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Degradation measurements are often treated and analyzed for improvement the reliability
of system. Our objective in this paper is to study a class of non linear systems, whose
dynamics and observations are non linear functions of the state. Obviously, we develop
an Extended Kalman Filtering (EKF) algorithm for detecting the additive failures in a two
tank system. However, the EKF algorithm is used to estimate the state vector of pipeline
system based on all collected measures history. Such as degradation process (clogging ,
partial blockage) is considered and can be described by a Wiener process. For reasons of
improvement reliability and security, it is necessary to predict the Remaining Useful Life
(RUL) of pipeline. It follows that a major preventive maintenance actions. Furthermore, we
can evaluate the RUL based on Monte Carlo simulation and compare the results.

1 Introduction
One of the most serious problems found in many chemical indus-
try and its components degrade over time (e.g. wear, corrosion,
erosion and fatigue). Among the components, we consider the
pipelines, which are widely used in industrial plants networks and
water distribution networks. The pipeline system are considered,
one of the components more susceptible to failure in many indus-
trial applications and that deteriorate over time. This deterioration
occurs as a result of the damaging effects of fluid mixture produced
from a reservoir or caused by the environment effects. Which is
called crud fluid and it contains a variety of substances of different
chemical structure that include hydrocarbon and non hydrocarbon
components. Furthermore, the surrounding environment may cause
a corrosion effect of pipe cross-section. As mentioned above the
wax layer will build up in layers and can block the pipeline. Which
can be reduce the pipeline reliability and safety level. This paper
is an extension of work originally presented in conference name
[1]. The aim of this paper is to present an approach to quantifying
the reduction in reliability and safety. However, we designed a new
technique for predict the remaining useful life time for clogging
pipelines at point in time and a specific distance. We will focus our
study mainly on cross section clogging pipelines. It may become
a serious problem as a pipeline ages. Based on literature, several
theories have been proposed to explain the reliability and the safety
of pipelines circumferential strength. It follows that a failure level

threshold is dened for stochastic deterioration process model, which
must not be exceeded for economical or security reasons. Obviously,
the accumulated deposit on the pipeline wall causes the growth of
a thickness of wax layer, leading to higher pressure drop and/or
decreased flow rate [2]. Through periodic inspection, the growth
of wax layer defect can be monitored, it follows that the reliability
of pipeline system can be improvement. The loss of efficiency of
the pipeline is then viewed as a change in the open loop system.
Improvement reliability and safety of pipeline can be studied based
on prognostic analysis. It can be defined as the prediction of future
characteristic of the system such the Remaining Useful Life. Cur-
rent research on diagnosis and prognostic are based on estimation
the non observable system state. One of the most technic used is the
stochastic filtering approaches, which gives an estimation of the sys-
tem state recursively. Therefore, we can benefit from these, which
give an estimation on-line with reliable performances for the pa-
rameters of a given model or a degradation path. However, Kalman
Filtering (KF) and Extended Kalman Filtering (EKF) have been
successfully applied to fault prognosis respectively in linear sys-
tem dynamics model and nonlinear system dynamics model [3, 4].
According to the literature,[5]-[8]about degradation modeling can
be mathematically described with a continuous process in terms of
time, Lu[9] use the convex degradation model for the growth rate of
fatigue cracks. Wang [10] studies a class of Wiener processes with
random effects for degradation data.
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The remainder of this paper is organized as follows: In section 2,
a two tank system modeling and it treats the stochastic deteriora-
tion in pipeline and explains why the Wiener process is the most
appropriate candidate for clogging evolution. Section 3 is devoted
to diagnosis and analysis the failure in pipeline system based on the
EKF algorithm. Section 4 discusses two methods for estimation of
the RUL, the first one is used to predict the RUL by EKF and the
second method used Monte Carlo simulation to estimate the RUL.
Finally, section 5 makes some concluding remarks.

2 Degradation Modeling in Pipeline Sys-
tem

Theoretically, in our case for modeling the movement of small
particles in uids, which can causes an additive accumulation of
wax overtime. Therefore, a characteristic feature of this process
in the context of structural reliability is that a pipelines resistance
alternately increases and decreases. For this reason, the Brown-
ian motion is adequate for this deterioration modeling which is no
monotone. We can assume that degradation increment increases in
time with random noise. In the literature, several theories have been
proposed to describe the phenomenon of degradation by a stochastic
model or a deterministic model [11, 12]. Several publications have
appeared in recent years documenting the degradation evolution
that can be described by Wiener process or gamma process [13].
In the following work, we consider the stochastic failure model.
To solve this problem, many researchers have proposed various
methods of modeling, mainly the stochastic model can be contin-
uous or discrete [14, 15]. Wiener processes are widely applied for
modeling the degradation process in engineering systems. Many
physical phenomena are described by the Wiener processes, when
the cumulative damage is non-monotonic. For example in our case,
clogging or partial blockage in cross area pipeline is then viewed as
a non-monotonic degradation processes. According to the literature
the Wiener process with a linear drift is frequently used to model
the non monotonic degradation process [16, 17]. Much research
on the non monotonic effect has been done about degradation pro-
cess based on the nonlinear model, which was proposed in many
literatures [10, 18, 19].

