the
list of arguments y.

Definition 4: Let A(x) and B(y) be elementary conjunctions. If
A(x) ⇒ ∃y, B(y) is not valid but for some sub-formula B′(y′) of
B(y) the sequence A(x)⇒ ∃y′, B′(y′) is true, we will say that B(y) is
a partial sequence from A(x) and denote this by A(x)⇒P ∃y, B(y)
[1].

A constructive algorithm for a proof of partial sequence is in
[22]. While using a constructive algorithm to prove A(x) ⇒P

∃y, B(y) we can find the maximal sub-formula B′(y′) such that
A(x) ⇒ ∃y′, B′(y′) and such values x′ (x′ is a permutation of a
sub-string of x) for y′ that B′(x′) is a sub-formula of A(x). It means
that we find a maximal common up to the names of arguments

3 f (x) = O(g(x)) means that there is such a constant C that for every x the inequality f (x) ≤ C · g(x) is valid.
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sub-formula B′(y′) of two elementary conjunctions A(x) and B(y)
and its unifier with B′(x′) (a sub-formula of A(x)).

Further, for fuzzy recognition of an object we need an extension
of the partial sequence concept.

Every sub-formula A′(x′) of the formula A(x) is called its frag-
ment [1].

Let a and a′ be the numbers of atomic formulas in A(x) and
A′(x′), respectively, m and m′ be the numbers of objective variables
in x and x′, respectively.

Numbers q and r are calculated by the formulas q = a′
a , r = m′

m
and characterize the degree of coincidence between A(x) and A′(x′).
For every elementary conjunction A(x) and its fragment A′(x′) it is
true that 0 < q ≤ 1, 0 < r ≤ 1. Besides, q = r = 1 if and only if
A′(x′) coincides with A(x).

Under these notations, the formula A′(x′) will be called a (q, r)-
fragment of the formula A(x) [1].

If S (ω) ⇒ ∃x, A(x) is not valid but for some (q, r)-fragment
A′(x′) (q , 1) of A(x) the sequence S (ω)⇒ ∃x′, A′(x′) is true, we
will say that S (ω) ⇒P ∃x, A(x) is a partial (q, r)-sequence for
description S (ω) [1].

A (q, r)-fragment A′(x′) of the formula A(x) with maximal value
of q satisfying S (ω) ⇒ ∃x′, A′(x′) will be called a maximal frag-
ment of the formula A(x) for description S (ω) [1].

As for a maximal fragment of the formula A(x) the checking
whether S (ω) ⇒ ∃x′, A′(x′) may be done by some constructive
method then such values τ (τ ⊆ ω) for the list of variables x′ that
S (ω)⇒ A′(τ) will be found.

Definition 5: Conjunction of literals from A(x) which are not in
A′(x′) is called a complement of A′(x′) up to A(x) [1].

A complement of A′(x′) up to A(x) will be denoted by
CA(x)A′(x′).

Definition 6: A (q, r)-fragment A′(x′) of the formula A(x) is
called contradictory to the description S (ω) on the list of con-
stants τ if S (ω) and C[A(x)]x′

τ
A′(τ) lead to the contradiction, i.e.,

S (ω)⇒ ¬C[A(x)]x′
τ

A′(τ) [1].

Here the denotation [A(x)]x′

τ
is used for the result of substitution

of the constants from the list τ instead of the corresponding variables
from the list x′.

3 Level Description
As noted above, estimates of the number of steps of the proof of (4)
exponentially depends on the number of variables or on the number
of literals of the formula A(x). Moreover, the proof of formulas (1),
(2) and (3) in which Ak(xk) = Ak,1(xk,1)∨ · · · ∨ Ak,mk (xk,mk ), with the
available algorithms for solving (4), can be reduced to a sequential
proof of (4) with Ak,1(xk,1), . . . , Ak,mk (xk,mk ) on the right side.

Due to the unprovable, but repeatedly confirmed in practice,
statement of Einstein “God is subtle, but he is not malicious” ele-
mentary conjunctions included in the description of one class must
have common up to the names of arguments sub-formulas. There-
fore, it is natural to break the proof of this formula into a series of
formulas of the same kind, but with lower values of the essential
parameters. This may be done by means of the following procedure.

– Extract “frequently occurred” common up to the names of
arguments sub-formulas P1

i (y1
i ) (i = 1, . . . , n1) of goal formulas

Ak,1(xk,1), . . . , Ak,mk (xk,mk ) with “small complexity”. Simultaneously
we find unifiers of P1

i (y1
i ) and sub-formulas of Ak(x1, . . . , xm).

– For every sub-formula P1
i (y1

i ) a new 1st level predicate p1
i

with one 1st level variable y1
i , defined by the equivalence p1

i (y1
i )⇔

P1
i (y1

i ), is introduced. This 1st-level variable y1
i is a variable for a

string of initial variables.
– Replace each occurrence of a formula, isomorphic to P1

i (y1
i )

(i = 1, . . . , n1), into Ak, j(xk, j) ( j = 1, . . . ,mk) with a literal p1
i (y1

i ).
The earlier found unifier gives us the particular string of initial vari-
ables which are in this occurrence of y1

i . Denote the received from
Ak, j(xk, j) formula by means of A1

k, j(x1
k, j).

For l = 1, . . . , L − 1 repeat this procedure for
Al

k,1(xl
k,1), . . . , Al

k,mk
(xl

k,mk
) and receive formulas Al+1

k,1 (xl+1
k,1 ), . . . ,

Al+1
k,mk

(xl+1
k,mk

). The process will end because the number of literals in
Al

k, j(xl
k, j) decreases with increasing l.

Level description of formulas Ak,1(xk,1), . . . , Ak,mk (xk,mk ) has the
following form [8].

AL
k, j(xL

k, j) ( j = 1, . . . ,mk)

p1
1(y1

1) ⇔ P1
1(y1

1)
...

p1
n1

(y1
n1

) ⇔ P1
n1

(y1
n1

)
...

pl
i(y

l
i) ⇔ Pl

i(y
l
i)

...

pL
nL

(yL
nL

) ⇔ PL
nL

(yL
nL

)

. (5)

The described procedure deals with such intuitive notions as
“frequently occurred” and having “small complexity” sub-formula.
In the following algorithms it is supposed that “frequently occurred”
means that a sub-formula appears at least twice and “small com-
plexity” means that the number of a sub-formula literals is less then
such a number of at least one of the initial formulas.

