

www.astesj.com 87

New Solution Implementation to Protect Encryption Keys Inside the Database Management System

Karim El bouchti*, Soumia Ziti, Fouzia Omary, Nassim Kharmoum

Faculty of Sciences, Mohammed V University in Rabat, Intelligent Processing Systems & Security (IPSS) Team, Morocco

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 31 December, 2019
Accepted: 13 February, 2020
Online: 09 March, 2020

 Due to the attacks' growth on sensitive databases by deploying advanced tools, beyond
access control and authentication mechanisms, the database encryption remains a useful
and effective way to ensure robust security of data stored within it. Any database encryption
solution is based on a specific encryption model that determines how data is encrypted
inside it. A relevant database encryption model must necessarily adopt a strong security
policy of data encryption keys. It determines how these keys are generated, stored, and
protected. In this work, we will implement an original solution that protects the encryption
keys when encrypting data occurred at the Database Management System level. Our
solution suggests protecting the keys by their encryption with other ones named Master
Keys, which are generated according to the encryption granularity defined by the database
encryption model. The proposed solution protects the keys of two database encryption
models: at the level of the columns and the level of tables.

Keywords:
Encryption keys protection
Database encryption
Database security
keys protection in Databases

1. Introduction

Database (DB) level encryption is a way to encrypt and decrypt
data within the Database Management System (DBMS) using keys
held by the DB server [1]. In fact, this encryption model offers
major advantages, in particular, those related to the security of the
encryption keys against external attacks performed outside the
information system [2, 3]. Though the probability of the
administrator attack is not negligible, he owns large privileges on
DB. Hence, he can attack the DB directly, via a collaboration with
a malicious external attacker (disclosure of the administrator
account for example), or with an internal attacker such as a
legitimate user [4, 5, 6]. Obviously, the DB administrator has the
ability to perform all these attacks without leaving any traces [7,
8].

Data encryption at the DBMS level is based fundamentally on
its specific encryption model. The management of encryption keys
within this model is a crucial point, it defines the ways how keys
are generated, stored, and protected [9, 10]. Actually, keys values,
how users access them, and where they are stored are the ultimate
goal of any attacker. Therefore, it should be necessary to establish
a protection policy for encryption keys to minimizing their
exposure face of malicious attackers. Indeed, many solutions have

been developed in order to resolve this problem. For instance, the
keys protection solutions implemented at DBMSs such as Oracle,
Ms SQL Server and My SQL are mainly based on the use of
"Wallets", Hardware Security Module (HSM) and "Security
server" [11-14]. In fact, each one of these solutions has advantages
and major limits, as have already explained in more detail in our
previous work [8, 15].

Several studies proposed several solutions to protect DB
encryption keys either in DB encryption models or separate
solutions of keys protection [16, 17]. The authors of [16] proposed
a model to protect encryption keys based on a concept of
distributed keys representation. The first key part stored in the DB,
and the other part is obtained by converting the user password.
Elovici et al. presented a special DB encryption model that permits
to protect keys using "Wallet" mechanism [17], although Itimar et
al. used asymmetric key encryption [18]. The authors of [19]
suggested a solution called "Server-HSM" which merges an HSM
and a security server into a module called "HW Security Module"
that might be integrated into a DB server. This module manages
user privileges and protects keys with their encryption. El bouchti
et al. presented a full package of encryption keys protection models
inside the DBMS. Their method allows encrypting keys with
master keys generated according to encryption granularity adopted
by the DBMS encryption model [15]. Sesay et al. in their proposed

ASTESJ

ISSN: 2415-6698

* Karim El bouchti, Email: elbouchtikarim@gmail.com

Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 2, 87-94 (2020)

www.astesj.com

https://dx.doi.org/10.25046/aj050211

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj050211

K. El bouchti et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 2, 87-94 (2020)

www.astesj.com 88

DB encryption model suggested protecting keys by the use of a
particular way. In fact, they generate the encryption keys from a
unique master key (Km) generated and stored in a tamper-proof
controller [20].

Notwithstanding several DB security studies for improving the
concept of encryption keys protection within DBMS, more
investigations are required to develop, improve, and provide more
security and flexibility to keys protection. Then, as discussed in
our previous work presented in [7, 10, 15], most of the proposed
solutions have their advantages and disadvantages. However, to
our knowledge, a trusted and simple solution concretized by a real
implementation, and adapted to more than one DB encryption
model has not yet been proposed.

In this context, the present work aims to implement two
solutions proposed in our previous work [15] to protect DB
encryption keys. Our solutions protect encryption keys when
encryption granularity adopted by the DBMS is fixed at the
column level or the entire table level. They consist of encrypting
the DB encryption keys of tables and columns using Km, generated
by deploying two models. We consider that the main original
features of our solution are its reliability and its principle. It does
not require any control or management of key protection by a DB
or security administrator as well as it resists strongly against
attacks performed by administrators.