2.1 A Two Tank System Modeling

In our study, we consider a two tank system with pipeline. However,
the section area of the rst tank is noted by A1 and the second one is
noted by A2. The uid is assumed as incompressible (ρ is assumed
constant), which is pumped into the rst tank at the top by motor
pump . Through the pipeline, the outow from the rst tank fills the
second tank. The overall tank system is shown in Figure 1. We
assume the fluid level of tank1 and tank2 are measured by a level
measurement sensor and controlled by adjusting the pump motor
control input not shown in this case. The aim of this modeling is to
control the state of the pipeline and to intervene before having the
failure. In the following we assume an abrupt change at time and a
given distance in this cross-sectional area of the pipeline, which is
then viewed as a change in the tank fluid level. From this modeling
it can be given a mathematical model in engineering system. In

this way we can simulate the evolution of the clogging in pipeline,
obviously we can improving the pipeline reliability based on the
estimation of the RUL.

Figure 1: A double tank with pipeline

Table 1: Nomenclature

Parameter Description
Ai Tank cross-sectional area (i=1,2)
Hi Fluid level (i=1,2)
p0 Atmospheric pressure (Pa)
p1 Pressure at the bottom (Pa)
% Fluid density (Kg/m3)
g Acceleration of gravity (m2/s)
Z0 Level fluid in the upper tank (m)
Z1 Level fluid at the bottom tank (m)
V Fluid velocity (m/s)
h State level at time t in tank (m)

S s, S i Pipeline area (m2)
S c Pipeline area clogging(m2)
q flow rate (m3/s)

Let us describe the following failure mode encountered in petro-
chemical industrial applications these are:
1. clogging and partial blockage in pipeline cross section. Which are
caused by impurities and an additive accumulation of wax overtime,
see Figure 3.
2. Decreasing pump performance due to cavitations,
3. Dry running.

To control pressure losses, clogging, leaks, corrosion in the
pipeline. We assume that are two pressure sensors between the up-
stream and downstream tank. This is illustrated in Figure 2. We will
make the following assumptions: The logging is supposed located
at distance (d < L) and the pressure losses are neglected along the
pipeline.
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Figure 2: showing the deposit profile of wax

MUP: Measurement of upstream pressure.
MDP: Measurement of downstream pressure.

Figure 3: Clogging inside the pipeline

In order to describe the overall tank fluid level control system,
we have some assumptions: The fluid is incompressible (ρ is con-
stant), the temperature distribution of the incoming fluid is assumed
constant, the flow rate is considered permanent. Under all these
considerations, we use the mass balance equation, Torricelli rule
and Bernoulli rule it follows that the process can be described by
the following equations,

A
dh (t)

dt
=

∑
f low (1)

p1 − p0 = (ρgZ0 − ρgZ1) = ρgh1 (2)

V =
√

2gh (3)

Using the mass balance equation, we give the flow rate at each
pipeline outlet and the following equations,

q = V.S (4){ Adh1
dt = S iVi − qc,

Adh2
dt = qc − qS

(5) qc
S c

=
√

2gh1,
qs
S s

=
√

2gh2
(6)

Using(5) and(6), the mathematical model can be written as follow:

dh1

dt
=

S i

A
Vi −

S c

A

√
2g.

√
h1 (7)

dh2

dt
=

S c

A

√
2g.

√
h1 −

S 0

A

√
2g.

√
h2 (8)

The implementing of equation (7) and equation (8), we can be
rewritten the discredited model for a sampling period Te.

h1 (k + 1) = h1 (k) + Te
[
S i
A

Vi (k) −
S c (k)

A

√
2g.

√
h1

]
(9)

h2 (k + 1) = h2 (k)

+Te

 √
2gS c (k)

A
.
√

h1 (k) −

√
2gS s

A
.
√

h2

 (10)

The state equation has the nonlinear terms (a square term), it
follows that a nonlinear system. If we consider the process noise
v(k) and the measurement noisew(k), the state equation X(k + 1) and
measurement equation z(k) can be written as follow:

X (k + 1) = fk (Xk, uk, k) + v (k) (11)

z (k) = HX (k) + w (k) (12)

Where Xk =

[
h1 (k)
h2 (k)

]
, H = [1, 1] and qi (k) = ku.uk

ku amplification gain, uk Control voltage pump. From the above
expression, we deduce the state equations of pipeline system.:

X (k + 1) = X (k) +TeD (k)
√

X (k)+Tebu (k) +v (k) (13)

z (k) = HX (k) +w (k) (14)

Where D (k) =

 −S c(k)
√

2g
A 0

S c(k)
√

2g
A

−S s

√
2g

A

 , b =

[ 1
A
0

]

2.2 Wiener process for degradation modeling

For modeling the stochastic deterioration process, we can use Brow-
nian motion with drift, as far as the author knows, the Wiener
process was applied frequently in many works [14, 17]. In this
work, for more control the evolution of pipeline state, the moni-
toring pressure differential ∆p can be designed as a degradation
indicator in pipeline [15]. In the following, the Wiener process is
used to model the clogging damage in pipeline. Which is considered
a no monotonic degradation processes. However, we assumed that
the degradation increases linearly in time with random noise. In
practice, the degradation processes of pipeline systems are affected
by partial blockage or clogging formulated by the crud fluid and
external operating environments or loads. Let’s call again the prop-
erties of Wiener process to model the pipeline clogging evolution,
in order to lifetime and reliability analysis. 1. X (0) = 0;