3.1 Construction of a Level Description of Classes

An algorithm for construction of a level description of classes is
presented in [19], [23]. This algorithm contains two parts: 1) extrac-
tion of common up to the names of arguments sub-formula from the
class description, 2) forming a level description. Here it is presented
with more accuracy.

1) Extraction of common up to the names of arguments sub-
formulas from the class description

Let the description of a class be A(x) = A1(x1) ∨ · · · ∨ AK(xK),
where A1(x1), . . . , AK(xK) are elementary conjunctions of literals.
• For every i and j (i < j) check whether Ai(xi)⇒P ∃x j, A j(x j).
Using the notion of partial sequence we can obtain a maximal

common up to the names of arguments sub-formula Q1
i, j(z

1
i, j) of two

elementary conjunctions Ai(xi) and A j(x j) and unifiers λQ1
i, j,Ai

and

λQ1
i, j,A j

. Let si be the lists of indices of Ql
si

(zl
si

).
• For l = 1, . . . , L − 1 do.
• For every si and s j (si , s j) do.
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A1

· · ·

· · · Ai1

· · ·

· · · Ai2

· · ·

· · · Ai3

· · ·

· · · AK

· · ·

· · · Q1
1,i1

· · ·

· · · Q1
i1,i2

· · ·

· · · Q1
i2,i3

· · ·

· · ·

Q2
1,i1,i1,i2

· · ·

· · · · · · · · · · · ·

...
· · ·

Qls3

· · ·

· · ·

Qls4

· · ·· · ·

Ql
′
s1,s2

Qls3,s4

· · ·
...

· · ·

QLs

Fig. 1. Scheme of common up to the names of arguments sub-formulas extraction.

1

Figure 1: Scheme of common up to the names of arguments sub-formulas extraction.

– In the similar way find a maximal common up to the names
of arguments sub-formula Ql+1

si,s j
(zl+1

si,s j
) of the formulas Ql

si
(zl

si
) and

Ql
s j

(zl
s j

) and unifiers λQl+1
si ,s j ,Q

l
si

and λQl+1
si ,s j ,Q

l
s j

.

– If a formula Ql+1
si,s j

(zl+1
si,s j

) is isomorphic to some previously ob-
tained Ql′

s (zl′
s ) for some s and l′ ≤ l + 1 then it is deleted from the set

of the (l + 1)th level formulas and we wright down unifiers λQl′
s ,Ql

si

and λQl′
s ,Ql

s j
.

Note that the length of Ql+1
si,s j

(zl+1
si,s j

) decreases with increasing l.
That is why the process would stop.

A scheme of the extraction is presented in Figure 1. In order
not to overload the scheme, the arguments of the formulas are not
written on it and instead of Ql

si
(zl

si
) it is written Ql

si
.

In this scheme it is supposed that highlighted together with its
connections formula Ql

s3,s4
is isomorphic to some previously ob-

tained formula, for example, to Q2
1,i1,i1,i2

and that’s why it is deleted
from the set of the lth level formulas and all its connections are
rewrited to Q2

1,i1,i1,i2
.

A formula Ql′
s1,s2

that does not have a common sub-formula with
any other formulas, is highlighted on it.

2) Forming a level description.
Further, we assume that Q0

i (z0
i ) is Ai(xk,i).

• Every formula of the type Ql
s(z

l
s) which has no sub-formula of

the type Ql+1
s,s j

(zl+1
s,s j

) for any s j is declared as P1
i (y1

i ) (i = 1, . . . , n1).4

A new 1st level predicate defined as p1
i (y1

i ) ⇔ P1
i (y1

i ) is intro-
duced and p1

i (y1
i ) is substituted (using the correspondent unifies)

instead of P1
i (y1

i ) into all formulas of the type Ql
s(z

l
s) (l ≥ 0) such

that there is an oriented path from Ql
s(z

l
s) to P1

i (y1
i ).

• For l = 1, . . . , L − 1 do.
For every i = 1, . . . , nl if Pl

i(y
l
i) is a maximal common up to the

names of arguments sub-formula of formulas Ql′
si′

(zl′
si′

) and Ql′
s j′

(zl′
s j′

)

then these formulas are declared as Pl+1
i′′ (yl+1

i′′ ) and Pl+1
i′′+1(yl+1

i′′+1)
(i′′ = 1, . . . , nl+1 − 1).

New (l + 1)th level predicates pl+1
i′′ (yl+1

i′′ ) and pl+1
i′′+1(yl+1

i′′ ) defined
as pl+1

i′′ (yl+1
i′′ )⇔ Pl+1

i′′ (yl+1
i′′ ) and pl+1

i′′+1(yl+1
i′′+1)⇔ Pl+1

i′′+1(yl+1
i′′+1) are intro-

duced and every of them is substituted (using the correspondent
unifies) instead of Pl+1

i′′ (yl+1
i′′ ) and Pl+1

i′′+1(yl+1
i′′+1), respectively, into all

formulas of the type Ql′
s such that there is an oriented path from Ql

s
to at least one of them.

If Pl
i(y

l
i) corresponds to the cell marked as Q2

1,i1,i1,i2
in Figure 1

then pl+1
i′′ (yl+1

i′′ ) is substituted instead of Pl+1
i′′ (yl+1

i′′ ) into the formulas
corresponding the cells marked as Q1

1,i1
, A1 and Ai1 . The literal

pl+1
i′′+1(yl+1

i′′+1) is substituted instead of Pl+1
i′′+1(yl+1

i′′+1) into the formulas
corresponding the cells marked as Q1

i1,i2
, Ai1 and Ai2 .

The words “using the correspondent unifies” may be explained
in such a way. If Pl

i(y
l
i) corresponds to the cell marked as Q2

1,i1,i1,i2
in Figure 1 then pl+1

i′′ (yl+1
i′′ ) is substituted instead of Pl+1

i′′ (yl+1
i′′ ) into

the formulas corresponding the cells marked as Q1
1,i1

, A1 and Ai1 .
The literal pl+1

i′′+1(yl+1
i′′+1) is substituted instead of Pl+1

i′′+1(yl+1
i′′+1) into the

formulas corresponding the cells marked as Q1
i1,i2

, Ai1 and Ai2 .
It may be easily proved that the problem of level description

4These are formulas QL
s and Ql′

s1 ,s2
in Figure 1.
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ω, S(ω)

· · · · · ·
S(ω) ⇒ ∃x11 6=P

1
1 (x11)

τ11,j (j ∈ J1
1 ), S1(ω)

· · ·

· · · · · ·

S(ω) ⇒ ∃x1i 6=P
1
i (x1i )

τ1i,j (j ∈ J1
i ), S1(ω)

· · ·

S(ω) ⇒ ∃x1n1 6=
P1
n1

(x1n1
)

τ1n1,j
(j ∈ Jn1 i

1), S1(ω)

· · ·

SL(ω) ⇒ ∃x2i2 6=
P2
i2

(x2i2
) · · ·

k, τLk ⊂ ω

· · ·SL(ω) ⇒ ∃x2i1 6=
P2
i1

(x2i1
)· · ·

k, τLk ⊂ ω

...