The present work will be structured as follows: section two
presents the proposed models of Km and the common objects of
the implementation of each model. It also explains how our Km
models work with DB encryption models that we will implement.
Section three explains the implementation and discusses the
provided results. Finally, our article ends with a conclusion.

2. Definition of the proposed solution

In this section, we will define two models (1 and 2) of the Km
generation that protects, respectively, the columns and tables keys.
We will also describe the role of the common objects that have
used between the two models' implementation and how those
models work in an encryption/decryption process.

2.1. Proposed models of Km

 The generation of the Km follows the two different models
below:

• The Km (C) key used to protect the encryption keys of

the DB columns. It is generated by the DBMS according

to the model defined below:

Km (C) = H (Table _name || Column_name) (1)

• The Km (T) key utilized to protect the encryption keys of

the DB tables. It is generated by the DBMS according to

the model defined below:

Km (T) = H (Table_name || Database_name) (2)

In order to concretize the functioning and the response of the
models (1) and (2), we have designed and implemented two
models of DB encryption (A) and (B) having, respectively, two
encryption levels: column and table. The functioning of each Km
generation model is associated with the execution of a DB
encryption model, as shown in Table 1.

Table 1: The generation model of Km and the DB encryption model associated

2.2. The common objects of each model implementation

The creation of elements below is common for the
implementation of the models (1) and (2).

MYTABLE_ENCRYPT_OBJET: This DB table contains records
of : i) the names of the objects on which encryption has defined, ii)
the used encrypt algorithms, and iii) the encryption of the
encryption keys using Km. It has the following structure:

MYTABLE_ENCRYPT_OBJET (K_OBJECT_NAME,
K_ENCRYPT_ALGO, K_KEY)

TEST_MANAGEMENT: This DB table contains the records of :
i) the names of the objects on which encryption has defined, ii) the
used encrypt algorithms, iii) the object encryption keys, and iv) the
Km of each object name. In fact, TEST_MANAGEMENT table is
not implemented in the real working case of our solution.
Nevertheless, its main role is to illustrate the results of the creation
of both encryption keys and the Km. The table has the following
structure:

TEST_MANAGEMENT (C1_OBJECT, C2_ALGO, C3_KEY,
C4_MASTERKEY)

where:

C1_OBJECT, K_OBJECT_NAME: the object on which we have
defined encryption;

C2_ALGO, K_ENCRYPT_ALGO: the algorithm used for
encryption;

C3_KEY: the encryption key;

C4_MASTERKEY: the generated Km;

K_KEY: the encrypting result of encryption keys using Km.

The Md5 hash function: it is used to create the encryption keys and
the Km while implementing all models.

Km generation model

Associated DB encryption

model

Model (1): Km generation

model for protecting

encryption keys of columns

Model (A): DB encryption

model at the column level

Model (2): Km generation

model for protecting

encryption keys of tables

Model (B): DB encryption

 model at table level

http://www.astesj.com/

K. El bouchti et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 2, 87-94 (2020)

www.astesj.com 89

The AES256 algorithm: it is the algorithm used to encrypt / decrypt
the data.

Note: The term “Objet” signifies the column and table names.

2.3. Principle of the encryption/decryption process

An encryption/decryption process in the model (A) follows the
defined steps below:

When a user sends a query to be executed, the DBMS generates
the Km for each column on which encryption is defined. The
DBMS decrypts, using the generated Km, a value from the
K_KEY column belonging to MYTABLE_ENCRYPT_OBJET
table and which corresponds to the column desired to be encrypted
or decrypted. This process generates the real encryption key of
column that will encrypt (in the case of an inserting or updating
query) or decrypt (in the case of a consulting query) the data.

The encryption/decryption process in the model (B) follows
similar operations. In this case, the DBMS generates a single Km
in response to the user's query since the encryption is defined on
the entire table.

2.4. Case study: the dosimetric monitoring of agents

A real case study has chosen to illustrate the models'
implementation results.

Let have a database named "ORCL10G" of a nuclear power
plant intended to manage the dosimetric monitoring of agents
working under ionizing radiation. The "agent" table stores the
accumulation of the different types of doses received by each agent
during the period of his work within the plant. We assume that all
the data in the "agent" table are sensitive since the dose values are
considered in the nuclear field as medical secret. The table "agent"
has the following structure:

agent (idf_agent, name_agt, Dose_interne_agt,

Dose_superficielle_agt, Dose_profonde_agt, Catégorie_agt)

3. Implementation of the proposed models

In this section, we will present the implementation of the
models (1) and (2) generating Km as well as the corresponding DB
encryption models (A) and (B).