2. The process {X(t)} has stationary and independent increment,
3. The process {X(t)} is assumed normally distributed with

µ = 0 and variance σ2t for any t > 0. Considering the time variables
t, u > 0, the random variable X (t + u) − X (u) and X (t) − X (u) for
t > u, have a normal density with mean 0, and variance σ2t and
σ2 (t − u) respectively, In this way we define the probability density
function as f (x, t) of Pr {X (t + u) − x(u) ≤ x} = Pr {X (t) ≤ x} is as
follows

f (x, t) =
1

√
2πt.σ

e−x2/(2σ2t) (15)
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and its Laplace transform is

+∞∫
−∞

f (x, t) e−sx = es2σ2/2 (16)

When σ = 1,B (t) ≡ X (t) /σ, is a standard Brownian motion
because V {X (t) /σ} = t. For any 0 ≤ t0 < t1 < ... < tn < t, using
the properties of independent and stationary increments, it is evident
to write the probability

Pr {X (t) ≤ x |X (t0) = x0, ..., X (tn) = xn }

= Pr {X (t) ≤ x |X (tn) = xn }

= Pr {X (t) − X (tn) ≤ x − xn}

(17)

In this way, we assume that the process has a Markov property.
Hence, its distribution function can be written as follows:

Pr {X (t) − X (tn) ≤ x − xn}

=
1

√
2π (t − tn)σ

+∞∫
−∞

e−u2/(2σ2(t−tn))du
(18)

Where the increment X (t) − X (tn) has a pdf with mean µ = 0
and variance σ2 (t − tn) for any t > tn, that does not depend on tn.

Z (t) = µt + σB (t) (19)

Where B (t) is a standard Brownian motion representing the
stochastic dynamics of the degradation process, then Z (t) is called
a Wiener process with drift parameter µ and variance σ2. The
pipelines failure is caused by the fluctuation of the fluid pressure-
depression along the time Pmin and Pmax, that are repeated within
an interval of time. Moreover, in [12]we deduce a minimum wax
removing pressure. Obviously these pipelines are unfortunately
usually designed for ultimate limits resistance. It is noted here
the evolution of the internal pressure can be caused a stochastic
stress in cylindrical pipeline. Moreover, in the work [5] and [19]
are used a nonlinear Wiener process with random effects to model
the degradation process in pipeline. A nonlinear Wiener process
aims to model the heaping and movement of small particles in flu-
ids with tiny fluctuations in pipeline. To assess the severity of the
clogging in pipeline system and its impact on the residual life, it is
required to analysis the degradation process characteristic. There-
fore, the pipelines degradation can increase or decrease gradually
under time. From now on we assume that the small increase or
decrease for degradation pipeline over a small time interval be have
similarly to the random walk of small particles heaping in cross
sectional pipeline. Furthermore, the random effects are widely used
in [10], [18] and [19] extended the degradation model in (19) to the
following form:

Z (t) = λ.Λ (t) + σB.B (Λ (t)) (20)

Where,
λ: is the drift parameter
Λ(t): is a positive non decreasing function, we can use the time-
scale transformation function Λ (t) = tθ and Λ (t) = eθt − 1

σB: is the diffusion parameter,
B(t): is the standard Brownian motion.
If Λ(t) = t is a positive function, the nonlinear model becomes a
linear model given by (19).
However, a fundamental problem related to this kind of degradation
models of nonlinear Wiener-process. Actually, nonlinearity and
stochastically are two important factors contributing to the degrada-
tion processes of complex systems. When the degradation process
Z(t), t > 0 hits a failure threshold value L of the item was considered.
The item’s lifetime T is defined as:

T = inf {t |Z (t) ≥ L} (21)

According to the concept of the First Hitting Time, it is evident,
when the Wiener process path reaching a threshold level L, it can
be obey an inverse Gaussian distribution. Obviously, when we con-
sider the nonlinear degradation process as shown in (20) and the
drift parameter λ is considered a random effect variable given by
λ ∼ N (µλ, σλ). Moreover, according to [18] the probability distri-
bution function (pdf) of the life time is given by (22) and similarly,
the cumulative distribution function (CDF) of the life time is given
by (23).

fT (t) =
L√

2π.Λ3 (t)
(
σ2
λΛ (t) + σ2

B

)×
exp

−
(
L − µλΛ2 (t)

)
2Λ (t)

(
σ2
λΛ (t) + σ2

B

) 
(22)

and

FT (t) = Φ

 µλΛ (t) − L(
σ2
λΛ

2 (t) + σ2
BΛ (t)

)  +

exp
2µλL
σ2

B

+
2σ2

λL2

σ4
B

×
Φ

−2σ2
λL2Λ (t) + σ2

B (L + µλΛ (t))

σ2
B

√
σ2

BΛ (t) + σ2
λΛ

2 (t)