· · · · · ·
SL(ω) ⇒ ∃xLk 6=A

L
k (xLk )

k, τLk ⊂ ω

Fig. 2. Scheme of recognition block.

1

Figure 2: Scheme of level recognition.

construction is NP-hard. In particular, the problem of checking if
there exists a level description is NP-complete and the upper bounds
of number of steps for traditional algorithms exponentially depends
on parameters of A1(x1), . . . , AK(xK). At the same time such a de-
scription must be constructed only once and then may be used as
many times as you like.

3.2 The Use of Level Description of a Class

Checking for what k the sequence S (ω)⇒ ∃xk,Ak(xk) is valid and
if “yes” then finding for what value of xk it is valid with the use of
level description of a class, may be done according to the following
algorithm.
• For i = 1, . . . , n1 check S (ω)⇒ ∃y1

i ,P1
i (y1

i ) and find all lists
of values τ1

i, j for the variables y1
i such that S (ω)⇒ P1

i (τ1
i, j).

5

Let τ1
i, j be a notation for the list τ1

i, j. All atomic formulas of the
form p1

i (τ1
i, j) with τ1

i, j a notation for the list τ1
i, j are added to S (ω) to

obtain S 1(ω) – a 1st level description of ω.
• For l = 1, . . . , L − 1 do.
– For i = 1, . . . , nl check S l(ω)⇒ ∃yl

i,Pl
i(y

l
i) and find all lists of

values τl
i, j for the variables yl

i such that S l(ω)⇒ Pl
i(τ

l
i, j).

– All atomic formulas of the form pl
i(τ

l
i, j) with τl

i, j a notation
for the list τl

i, j are added to S l(ω) to obtain S 1+1(ω) – a lth level
description of ω.
• – For k = 1, . . . ,K check S L(ω) ⇒ ∃yL

k ,AL
k (yL

k ) and find all
lists of values τL

k, j for the variables yL
k such that S L(ω)⇒ AL

k (τL
k, j).

The object ω satisfies such formulas Ak(xk) for which the corre-
sponding sequence S L(ω)⇒ ∃yL

k ,AL
k (yL

k ) is valid.
The scheme of level recognition is presented in Figure 2.
It is proved in [8] that for a two-level description (L = 1) the

number of steps with the use of 2-level description decreases. For
an exhaustive algorithm the number of steps decreases from O(tmk )
to O(n1 · tr + tδ

1
k+n1 ), where r is a maximal number of arguments in

the 1st level predicates, n1 is the number of such predicates, δ1
k is

the number of initial variables which are presented in Ak(xk) and are
absent in A1

k(x1
k). Both parameters r and δ1

k + n1 are less than mk.
Number of steps for an algorithm based on the derivation in pred-

icate calculus decreases from O(sk
ak ) to O(s1a1

k +
∑n1

j=1 sρ
1
j ), where

ak and a1
k are maximal numbers of literals in Ak(xk) and A1

k(x1
k),

respectively, s and s1 are the numbers of literals in S (ω) and S 1(ω),
respectively, ρ1

j is the numbers of literals in P1
i (y1

i ). Both parameters
a1

k and ρ1
j are less than ak.

5Note that for every predicate P1
i there may be many lists of values from ω satisfying it.
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So, the recognition of an object with the use of a level descrip-
tion requires less time than that with the use of initial description.

4 Logic-Predicate Network
The inputs of a traditional neuron network are binary or many-valued
characteristics of an object. The neuron network configuration is
fixed that does not correspond to biological networks.

Below a logic-predicate network is described. Such a network
inputs are atomic formulas setting properties of the elements com-
posing an investigated object and relations between them [17], [19].
Further it will be shown that its configuration may be changed
during its retraining.

A level description of a class of objects permits quickly enough
to recognize an object which description is isomorphic to the de-
scription of an element of a training set.

A logic-predicate network consists of two blocks: a training
block and a recognition block. Training block forms a level de-
scription of a class of objects according to a training set (or some
formalized description of the class). Its content is presented in
Figure 1.

Recognition block implements the algorithm of the use of level
description of a class. It must be marked that the level description
may be represented as an oriented graph presented in Figure 2.

Scheme of logic-predicate network is presented in Figure 3.
Here inputs and outputs are situated in ovals and checking the con-
ditions are situated in rhombus.

First approximation
of recognition block Recognition

S(ω1), . . . , S(ωK)

Training block

Level description

S(ω)

Retraining

ω, S(ω)

Recognition block

Recognized?

Yes

No

k, τ : Ak(τ)

Correct?
No

Yes

Stop

Fig. 3. Scheme of logic-predicate network.

y

x

z

V (x, y, z) ⇐⇒ (∠yxz < π)

y x z

L(x, y, z, ) ⇐⇒
x ëåæèò íà îòðåçêå ñ êîíöàìè y è z

Fig. 4. Initial predicates.

a1 a2

a3 a4 a5

a6
a7 a8

a9 a10

b1 b2

b4 b5 b6

b7 b8

b3

c1 c2

c3 c4 c6c5
c7 c8

c9 c10

ω1 ω2 ω3

Fig. 5. Training set.

1

Figure 3: Scheme of logic-predicate network.

Let a training set of objects ω1, . . . , ωK be given. An initial vari-
ant of the class description may be formed by replacement of every
constant ωk

j in S (ωk) by a variable xk
j (k = 1, . . . ,K, j = 1, . . . , tk)

and substitution of the sign & between the atomic formulas. Con-
struct a level description for these goal formulas. The first approxi-
mation to the recognition block is formed.

If after the recognition block run an object is not recognized or
has wrong classification, then it is possible to retrain the network.
The description of the “wrong” object must be added to the input
set of the training block. The training block extracts common up to

the names sub-formulas of this description and previously received
formulas forming a new recognition block. Some sub-formulas, the
number of layers and the number of formulas in every layer may
be changed in the level description. Then the recognition block is
reconstructed.