3.1. Implementation of the model (1)

In order to create the "agent" table and defining encryption on
all its sensitive columns, we have used the following SQL syntax:

Create table agent (idf_agent varchar2(100) encrypt using
AES256, name_agt varchar2(100) encrypt using AES256,
Dose_interne_agt varchar2(100) encrypt using AES256,
Dose_superficielle_agt varchar2(100) encrypt using AES256,
Dose_profonde_agt varchar2(100) encrypt using AES256,
Catégorie_agt varchar2(100) encrypt using AES256);

The "Algo1" algorithm supports the execution task of this
statement; it creates the "agent" table and defines encryption on its
columns using the AES256 algorithm. In fact, the data column will
be encrypted/decrypted with six keys KC which will be protected
by six masters key Km (C). In addition, the "Algo1" generates and
stores the encryption keys of the columns (Kc) and the master keys
(Km (C)) within MYTABLE_ENCRYPT_OBJET and
TEST_MANAGEMENT according to the models defined below:

/* The model of the encryption key used in the model (A)*/
Kc = H (Column_name)

/* The Km generation model of a column */
Km (C) = H (Table_name || Column_name)

Algorithm1: Process managed by Algo1.

Algo1

Input: Sensitive_column _query
Output:Created _sensitive_column_ query

Begin
Loop
Decompose (Sensitive_column _query);
Sensitive_column_name := Extract (Sensitive_column
_query);
Kc:= Kc_Generator (Sensitive_column_name);
Km (C):= Km_Generator (Sensitive_column_name, Table
_name) ;
End loop;
Insert into TEST_MANAGEMENT values
(Sensitive_column_name , Used_algo, Kc, Km (C));
 Insert into MYTABLE_ENCRYPT_OBJET values
(Sensitive_column_name , Used_algo, Encrypt_AES256 (Km
(C), Kc));
 Execute (Sensitive_column_query) ;
End;

The execution of the "Algo1"algorithm generates the following
records:

Table 2: Records created in the TEST_MANAGEMENT table in the model (1).

C1_OBJECT C2_ALGO C3_KEY C4_MASTERKEY

idf_agent AES256 46D18AC7BD06518B5A33C650CA760D9C 36EE05BA4ACDEC7D1C07D16FCDCC9CBF

name_agt AES256 4BF0A8B1EB8CA12C2912ED25E4D4BDC5 F8422E273F1957702DE160662923C0EA

Dose_interne_agt AES256 C8FE8472457B1A9436EE90E6D022178F 452C55A53935CF7056CE1C293FE8D4FC

Dose_superficielle_agt AES256 1FD82F97BE7BA2565D7FDD4BD6A91179 44BB0C031437DB46B641257337C7C458

Dose_profonde_agt AES256 F67D1D0A822D37E3AC03D69C94A38994 8D71448C964377D9F0E539B3FB230133

Catégorie_agt AES256 822E1CDA2CFA7B1EF36B90523E337682 FE30063A2D96A6DB6059CE708103BD5F

http://www.astesj.com/

K. El bouchti et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 2, 87-94 (2020)

www.astesj.com 90

Table 3: Records created in the MYTABLE_ENCRYPT_OBJET table in the model (1).

K_OBJECT_NAME K_ENCRYPT_ALGO K_KEY

idf_agent AES256 12BB4076B53A907324D42AFB9B0501006A93E1F347EC05536A7115E4554

CD8D06662D1EEEAC1CA8D71BC2A33EFD7810B

name_agt AES256 90F4D05F7C5A11A5752E8AB1354BE82D797BFE16051F78DD7018A60856

49A709515637DB88472F14509DB73FC76E6B0C

Dose_interne_agt AES256 6B40D18BF99C712F4F4034E8A11AF73FC8B422CCC218AF595FD06EB4

E4AE4BB3E8D5D0CCA9BE57434FCD690A577D05D0

Dose_superficielle_agt AES256 5F03CF21D034BFFBA1FEA4BD5CEA43A15A32E8C9F4FDE591AF842995B

BD30FF53CC25849363BCF54B8FC2E28FD7FF7A7

Dose_profonde_agt AES256 3A468DD545A12883543199A45202E4CE3AAA4D006CE4453BFC380377423

C24C3FA85A1BF68F31F6E011C062C5E19D2AE

Catégorie_agt AES256 34FEFD552E0D63C4A99281FC1B0A8189D5B527EDC303E9AB760B35C1A2

28C1F7B0EFDAAF26B7E3F507297D351E64FFE9

Table 4: The "agent" table before encryption.