(23)

when we consider the linear degradation process as shown in (19)
and the drift parameter λ is considered a random effect variable
given by λ ∼ N (µλ, σλ). Then, the probability distribution function
(pdf) and the cumulative distribution function (CDF) of the life time
are given by:

fT (t) =
L√

2π.t3
(
σ2
λt + σ2

B

)×
exp

− (L − µλt)2

2t
(
σ2
λ + σ2

B

) 
(24)
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and

FT (t) = Φ

 µλt − L(
σ2
λt2 + σ2

Bt
)  +

exp
2µλL
σ2

B

+
2σ2

λL2

σ4
B

×
Φ

−2σ2
λL2t + σ2

B (L + µλt)

σ2
B

√
σ2

Bt + σ2
λt2


(25)

2.3 Parameters Estimation using MLE

The Maximum Likelihood Estimation (MLE) is the most widely
used. It is a method of estimating the parameters of a model. This
maximizes the agreement of the selected model with the observed
data. We assume that Zi, j is a degradation indicator measurement (In
this case the pressure differential see Figure 2) at the ith items (We
assume many pipelines are observed) at time j,where i = 1, 2, 3,N
and j = 1, 2, 3, r, r is the last observation time. The degradation
paths is based on linear Wiener process with parameters (µ, σ)
and that are assumed the same for all items. For each increment
∆Zi, j = Zi, j+1 − Zi, j of each item follows a normal distribution
N

(
µ∆ti, j, σ2∆ti, j

)
. We assume that increment ∆Zi, j is independent,

identically components. Similarly it is assumed normally distributed
for all. Now we can derive the density function of Brownian motion
process, which is given by:

f(µ∆ti, j,σ2∆ti, j)
(
∆Zi, j

)
=

1√
2πσ2∆ti, j

e
−

(∆Zi, j−µ∆ti, j)2

2σ2∆ti, j

(26)

Z is a Markovian process, then the maximum likelihood es-
timator can be used. The parameters vector θ = (µ, σ) can
be evaluated once we know the transition density function of Z.
According to the measurements of degradation for each item i,
∆Zi =

(
∆Zi,1,∆Zi,2,∆Zi,3, .......∆Zi,r

)
. For item i, the likelihood

function for item i is :

Li (θ) =

r∏
j=1

1√
2πσ2∆ti, j

e
−

(∆Zi, j−µ∆ti, j)2

2σ2∆ti, j (27)

For the ith item, the log likelihood can be written as follow:

li (θ) = ln Li (θ) =

ln

 r∏
j=1

1√
2πσ2∆ti, j

e
−

(∆Zi, j−µ∆ti, j)2

2σ2∆ti, j

 (28)

The degradation measurements vector are independent, then we can
write,

l (θ) = ln (∆Z1, ...∆ZN)

=

N∑
i=1

ln
(
fi
(
∆Zi,1, ...∆Zi,r

)) (29)

l (θ) =

N∑
i=1

ln

 r∏
j=1

1√
2πσ2∆ti, j

e
−

(∆Zi, j−µ∆ti, j)2

2σ2∆ti, j

 (30)

Where l (θ) =
N∑

i=1
li (θ), fi/li (θ) the pdf is divided by log likelihood

of increments, that is corresponding to each item, and f /l (θ) is the
pdf divided by log likelihood of increments corresponding to all
increments. In this way we obtain, we write the MLE θ̂ = (µ̂, σ̂) are
found by maximizing l (θ), and using the partial derivative of the log
likelihood function of (24), by respecting the derivation variables µ
and σ, from this we deduce these equations,

∂l (θ)
∂µ

=

N∑
i=1

r∑
j=1

∆Zi, j − µ∆ti, j
σ2 = 0 (31)

∂l (θ)
∂σ

= −
rN
σ

N∑
i=1

r∑
j=1

(
∆Zi, j − µ∆ti, j

)2

σ3∆ti, j
= 0 (32)

We can now apply the MLE method for θ = (µ, σ) is given by:

µ̂ =

N∑
i=1

r∑
j=1

∆Zi, j

N∑
i=1

r∑
j=1

∆ti, j

(33)

σ̂ =

√√√√√
1

rN

N∑
i=1

r∑
j=1

(
∆Zi, j − µ∆ti, j

)2

∆ti, j
(34)

2.4 First Hitting Time Concept and RUL Distribution

Based on the work presented in [20]-[22], the RUL of a system is
dened as the length from the current time to the failure time. If we
consider the random variable T as a stopping time for B (t), t ≥ 0,
and for any t, it follows that to decide whether T has occurred or
not by observing the path of B (s), 0 ≤ s ≤ t. For any t the sets
{T ≤ t} ∈ Ft and given a level threshold L, the time of reaching this
level could be more than once due to the random nature of Wiener
process Z (t). In the following, we provide the computation of a first
passage time hits level threshold TL and the RUL distribution of
Wiener process paths. Suppose TL the first passage time of Wiener
process Z (t) hits level L, if the maximum of Z (t) at time t is greater
than L, then the path of Wiener process took value L at some time
before t. Let consider TL the rst time when the degradation path
Z (t) reaches the threshold level, it follows that, we deduce the dis-
tribution of the maximum and the minimum of Wiener process on
[0, t]. M (t) = max