5 Example of Logic-Predicate Network
Construction, its Running and Retrain-
ing

Let a set of contour images of “boxes” be to recognize. Every image
may be described in the terms of two predicates V and L defined as
it is presented in Figure 4.

Figure 4: Initial predicates.

A training set {ω1, ω2, ω3} of such images is presented in Figure
5. Here ω1 = {a1, . . . , a10}, ω2 = {b1, . . . , b8}, ω3 = {c1, . . . , c10}.

y

x

z

V (x, y, z) ⇐⇒ (∠yxz < π)

y x z

L(x, y, z, ) ⇐⇒
x is between y and z

a1 a2

a3 a4 a5

a6
a7 a8

a9 a10

b1 b2

b4 b5 b6

b7 b8

b3

c1 c2

c3 c4 c6c5
c7 c8

c9 c10

ω1 ω2 ω3

Fig. 5. Training set.

u4

u1 u2

u3 u5
u6

u7 u8

Q1
1(u1, . . . , u7)

λQ1
1,A1

, λQ1
1,A2

v1 v2

v3 v4 v5

v6

v7 v8

Q1
2(v1, . . . , v8)

λQ1
2,A1

, λQ1
2,A3

w4

w1 w2

w3 w5

w6 w7

Q1
3(w1, . . . , w6)

λQ1
3,A2

, λQ1
3,A3

Fig. 6. First pairwise extraction of maximal common up to the names of arguments
sub-formulas.

1

Figure 5: Training set.

In order not to overload the text, we write down only the for-
mula A2(y1, . . . , y8), which is obtained from the description S (ω2)
by replacing the names bi with the variables yi and placing the sign
& between the literals.

A2(y1, y2, y3, y4, y5, y6, y7, y8) =

V(y1, y4, y2) & V(y2, y1, y6) & V(y2, y1, y3) & V(y2, y6, y3) &
V(y3, y2, y8) & V(y4, y7, y6) & V(y4, y7, y5) & V(y4, y7, y1) &
V(y4, y5, y1) & V(y4, y6, y1) & V(y5, y4, y7) & V(y5, y4, y6) &
V(y5, y7, y6) & L(y5, y4, y6) & V(y6, y4, y8) & V(y6, y5, y8) &
V(y6, y8, y2) & V(y6, y2, y5) & V(y6, y2, y4) & V(y7, y4, y5) &
V(y7, y5, y8) & V(y7, y4, y8) & V(y8, y3, y6) & V(y8, y6, y7) &
V(y8, y3, y7)

Further, for clarity, we will write down not formulas, but draw-
ings.
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5.1 Training Block Run: Extraction of Sub-Formulas

For constructing a level description, find pairwise maximal com-
mon up to the names of arguments sub-formulas Q1

i (y1
i ) of formulas

A1(x), A2(y), A3(z) and their unifiers. See Figure 6.

y

x

z

V (x, y, z) ⇐⇒ (∠yxz < π)

y x z

L(x, y, z, ) ⇐⇒
x is between y and z

a1 a2

a3 a4 a5

a6
a7 a8

a9 a10

b1 b2

b4 b5 b6

b7 b8

b3

c1 c2

c3 c4 c6c5
c7 c8

c9 c10

ω1 ω2 ω3

Fig. 5. Training set.

u4

u1 u2

u3 u5
u6

u7 u8

Q1
1(u1, . . . , u7)

λQ1
1,A1

, λQ1
1,A2

v1 v2

v3 v4 v5

v6

v7 v8

Q1
2(v1, . . . , v8)

λQ1
2,A1

, λQ1
2,A3

w4

w1 w2

w3 w5

w6 w7

Q1
3(w1, . . . , w6)

λQ1
3,A2

, λQ1
3,A3

Fig. 6. First pairwise extraction of maximal common up to the names of arguments
sub-formulas.

1

Figure 6: First extraction of pairwise maximal common up to the names of arguments
sub-formulas.

Here the following unifier are formed.
Let u1 = (u1, . . . , u8), v1 = (v1, . . . , v8), w1 = (w1, . . . ,w7).
λQ1

1,A1
= (u1 → x1, u2 → x2, u3 → x3, u4 → x4, u5 → x5, u6 →

x8, u7 → x9, u8 → x10) = (u1 → x1
1),

λQ1
1,A2

= (u1 → y1, u2 → y2, u3 → y4, u4 → y5, u5 → y6, u6 →

y3, u7 → y7, u8 → y8) = (u1 → y1
1),

λQ1
2,A1

= (v1 → x1, v2 → x2, v3 → x3, v4 → x4, v5 → x5, v6 →

x6, v7 → x9, v8 → x10) = (v1 → x1
2),

λQ1
2,A3

= (v1 → z1, v2 → z2, v3 → z3, v4 → z4, v5 → z6, v6 →

z7, v7 → z9, v8 → z10) = (v1 → z1
1),

λQ1
3,A2

= (w1 → y1,w2 → y2,w3 → y4,w4 → y5,w5 →

y6,w6 → y7,w7 → y8) = (w1 → y1
2),

λQ1
3,A3

= (w1 → z1,w2 → z2,w3 → z3,w4 → z4,w5 →

z6,w6 → z9,w7 → z10) = (w1 → z1
2).

Pairwise extractions of maximal common up to the names
of arguments sub-formulas of Q1

1(u1, . . . , u8), Q1
2(v1, . . . , v8) and

Q1
3(w1, . . . ,w6) give only just obtained formula Q1

3(w1, . . . ,w6).
That’s why we have a situation presented in Figure 7.

A1 A2 A3

Q1
1 Q1

2

Q1
3

Fig. 7. Connections between the extracted formulas.

ω1 S(ω)

P 1
1 (w)

w1, S1(ω)

P 2
1 (u;w

1)

u2, S2(ω)

P 2
2 (v;w

1)

v2, S2(ω)

A2
1,1(x;w

1, u2) ∨A2
1,2(x;w

1, v2)

value x, k = 1

A2
2,1(y;w

1, u2) ∨A2
1,2(y;w

1)

value y, k = 2

A2
3(z;w

1, v2)

value z, k = 3

Fig. 8. Predicate network .

d1 d6

d2 d7 d8 d5

d3 d4

1

Figure 7: Connections between the extracted formulas.