0≤s≤t
Z (s) and m (t) = min

0≤s≤t
Z (s). identically , the

distribution of the first hitting time of L, TL = inf {t > 0 : Z (t) = L}.
From Theorem [22], and for any L > 0 ,

P0 (M (t) ≥ L) = 2.P0 (Z (s) ≥ L) = 2
(
1 − Φ

(
L
√

t

))
(35)

Proof: For the events M (t) ≥ L and TL ≤ t are the same. When the
maximum of Wiener process at time t hits a failure threshold L. If
Wiener process took value L at some time before t, therefore the
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maximum will be at least L. Since {Z (t) ≥ L} ⊂ {TL ≤ t}, thus we
have also computed the probability as follows:

P (Z (t) ≥ L) = P (Z (t) ≥ L,TL ≤ t) (36)

As Z (TL) = L

P (Z (t) ≥ L)

= P (TL ≤ t, (Z (TL + (t − TL)) − Z (TL)) ≥ 0)
(37)

LetTL is a finite stopping time, and from the strong Markov
propriety in [22], from this the random variable Ẑ (s) = Z (TL + s)−
Z (TL) is assumed independent of FTL and has a normal distribution,
so we have

P (Z (t) ≥ L) = P
(
TL ≤ t, Ẑ (t − TL) ≥ 0

)
(38)

If we had s independent of TL, then

P
(
TL ≤ t, Ẑ (t) ≥ 0

)
= P (TL ≤ t) P

(
Ẑ (s) ≥ 0

)
= P (TL ≤ t)

1
2

= P (M (t) ≥ L)
1
2

(39)

That is to say for any L > 0

P (M (t) ≥ L) = 2P0 (Z (t) ≥ L)

= 2
(
1 − Φ

(
L − x − µt

σ
√

t

))
(40)

In reliability engineering , there are some researches involving
the degradation based failure time TL prediction for a component.
Which is defined as the time at which the degradation path first
reaches a threshold L. However, the distribution of the first passage
time TL plays an important role for predicting the remaining useful
lifetime. Furthermore, RUL is often used as a decision indicator in
the optimal maintenance strategies. According to [23], the inverse
Gaussian distribution can be used to calculate the probability density
function of the conditional rst passage time, when the degradation
path is modeled by a Wiener process with positive drift. Accord-
ing to what is said before, let TL can be the first passage time for
a fixed threshold L > 0 by Z (t) which is the linear degradation
process given in (19). Then TL can be considered as a random
variable described by the inverse Gaussian distribution as follow

TL ∼ IG
(

L
µ
,
(

L
σ

)2
)
. We should first mention inverse Gaussian distri-

bution (IG) is a two parameter continuous distribution given by its
density function as follow:

f (t, µ, λ) =

√
λ

2π
t−3/2 exp

(
−λ

2µ2t
(t − µ)2

)
, t > 0 (41)

The mean µ > 0 and the shape parameter λ > 0. If we consider
a random variable X which is governed by the inverse Gaussian
distribution and can be written as follow X ∼ IG (µ, λ). However,
the inverse Gaussian distribution describes the probability density
function of the conditional rst passage time, when the degradation

path reaches a level L. Then TL ∼ IG
(

L
µ
,
(

L
σ

)2
)

has inverse Gaussian

distribution, so put these parameters into(35). Therefore, we have
probability density function given by:

f (t, µ, σ) =
L

√
2πσ2t3

exp
(
−(L − µt)2

2σ2t

)
(42)

The first passage time TL satisfies the following function, can be
written as

F (x, µ, σ) = P (TL ≤ t)

=

t∫
0

L
√

2πσ2x3
exp

(
−(L − µx)2

2σ2x

)
dx

(43)

Given (36), it is possible to calculate the RUL distribution. If
we take the observing data from the degradation process at time t,
which is at position z(t), then the probability that RUL is less than a
predened period h can be written as follow:

P
(
RULz(t) ≤ h

)
=

h∫
0

L − z (t)
√

2πσ2x3
exp

(
−(L − z (t) − µx)2

2σ2t

)
dx

(44)

3 Diagnosis in pipeline using EKF
The suboptimal filter known as the Extended Kalman filter (EKF) is
frequently used for non-linear state estimation problems. Since (13)
and (14) that represent the model of pipeline system, that is non-
linear model. Before applied the EKF algorithm, we must linearize
the state equations around the actual value of state estimated for
each time step. A linear approximation process is done by using a
Taylor series approximation. According to (11) and (12), we carried
out the non-linear model of the pipeline system. From now on
we apply the Taylor series approximation, in order to linearize the
functions that given by equation (13) and equation (14)

f (Xk, uk)

≈ f
(
X̂k, uk

)
+ dFk

(
Xk − X̂k

)
+ dGk (uk − ūk)

(45)

Such as: dFk =
∂ f (Xk ,ūk)

∂X

∣∣∣Xk=X̂k
, dGk =

∂ f (X̂k ,uk)
∂u

∣∣∣uk=ūk ,

Ck = f
(
X̂k, ū

)
− dFkX̂k. The following derivation terms are found:

dFk =

 1−TeSc
2A

√
2g
√

h1
0

TeSc
2A

√
2g
√

h1
1−TeSs

2A

√
2g
√

h2

, dGk =
[
Te S i

A 0
]
.