5.2 Training Block Run: Forming a Level Description

The formula Q1
3(w1, . . . ,w7) has no common sub-formulas with the

other ones. Therefore, it is the 1st level predicate P1
1(w1, . . . ,w7) of

the network. A new 1st level predicate p1
1(w1) defining as p1

1(w1)⇔
P1

1(w1, . . . ,w7) is introduced. Remind that w1 is a new 1st level vari-
able for the string of initial variables (w1,w2,w3,w4,w5,w6,w7).

Formula P1
1(w1, . . . ,w7) (which corresponds to Q1

3(w1, . . . ,w7))
is on the end of edges from A2(y1, . . . , y8), Q1

1(u1, . . . , u8) and
Q1

2(v1, . . . , v8) in Figure 7. The unifier of P1
1(w1, . . . ,w7) with

A2(y1, . . . , y8) coincides with λQ1
3,A2

obtained above.

The unifiers of P1
1(w1, . . . ,w7) with Q1

1(u1, . . . , u8) and
Q1

2(v1, . . . , v8) are the following.

λP1
1,Q

1
1

= (w1 → u2), where u2 = (u1, u2, u3, u4, u5, u7, u8).

λP1
1,Q

1
2

= (w1 → v2), where v2 = (v1, v2, v3, v4, v5, v7, v8).

The formulas Q1
1(u1, . . . , u8) and Q1

2(v1, . . . , v8) with the substi-
tutions of p1

1(u1) and p1
1(v1), respectively, instead of sub-formulas

isomorphic to P1
1(w1, . . . ,w7) will form the 2nd level of the network

and are denoted by P2
1(u1, . . . , u8; u1) and P2

2(v1, . . . , v8; v1).

It must be marked that if we know the value of the 1st level
variable u1 then we know the values of (u1, u2, u3, u4, u5, u7, u8).
That’s why the essential variables of P2

1(u1, . . . , u8; u1) are (u6; u1).
Similarly the essential variables of P2

2(v1, . . . , v8; v1) are (v6; v1).

New 2nd level predicates p2
1(u2) and p2

2(v2) defining as p2
1(u2)⇔

P2
1(u1, . . . , u8; u1) and p2

2(v2)⇔ P2
2(v1, . . . , v8; v1) are introduced.

Taking into account only essential variables and earlier received
unifiers we have the last layer formulas.

A2
1,1(x7; x1, x2

1), where

x1 = (x1, x2, x3, x4, x5, x8, x9, x10), x2
1 = (x6; x1).

A2
1,2(x7; x1, x2

2), where

x1 = (x1, x2, x3, x4, x5, x8, x9, x10), x2
2 = (x6; x1).

A2
2,1(; y1, y2

1), where

y1 = (y1, y2, y4, y5, y6, y7, y8), y2
1 = (y3, y8; y1).

A2
2,2(y3y7; y1), where

y1 = (y1, y2, y4, y5, y6, y7, y8).

A2
3(z5, z8; z1, z2), where

z1 = (z1, z2, z3, z4, z6, z9, z10), z2 = (z4, z7; z1).

The contents of the last layer cells are the following:

A2
1,1(x; w1, u2) ∨ A2

1,2(x; w1, v2),

A2
2,1(y; w1, u2) ∨ A2

1,2(y; w1),

A2
3(z; w1, v2).

5.3 Recognition Block Run

The recognition block is formed according to the level description
constructed in the previous subsection. The scheme of recognition
block is presented in Figure 8. In this scheme only names of a
checking formula and results of checking are written down.
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Fig. 7. Connections between the extracted formulas.
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Figure 8: Predicate network.

It is obvious that if an input object ω is isomorphic to one from
the training set, then it will be recognized. It means that the number
k and such a permutation ω of ω that S (ω)⇒ Ak(ω) will be found.

Let a control object with the description not isomorphic to any-
one from the training set is to be recognized. Such a control object
{d1, . . . , d8} is presented in Figure 9.

Figure 9: Control object.

Checking S (ω) ⇒ ∃w,P1
1(w) in the first layer (see Figure 8)

gives us w = (d1, d6, d2, d7, d5, d3, d4). A new 1st level variable w1

takes this list of constants as a value. Add new atomic formula to
S (ω) and obtain S 1(ω) = S (ω) ∪ {p1

1(w1)}.

Neither P2
1(u,w1) or P2

2(v,w1) are a consequence of S 1(ω) be-
cause, in fact, 7 variables in u and v are changed by constants from
w1.

This control object is not recognized.

5.4 Retraining the Network

Let’s retrain the network with the object presented in Figure 9.

Replace every constant di (i = 1, . . . , 8) in its description by a
variable xi and substitute the sign & between the atomic formulas.
The formula A4(x) is obtained.

Pairwise checking of partial sequence between A4(x) and A j(x j)
( j = 1, 2, 3) permits to obtain maximal common up to the names of
arguments formulas Q1

4, Q1
5 and Q1

6. The images of thees fragments
are shown in Figure 10.

α4

α1 α2

α3 α5

α6 α7

Q1
4(α1, . . . , α7)

λA4,A1

β4
β1 β2

β3 β5

β6 β7

Q1
5(β1, . . . , β7)

λA4,A2

γ4 γ5
γ1 γ2

γ3 γ6

γ7 γ8

Q1
6(γ1, . . . , γ6)

λA4,A3

Fig. 10. Pairwise extraction of maximal common up to the names
of arguments sub-formulas between A4(x4) and Aj(xj)

(j = 1, 2, 3).

1

Figure 10: Pairwise extraction of maximal common up to the names of arguments
sub-formulas between A4(x4) and A j(x j) ( j = 1, 2, 3).

One of the obtained formulas (formula Q1
4(α1, . . . , α7)) is iso-

morphic to the earlier obtained formula Q1
3(w1, . . . ,w7). That’s why

it would not be added to the 2nd layer of the retrained network. But
all its connections with the cells of another layers would be saved.

Pairwise checking of partial sequence between Q1
5, Q1

6 and
Q1

j (x1
j ) ( j = 1, 2, 3) does not give any new formulas.

So, the 1st layer would have only the formula Q1
3(w1, . . . ,w7)

renamed as P1
1(w1, . . . ,w7).

On the 2nd layer the cell with formula P2
4(β; w1) and output t2

and the cell with formula P2
5(γ; w1) and output r2 would be added

on the end of the edge from the cell with P1
1(w). Edges from these

cells to the cells with A2
j(x j; x1

j , x
2
j ) ( j = 1, 2, 3) would be added as

it is shown in Figure 11.

ω1 S(ω)

P 1
1 (w)

w1, S1(ω)

P 2
1 (u;w

1)

u2, S2(ω)

P 2
2 (v;w

1)

v2, S2(ω)

P 2
3 (δ;w

1)

t2, S2(ω)

P 2
4 (v; γ

1)

r2, S2(ω)

A2
1,1(x;x

1, x2)

value x, k = 1

A2
2,1(y; y

1, y2)

value y, k = 2

A2
3(z; z

1, z2)

value z, k = 3

A2
4(q; q

1, q2)

value q, k = 4

Fig. 11. Retrained network.

1

Figure 11: Pairwise extraction of maximal common up to the names of arguments
sub-formulas between A4(x4) and A j(x j) ( j = 1, 2, 3).

The network is retrained.
It should be noted that the examples of images discussed in the

article are taken from [3]. The original predicates W, Y and T in
that book for describing the images differ from the predicates V and
L used here. This is due to the fact that W, Y and T are expressed in
terms of the predicates V and L and do not significantly reduce the
computational complexity of recognition when constructing a level
description.

Both {W, Y , T } and {V , L} are not enough to describe real im-
ages of “boxes”. So, for example, the description of the image in
Figure 12 is isomorphic to the description of A2(y1, . . . , y8), but you
need to have a rich imagination to guess the box in it. The choice
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of initial predicates in each specific problem should be chosen very
carefully.

Figure 12: Is it a box?

Here we do not consider an example when, while retraining the
network, not only additional cells in a layer appear, but the number
of layers also changes. This could be done by retraining the network
using the example of a mirror (relative to the vertical axis) image of
an object from the training set. In this case, rectangle recognition
will appear in the 1st layer. The contents of the remaining cells will

also be changed.

6 Fuzzy Recognition by a Logic-Predicate
Network

The disadvantage is that the proposed logic-predicate network does
not recognize objects with descriptions that are not isomorphic to the
descriptions that participate in its formation. This can be eliminated
by slight modifications of the network.

Further the ith cell of the lth level will be denoted as cellli.
Let’s change the contents of the network cells presented in Fig-

ure 2 by replacing the checking of S l−1(ω)⇒ ∃xl
i,Pl

i(xl
i) in the cellli

with the partial sequence checking S l−1(ω) ⇒P ∃xl
i,Pl

i(xl
i). The

degree of coincidence of a recognized object with the description
of a class and the degree of recognition correctness certainty is
calculated during partial sequence checking.

qli,j , r
l
i,j

preli

Sl−1(ω) ⇒P ∃xli 6=P li (xli)

certli := certl−1
preli

Sl−1(ω) ⇒ ∃xli 6=P li (xli)
Yes

No

P̃ li j(τ
l
i j) j ∈ J li

C[P li (x
l
i)]
x′
τ
P̃ li j(τ

l
i j)

Sl−1(ω) ⇒ ¬C[P li (x
l
i)]
x′
τ
P̃ li j(τ

l
i j)

YesNo

Stop this branch.qli,j , r
l
i,j

certli,j := min{certl−1
preli,j

, qli,j}

τ li,j previously was extracted as τ l
′
i′,′j

No

Yes

certli,j := max{certl′i′,j′ , certli,j}

for α ∈ {α : celll+1
α is the end of an edge from cellli } do prel+1

α := l
i

Figure 13: The fuzzy network ith cell of the lth level contents.
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For a fully identified object, both of these degrees equal to 1. For
an object from a given class for which these degrees are essentially
small (this is determined by an expert), you can still retrain the
network.

A fuzzy network has two additional parameters:
certl

i (l = 0, . . . , L, i = 1, . . . , nl) – a degree of certainty in the
correctness of recognition by the cellli;

prel
i ( l = 1, . . . , L, i = 1, . . . , nl) – the cell number of a cell

preceding the cellli in the current traversal of a network. The cell
number has the form l′

j , where l′ is the number of a layer and j is the
number of a cell in this layer

Initially, cert0
1 := 1, pre1

i := 0
1 (i = 1, . . . , n1).

The scheme of cellli contents of a fuzzy network is presented in
Figure 13.

First of all, a partial sequence S l−1(ω)⇒P ∃xl
i,Pl

i(xl
i) is checked

in this cell. If this sequence is not partial but total, then the param-
eter certl

i is not changed and the calculation goes to the end of the
cell.

Otherwise, all lists of constants τl
i j and maximal not contra-

dictory on τl
i j with S l−1(ω) sub-formulas P̃l

i j(xl
i j) of the formula

Pl
i(xl

i) are found while partial sequence checking.
If the sub-formulas P̃l

i j(xl
i j) is contradictory to the description

S (ω) on the list of the found constants, then this recognition branch
stops.

Remind that S (ω) and C[Pl
i(xl

i)]
x′
τ

P̃l
i j(τ

l
i j) are in the contradiction

means that S (ω) ⇒ ¬C[Pl
i(xl

i)]
x′
τ

P̃l
i j(τ

l
i j), where C[Pl

i(xl
i)]

x′
τ

P̃l
i j(τ

l
i j) is

a complement (conjunction of literals from Pl
i(xl

i) which are not in
P̃l

i j(xl
i j)) of P̃l

i j(xl
i j) up to Pl

i(xl
i).

6

Parameters ql
i j and rl

i j
7 are calculated with the use of the full

form of formulas Pl
i(xl

i) and P̃l
i(y

l
i), i.e., with the replacement in

them of each atomic formula of the levels l′ (l′ < l) by the defining
elementary conjunction.

Except this, a degree of certainty certl
i that the recognition would

be valid is calculated in every cell. While first visit to the cellli the
value of certl

i will be certl
i := min{cert1−1

prel
i
, ql

i}. This corresponds to
conjunction of degrees of certainty while successive passage along
one branch of network traversal.

While next visit of the cellli the value of certl
i will be certl

i :=
max{certl

i,min{cert1−1
prel

i
, ql

i}}. This corresponds to disjunction of de-
grees of certainty while parallel passage along different branches of
network traversal.

Why can we visit a cell not only once? For example, in Figure
11 the 3rd layer cell with A2

1 may be visited by a path including the
cells with P1

1, P2
1 and A2

1 and by a path including the cells with P1
1,

P2
2 and A2

1.
In the last layer of the network, objects τL

k would be received
and for each object the degree of certainty qL

k , that it is the rL
k th part

of an object satisfying the description Ak(xk), would be calculated.
A flowchart of fuzzy recognition network can not be presented

in the paper because it is very large. It consists of the “Scheme of
logic-predicate network” shown in Figure 3, in which instead of
the “Training block” the “Scheme of common up to the names of

arguments sub-formulas extraction” (Figure 1) is inserted, and the
“Scheme of level recognition” (Figure 2) is inserted instead of the
“Recognition block”. At the same time, in Figure 2, each element
enclosed in a rhombus is replaced by “The fuzzy network ith cell of
the lth level contents” (Figure 13).