In the work [24] and in related references it was defined the
EKF algorithm.
Obviously, the prediction step is defined by

X̂k|k−1 = fk
(
X̂k|k−1 , uk

)
+ vk (46)

Pk|k−1 = Qk|k−1 + dFkPk−1|k−1 dFk
T (47)

Moreover, the updating equation can be implemented recursively
as follow

X̂k|k = X̂k|k−1 + Kk [zk − (HkXk + wk)] (48)
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Pk|k = Pk|k−1 − KkHkPk|k−1 (49)

Kk = Pk|k−1 Hk
T
[
HkPk|k−1 HT

k + Rk

]−1
(50)

It is interesting to consider the error in the prediction of zk from
its past zk−1. This error is known as the prediction residual on the
innovation. This latter term comes from the fact that we can write:

r1 (k) = ep1 = h1 (k) − h1e (k) (51)

r2 (k) = ep2 = h2 (k) − h2e (k) (52)

The simulation data are taken from [25, 26] are given in Table 2.

Table 2: Nomenclature

Physical parameters Description
A1 = A12 = A = 16(m2) Identical sections

for the two tanks
S 0 = 1/32(m2) Tank outlet section N2
S i = 1/4(m2) Tank outlet section N2

g = 9, 81(m/s2) Acceleration of gravity
T = 5(s) Sampling period

S max = 1/4(m2) Section of the pipe
linking the two tanks

N = 100 Time (Year)
H1(1) = 0.5(m) Level of the fluid

in the first reservoir
H2(1) = 0.01(m) Level of the fluid

in the second reservoir
qi = 5(m3/s) Flow rate

The numerical value of state noise for simulation are v =

Q.rand(1, n) and Q = diag(0.002, 0.05, 0.0001) The numerical
value of measurement noise for simulation are w = R.rand(2, n) and
R = diag(0.01, 0.01).

4 System without Fault (No clogging)
According to the EKF algorithm given by (46) and (52), we illustrate
and show the simulation results through a two tank system without
degradation process. These simulation results are given by Figure 4
and Figure 5. According to the algorithm of EKF given by(46)-(52),
which contains the fluid level and flow rate we can generate the
statistical residual. According to the estimated value of level tank, it
is possible to quantify the influence of wax deposition action. The
simulation results as shown in Figure 4 and Figure 5. However, the
pressure and flow rate in pipeline system are commonly measured
in order to monitoring the characteristic pipeline system. These
equations in algorithm of EKF incorporate a measurement value
into a priori estimation to obtain an improved a posteriori estimation.
The simulations results were carried out in the absence of clogging
in pipeline system to show the fluid level evolution in two tank in
Figure 4.
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Figure 4: Fluid level in Two Tank system
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Figure 5: Residuals without faults(No clogging)

Consider Figure 5, which plots the residue observed from EKF
for diagnosis, that indicates the system is no faulty. Moreover, it
shows the filter performance measures in terms of the innovation
sequence. We know that if the filter is working correctly, then the
innovations have a zero mean Gaussian white noise with a covari-
ance (S r). However, we can verify that the filter is consistent by
applying the following two procedures. Check that the innovation
is consistent with its covariance by verifying that the magnitude of
the innovation is bounded by ±2

√
S r . Verify that the innovation is

unbiased and white.

The statistical characteristics of the residual without faults are
given in Table 3:

Table 3: The statistical characteristics of the residual

Residual Mean Standard deviation
r1 µ1 = −0.000242 σ1= 0.0087
r2 µ2 = 0.0000321 σ2= 0.0102
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Figure 6: Residuals statistical characteristics

4.1 System including clogging by Steps

In order to valid the EKF algorithm for dynamic failure estimation.
Consider Figure 2, which shows the deposit profile of wax. We
will be interested in clogging pipeline, that is assumed at distance
d projected on the longitudinal axis (d < L), where the clogging
can form a critical region of stress concentration and L is the length
of the pipeline. In practice, this type of defect is unobservable and
no measurable. For this reason, we consider two pressure sensors
to control the increase or decrease the pressure downstream and
upstream of the obstruction. Before use the degradation model by
Wiener process that can be assumed and described by (n) steps to
model the cumulative damage in pipeline. The model of degradation
by steps can be described by (53), this results in a decreasing of
cross sectional area and it model a clogging evolution in pipeline.

S c (t) =



λ1.S cmax, 0 < t < t1
λ2.S cmax, t1 < t < t2
...
λi.S cmax, ti−1 < ti < ti+1
...

λn.S cmax, tn > tn−1

(53)

where 0 < λi ≤ 1, is a ratio between S c(t)/S cmax, see Figure
2. Thus, ti−1 and ti denote the initiative and terminal time under
cumulative wax step respectively. However, in the following we
have n = 3 steps, then λ1 = 0.3, λ2 = 0.5 and λ3 = 0.7. Which, the
first clogging level is assumed to occur at time t = 30 unit of time.