7 Model Example of Fuzzy Recognition
Let’s look how a fuzzy network (corresponding to that constructed
in the section 6 and presented in Figure 8) recognizes the control
object presented in Figure 9.

To recognize it, a partial sequence S (d1, d2, . . . , d8) ⇒P

∃w1 . . .w6P1
1(w1, . . . ,w6) is checked in the 1st layer. There is a total

sequence and the 1st level variable w1 = (w1,w2,w3,w4,w5,w6,w7)
takes the value (d1, d6, d2, d7, d5, d3, d4).

cert1
1 := 1, pre2

1 := 1
1, pre2

2 := 1
1, pre3

2 := 1
1.

The result of the 1st layer fuzzy cell run is presented in Figure
14.8

S(ω)

P 1
1

cert11 = 1

cell21 cell22

cell32

Figure 14. The result of the 1st layer fuzzy cell run.

S(ω)

P 1
1

cert11 = 1

P 2
1

contradiction

P 2
2

cert21 = 0.5

cell32 cell31 cell33

Figure 15. The result of the 2nd layer fuzzy cells run.

1

Figure 14: The result of the 1st layer fuzzy cell run.

In the 2nd layer, partial sequence S 1(d1, d2, . . . , d8,w1) ⇒P

∃u1 . . . u7,P2
1(u1 . . . u8; w1) is checked. It must be noted that in fact

S 1(d1, d2, . . . , d8,w1) ⇒P ∃u6P2
1(d1, d6, d2, d7, d5, u6, d3, d4; w1) is

checked. That is, there is only one variable at the right-hand side of
the formula.

Since we need to check formulas for consistency, we note that
V(x, y, z)⇒ ¬V(x, z, y).

There is only a partial sequence. A formula
P̃2

1(d1, d6, d2, d7, d5, d3, d4; w1) is the maximal sub-formula such
that S 1(d1, d2, . . . , d8,w1) ⇒ P̃2

1(d1, d6, d2, d7, d5, d3, d4; w1). Its
complement up to P2

1(d1, d6, d2, d7, d5, d3, d4, u6; w1) contains three
literals with predicate V , one of them is V(u6, d4, d6). This contra-
dicts S 1(d1, d2, . . . , d8,w1) containing V(u6, d6, d4). This branch of
the network stops.

There is another cell in the 2nd layer on the end of an edge from
cell11. This is cell22.

Check partial sequence S 1(d1, d2, . . . , d8,w1) ⇒P

∃v1 . . . v8P2
2(v1 . . . v8; w1). In fact, S 1(d1, d2, . . . , d8,w1) ⇒P

∃v6P2
2(d1, d6, d2, d7, d5, v6, d3, d4; w1) is checked.

6See the definitions of a complement and contradictory formulas in the section 2.
7Here ql

i j and rl
i j are ratios of the number of literals and variables, respectively, in P̃l

i j(xl
i j) and Pl

i(xl
i). See definition of (q, r) fragment in the section 2.

8Not to overload the following schemes, only the name of the formula is written in the cell instead of the formula of corresponding partial seguence.
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There is only partial sequence. A formula P̃2
2(d1, d6, d2, d7, d5,

v6, d3, d4; w1) is the maximal sub-formula such that
S 1(d1, d2, . . . , d8,w1) ⇒ P̃2

2(d1, d6, d2, d7, d5, v6, d3, d4; w1). Its
complement up to P2

2(d1, d6, d2, d7, d5, v6, d3, d4; w1) contains 5
literals with predicate V

V(v6, d7, d3), V(d3, v6, d2), V(d7, v6, d2), V(d7, d8, v6), V(d7, d5,
v6)
and 3 literals with predicate L

L(d7, d2, d8), L(d8, d2, d5), L(d8, d7, d5), but no one of them is in
contradiction with S 1(d1, d2, . . . , d8,w1). The value of v2 is (v6; w1).
It means that one 1st level variable v6 does not take value.

The number of literals in P2
2(v1 . . . v8; w1) (taking into account

its full form in which the 1st level predicate is changed by the defin-
ing formula only with initial variables) is a2

2 = 16. The number of
literals in P̃2

2(d1, d6, d2, d7, d5, v6, d3, d4; w1) is ã2
2 = 8.

That’s why q2
2 = 8

16 = 1
2 and cert2

2 := min{1, 1
2 } = 1

2 .
There are two edges from the cell with P2

2 to the 3rd layer cells
with A2

1,2 and with A2
3. That’s why pre3

1 := 2
2, pre3

3 := 2
2.

The result of the 2nd layer fuzzy cells run is presented in Figure
15.

S(ω)

P 1
1

cert11 = 1

cell21 cell22

cell32

Figure 14. The result of the 1st layer fuzzy cell run.

S(ω)

P 1
1

cert11 = 1

P 2
1

contradiction

P 2
2

cert21 = 0.5

cell32 cell31 cell33

Figure 15. The result of the 2nd layer fuzzy cells run.

1

Figure 15: The result of the 2nd layer fuzzy cell run.

In the 3rd layer while going from the cell with P1
1 to

the cell32 with A2
2,1 partial sequence S 1(d1, . . . , d8; w1) ⇒P

∃y1 . . . y8,A2
2,1(y1 . . . y8; v1) is checked. In fact, a partial sequence

S 1(d1, . . . , d8; w1) ⇒P ∃y3A2
2,1(d1, d6, y3, d2, d7, d5, d3, d4; v1) with

the only one initial variable y3 is checked.
There is only a partial sequence. The same string of values

for variables in v2, as it was in the second layer, partially satis-
fies A2

1,2(d1, d6, y3, d2, d7, d5, d3, d4; v1). But the description of this
fragment has two additional literals V(d7, d2, d3) and V(d7, d3, d5).

The number of literals in A2(y1 . . . y8; v1) is a2 = 22. The
number of literals in Ã2

1,2(y1 . . . y8; v1, v2) is ã2
1,2 = 10. That’s why

q3
2 = 10

22 ≈ 0.455 and cert3
2 := min{1, 10

22 } ≈ 0.455.
While going from the cell with P2

2 to the cell31
with A2

1,2 partial sequence S 2(d1, d2, . . . , d8; v1, v2) ⇒P

∃v1 . . . v10,A2
1,2(v1 . . . v10; v1, v2) is checked. In fact

S 2(d1, d2, . . . , d8; v1, v2) ⇒P ∃v6, v7, v8,A2
1,2(d1, d6, d2, d7, d5, v6,

v7, v8, d3, d4; v1, v2) with 3 initial variables v6, v7, v8 is checked.
There is only a partial sequence. The same string of values

for variables in v2, as it was in the second layer, partially satisfies

A2
1,2(v1 . . . v10; v1, v2).

The number of literals in A1(x1, . . . , x10) is a1 = 34. The num-
ber of literals in Ã2

1,2(v1 . . . v10; v1, v2) is ã2
1,2 = 8. That’s why

q3
1 = 8

34 ≈ 0.235 and cert3
1 := min{1, 8

34 } ≈ 0.235.
While going from the cell with P2

2 to the cell32 with A2
3 partial se-

quence S 2(d1, d2, . . . , d8; v1, v2)⇒P ∃z1 . . . z10,A2
3(z1 . . . z10; v1, v2)

is checked. In fact S 2(d1, d2, . . . , d8; v1, v2) ⇒P

∃z7, z8,A2
3(d1, d6, d2, d7, d8, d5, z7, z8, d3, d4; v1, v2) with 2 initial

variables z7, z8 is checked.
There is only a partial sequence. The variables z7, z8 have

not taken values. All literals with these variables are absent in
Ã2

3(d1, d6, d2, d7, d8, d5, z7, z8, d3, d4; v1, v2). The number of such lit-
erals is 14.

The number of literals in A2
3(z1 . . . z10 is a3 = 32. The number

of literals in Ã2
3(z1 . . . z10; v1, v2) is ã2

3 = 32 − 14 = 18. That’s why
q3

2 = 18
32 ≈ 0.563 and cert3

2 := min{1, 18
32 } ≈ 0.563.

The full degree of certainty that it is a representative of the
class of “boxes” that is given as a control image is cert =

max{ 8
34 ,

10
22 ,

18
32 } = 18

32 ≈ 0.563.
Moreover, 7

8 elements of this image coincide with 8
10 elements

of the image ω3 from the training set.
The result of the fuzzy network run is presented in Figure 16.

S(ω)

P 1
1

cert11 = 1

P 2
1

contradiction

P 2
2

cert22 = 0.5

A2
2,1

cert32 = 0.455

A2
1,2

cert31 = 0.235

A2
3

cert33 = 0.563

The control object ω is similar to the box ω3
from the training set with the degree of certainty

cert = max{ 8
34
, 10
22
, 18
32
} = 18

32
≈ 0.563.

7
8
elements of this image coincide with 8

10
elements

of the image ω3 from the training set.

Figure 16. The result of the fuzzy network run.

1

Figure 16: The result of the fuzzy network run.

8 Results and Discussion

The main result of this article is the proposal of fuzzy recognition
of complex structured objects by logic-predicate network. For a
detailed presentation of this result, it was necessary to describe
in detail a logic-predicate approach to the recognition of complex
structured objects.

A significant disadvantage of this approach is that the prob-
lems arising are NP-hard, which to a large extent “scares off” some
researchers. On the other hand, the use of predicate logic does
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not always seem legitimate, since the propositional logic is much
simpler for understanding by non-mathematicians.

The use of level descriptions is not something essentially origi-
nal to decrease the computational complexity of the main problem.
It is a well-known technique in which sufficiently complex problems
are divided into a sequence of problems of the same type of lower
dimension. The main problem was HOW to build such a description.
To this end, the mathematical apparatus for extracting the general
sub-formulas of two elementary conjunctions of predicate formulas
was developed and briefly presented in this paper.

Based on the level description of classes, it was possible to for-
mulate the concept of a logic-predicate network. Unlike existing
networks, for example, neural or Bayesian, when retraining such a
network, a logic-predicate network can (and, as a rule, this happens)
change its configuration. This corresponds to the training of a per-
son in whose brain connections between one neural cells break and
connections between others arise.

This is one of the essential features of the proposed approach,
which distinguishes it from the use of various other networks. Its
other essential feature is to calculate the degree of coincidence of
the object being recognized with those ones for which the network
was trained.

A trained logic-predicate network quickly recognizes objects
with descriptions that are isomorphic to the ones on which it was
trained. But its training and retraining processes remain to be NP-
hard. This corresponds to the process of teaching a person. But in
some cases, it is not necessary to accurately recognize an object or
process, but to find out what it looks like and to what extent.

To answer such a question, the concept of a fuzzy logic-predicate
network was proposed. The structure of its cell, shown in Figure
13, is quite complex and contains a partial sequence check. Such
verification is NP-hard, but after repeated retraining of the network,
the formulas Pl

i(xl
i), setting intermediate goal formulas, are quite

short and have a small number of essential arguments, as it was
shown by the example in section 7. This means that an exponent
of the computational complexity of the partial sequence check is a
fairly small value.

Special importance has the choice of “good” initial features. As
already mentioned in Subsection 5.4, the predicates W, Y and T ,
which were used to describe contour images in [3], do not give a
good decreasing of computational complexity for the logic-predicate
network, constructed from them. Apparently, this is due to the fact
that they reflect the perception of a person and are essentially com-
posite.

9 Conclusion

In development of the proposed approach, many-valued predicates
may be considered. Especially this relates to the properties of
an object elements. Such multi-valued predicates p(x) = a with
a ∈ D can be interpreted as binary ones with a numerical argu-
ment: q(x; a) ⇔ p(x) = a. The inclusion of such predicates in
the formulation of the problem may serve as the subject of further
research.

It is also planned to consider the possibility of introducing cell
weights in a logic-predicate network. Such weights can be deter-

mined depending on the frequency with which parts of an object
description satisfy the formula checked in the corresponding cell.
Other weighting strategies are possible, similar to strategies for
determining the cell weights of a classical artificial neural network.

In addition, if in the problem setting global features of the ob-
ject that characterize the entire object are considered, then such
an object is usually described by a binary or multi-valued string.
Class descriptions can be presented as a propositional formula in
disjunctive normal form. Extraction the “frequently encountered”
sub-formulas of such propositional formulas [24] allows to form
a level description of classes. Using this description in a manner
similar to that described in this article, it is possible to build a logic-
algebraic network, which changes its configuration in the process of
learning. This corresponds to a change of connections in biological
neural networks.
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