S c (t) =


0.3.S cmax, 0 < t < t1
0.5.S cmax, t1 < t < t2
0.7.S cmax, t >t2

(54)

For a given form of evolution clogging level in cross-sectional
area in pipeline Figure 9 and according to the EKF algorithm, it
follows that the fluid level in tank1 and tank2 are affected by this
clogging. Furthermore, the quality of the state estimation of the
deposit profile of wax is accepted and well. The EKF algorithm

is used to estimate recursively the pipeline system state, when we
consider a deteriorating system with noisy measurement of h1 and
h2. Figure 7 shows the fluid level evolution in two tank system.
Moreover, Figure 8 depicts the prediction errors, which contains a
statistical information for diagnosis.
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Figure 8: Residuals with three steps of faults

Consider Figure 9, which plots section degradation prole esti-
mated by EKF. If we compare these results with Figure 4 and Figure
5, we can show the effect of clogging pipeline in the characteristics
of pipeline system. One can notice that the performance of our pro-
posed methodology of estimation and failure diagnosis are perfectly
adopted. For a better lecture of Figure 9, we can conclude that the
EKF algorithm is applied very well in order to estimate the state of
the cross-sectional area in pipeline.

The problem consists to model the evolution of the wax in
pipeline and to determine the minimum cross-section area which
corresponds to a maximum pressure. That can cause a crack or an
explosion of the pipeline system. For more reality and improve the
clogging damage model, it is more appropriate to describe the type
of failure with a continuous process.
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From this Figure 10, it can be seen that random evolutions of the
internal section S c(t) of the pipeline for a given distance (d < L).
The time at which the prognosis is made it can be noted by tpro.
However, the remaining residual life of the pipeline system at tpro

will be noted RULtpro . It equals to the time elapsed between RULtpro

and the moment when the pipeline system is failed. Noted that T be
the date of failure, then the RUL prediction at the time of prognosis
is assumed as a random variable which can be defined for tpro < T
(see Figure 10).

RULtpro = T − tpro (55)

Figure 10: Remaining Useful Lifetime prediction

S lim : Minimum value of S c, when a lower value, there will be
an explosion in pipeline, which can dene the threshold level.
According to the literature [2, 27], who presented models for evalu-
ation of the wax appearance at given point. From the authors work
[28, 29], we can define the specific criterion for pipeline resistance
as follow.

Pmax = S y + 68.95 (MPa) (56)

where
S y : is the yield strength of the pipe material (MPa).
Pmax: flow strength of the pipe material (MPa)

5 RUL Predicted by EKF and Monte
Carlo simulation

The main objective in this section is to present an approach to evalu-
ate the reliability. However, the RUL for deteriorating pressurized
pipelines at any distance d and time t require to modeling this degra-
dation process and predicted its evolution on line. We will focus
mainly on cross-sectional area of pipeline, where the deposit profile
of wax is shown in Figure 2. Based on paragraph (2.2) the degrada-
tion process models can be applied easily. From (19),the evolution
of cross-sectional area of pipeline can be described by new form of
Wiener process.

S c (t) = S c (t − 1) + µ.t + σB (t) (57)

In order to assess clogging pipeline evolution, there are many tech-
niques for estimation, KF and EKF is the most widely used for
linear and non linear systems. Theoretically, we can estimate the
RUL of a pipeline containing wax defects using two techniques
EKF and Monte Carlo simulation.

5.1 RUL Predicted by EKF

In order to predicted the RUL by EKF that is computed using two
steps the first one requires to estimate the clogging level evolution
on cross-sectional area S c(t) of pipeline, trough using the EKF algo-
rithm for non linear system. The second require to use the estimated
path of the clogging level and using (44) it may be evaluated the
RUL cumulative distribution function. However, the prognostic
of degradation path estimated by EKF and illustrated in Figure 12
is used. For a predefined period h and given the current degrada-
tion status (Time, S c(t)), we can calculate the RUL distribution.
For example from Figure 12, we are taken three points of current
degradation path M1(20, 0.230), M2(30, 0.222) and M3(40, 0.215).
Figure 13 depicts the cumulative RUL distribution in each point Mi.
However, the red curve M1 is the RUL distribution when monitoring
time is 20 unit of time and 0.225 current level degradation. As we
can see, the later the observing time, the higher possibility that the
cumulative wax in cross-sectional area Sc of pipeline would within
the predened monitoring time period.

For evaluation of RUL distribution, a philosophy of RUL esti-
mation based on first passage time distribution, which is given by
(44) in paragraph(2.4). In order to analysis the impact of Wiener
parameters in degradation path, we demonstrate that with Matlab
simulation. However, when µ is small in comparison with σ , we
conclude that the drift has a greater impact on the Winer process.
Conversely, if σ is small in comparison with µ , then noise domi-
nates in the behavior of the Winer process. For more analysis, we
generate ten realizations of S c paths with µ and σ are estimated
before. From (27) and (28), we can estimate the parameters cor-
responding to the data set. Using the MLE method the estimated
parameters are given by:µ̂ = 0.1525 and σ̂ = 0.052. In the first
time, we apply the EKF algorithm in Section 3. In order to predict
the systems future state using (40-44), that enable to use the system
information, through the measurement value, measurement error
and system noise, it is possible to obtain a trend optimal estimation
of the pipeline system state. Therefore, EKF is a recursive algorithm
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used for estimation, which needs to save the system state value and
covariance matrix at the last time every step of estimation. For
level value of degradation process path at unit of time, it is possible
to predict the RUL of the pipeline system. The failure threshold
value is set to respect the criterion of reliability and safety given in
literature [28, 29].
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Use the criterion in (56) to prove the pipeline system reliability.
For example, for S clim = 0.2(m2) obviously, the simulation results
are shown in Figure(11) and Figure(12). That can give more in-
formation about prognostic. Consider Figure (11) which plots the
degradation path of Sc, which is predicted by EKF algorithm. Given
a threshold level S clim, we can make decision between two hypoth-
esis at time t = 50 unit of time, working zone and failure zone.
Figure (12) illustrates the RUL prediction by EKF algorithm. When
the path of S c exceed the failure threshold at t = 55 unit of time,
then we can compute the RUL from time of prognostictpro = 20 unit
of time until failure time. However, from (55) the RUL = 55(unit
of time).

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

CDF RUL

Unit of Time

 

 

M1(20,0.230)

M2(30,0.222)

M3(40,0.215)

Figure 13: CDF of RUL

5.2 RUL Estimated by MC

The second method requires to generate many paths by Monte Carlo
simulation and according to paragraph (2.4) we can evaluate the
first hitting time and plot the RUL pdf. Using the Wiener model to
generate some paths describing the true degradation process with pa-
rameters estimated before µ̂ = 0.1525 and σ̂ = 0.052. After that, we
apply Monte Carlo simulation for a given threshold level to depict
the RUL distribution. For more analysis, we generate the degra-
dation paths of S c using the presented approach based on Wiener
model, we carried out several numerical simulations including the
procedures of initial parameters estimation. Moreover, assume that
S c is simulated randomly for N = 10 realizations independent and
identically tested and that are based on Wiener process with positif
drift. In order to analysis the degradation process evolution, we
simulate the testing data set using Matlab see Figure 14 and Figure
15. For simplicity and reasons of understanding the evolution of
the degradation process, we simulate the first path with mean and
variance parameters above and initial condition of S c = 0.25m2.
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In the following, we are taken N = 50 and N = 100 random
samples are generated and we want to gure out the time when the
degradation paths hits the failure threshold L = 0.2(m2). It follows
that the distributions of first hitting time computed by Monte Carlo
simulations, which are compared with analytical function of FHT in
(42) as can be seen from Figure 16 and Figure 17. We can say that
the analytical function of FHT based on Wiener process approxi-
mately pick up the true value in degradation process. However, it
is not very reasonable to make such deterministic conclusion only
according to gures results. An advanced evaluation need to be carry
out to judge the accuracy of the proposed method and the model of
degradation process. Nevertheless, there are some relevant problems
to be addressed.
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Figure 16: First Hitting Time and pdf RUL (N=50)

However, the choice of the initial parameters µ and σ of the
degradation process is important for evolution of the Wiener dy-
namic drift. For this reason, a simulation with Matlab demonstrate
that when µ is small in comparison with σ, then we conclude that
drift has a greater impact on the dynamic of Wiener process. Further-

more, if σ is small in comparison with µ, then the noise dominates
in the behavior of the Winer process. But it is very obvious from
these gures that the Wiener processes are more spread out when
its parameters are fluctuated. Moreover, it appears that the paths
has regions where motions looks like they have decreased trend
with random uctuations. It seems to me in this practical case, the
degradation does not follow a linear drift.
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Figure 17: Monte-Carlo Simulation and pdf RUL (N=100)

Figure 18 shows the actual pdfs RUL at different observation.
The first curve in the figure is the pdf RUL when monitoring time
is t = 0 unit of time and the last curve shows the pdf RUL when
monitoring time is t = 5 unit of time. It is clear that, the latter
observing time, the rather that pipeline would have clogging higher
possibility. Similarly, we can estimate the mean of the RUL as an
useful input for a preventive maintenance activity.

0
20

40
60

80
100

0

1

2

3

4

5
0

0.05

0.1

0.15

0.2

The RUL

Analytical pdf RUL

The monitored time

p
d

f 
R

U
L

Figure 18: Analytical pdf of the RUL prediction

6 Conclusion
In this paper, we have proposed a new idea that allows to model the
degradation process in two tank system. We have focused our mod-
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eling particular in pipeline clogging component. We only consider
a Wiener process without random effects has a linear drift. But in
practice, a nonlinear model may be more appropriate for complex
system. Based on the Wiener process model, the unknown parame-
ters in this model are estimated using the MLE approach. However,
at the beginning of modeling we have used a simple model to de-
scribe the cumulative damage which causes by the small particles
in crud fluid in pipeline system. In this context, we have assumed
the clogging of cross sectional area of pipeline by walk steps. By
using the Extended Kalman Filter algorithm, we have effectively es-
timated the state parameters system. There fore, the EKF algorithm
has been successfully applied to predict recursively the Remaining
Useful Life Time of the pipeline containing wax defect. Based on
the concept of the First Hitting Time, the Monte Carlo simulation
method is used to estimate the probability density function. The
effectiveness of these methods are valid though numerical simula-
tions. Moreover, the results show that the work is promising and
opens many perspectives for future research.
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