idf_agent name_agt Dose_interne_agt Dose_superficielle_agt Dose_profonde_agt Catégorie_agt

1000 Azzaoui 10 15 25 A

1001 Rachidi 8 11 12 A

1002 Kharmoum 16 05 14 A

1003 Sajid 14 66 65 B

Table 5: The "agent" table after encryption.

idf_agent name_agt Dose_interne_agt Dose_superficielle_

agt

Dose_profonde_agt Catégorie_agt

5754957F70316A9C02

01002A8CBFE412

745A2F1FF2BDAD322

6910989994A7287

B5063DD0A036503D0

2F11B63DF1B12B1

FDBD02C08C389AE7

583F8211E428B2A7

D694729051643896225

89DA79E580A60

D1D88EDED1CF67BF

3AB34261052FF335

A6776D65772FBF4992

D8AFC2A2B387C9

1C65506D1F8AA015B

5B98765133E9782

5C6ABEA8480996813

19175A05C4B1AB5

BD706EE5E149EBDC

E6796457E944FB81

BECBC7C7B6BD0B0E

12CF1AD549E22682

D1D88EDED1CF67BF

3AB34261052FF335

AFBFEA3BC5FCD283

96E974016169DF5D

67BC01E3BF672D7BF

568ACC3A582ECB8

B8C892229BBB1E395

1290107C524B12A

125180FAB503F868E

DC55F42D0BB34CB

A8A68F1B4D1D3DD0F

398AFED4A54A0A5

D1D88EDED1CF67BF

3AB34261052FF335

14DB0A7462832F494E

AC7C8D12A09FC6

7A1FBFCD0E02BC191

0055CF76279F21A

23BF97F16393EC6A8

4B93FF4F9EB74AA

293A72927BD5C9760

450FFFF14CEC693

A2B800E15CAFD3AFA

9A22FB0A4C257B8

5315BF4B7B530AA72

9AC1CDCB53F4C8B

In order to test model (1), the "Algo2" algorithm represents the
functioning of Model (A). It supports the data encryption inserted
by a user. Tables 4 and 5 show the result of inserting four lines in
the "agent" table before and after the encryption.

Algorithm 2: The DB encryption using the model (1) and (A).

Algo2

CREATE OR REPLACE TRIGGER Insert_Model_A
BEFORE INSERT ON agent
FOR EACH ROW
DECLARE

Kc1 varchar2(100);
Kc2 varchar2(100);
Kc3 varchar2(100);
Kc4 varchar2(100);
Kc5 varchar2(100);
Kc6 varchar2(100);

BEGIN

/*Generating Km and seeking Kc for each column from

MYTABLE_ENCRYPT_OBJET*/

http://www.astesj.com/

K. El bouchti et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 2, 87-94 (2020)

www.astesj.com 91

Kc1:= Search_Encrypt_Key ('idf_agent');
Kc2:= Search_Encrypt_Key ('name_agt');
Kc3:= Search_Encrypt_Key ('Dose_interne_agt');
Kc4:= Search_Encrypt_Key ('Dose_superficielle_agt');
Kc5:= Search_Encrypt_Key ('Dose_profonde_agt');
Kc6:= Search_Encrypt_Key ('Catégorie_agt');

/* Inserting in table "agent"*/

INSERT INTO agent VALUES (Encrypt_AES256
(Kc1, :new.idf_agent), Encrypt_AES256
(Kc2, :new.name_agt, Encrypt_AES256
(Kc3, :new.Dose_interne_agt), Encrypt_AES256
(Kc4, :new.Dose_superficielle_agt), Encrypt_AES256
(Kc5, :new.Dose_profonde_agt), Encrypt_AES256
(Kc6, :new.Catégorie_agt));
End ;

3.2. Implementation of the model (2)

To implement model (2), we define encryption on the "agent"
table level using the following SQL syntax:

Create table agent encrypt using AES256 (idf_agent varchar2(100),
name_agt varchar2(100), Dose_interne_agt varchar2(100),
Dose_superficielle_agt varchar2(100), Dose_profonde_agt
varchar2(100), Catégorie_agt varchar2(100));

The "Algo3" algorithm supports the execution of this
instruction. It creates the "agent" table and defines encryption on
all its data using the algorithm AES256. In this case, the data are
encrypted /decrypted with a single key KT, which will be protected
by a single master key Km (T). The "Algo3" algorithm generates
and stores KT and Km (T) also in
MYTABLE_ENCRYPT_OBJET and TEST_MANAGEMENT
according to the models defined below:

/* The model of the encryption key used in the model (B)*/
KT= H (Table_name)

/* The Km generation model of a table */
Km (T) = H (Table_name || Database_name)

Algorithm 3: Process managed by Algo3.

Algo3

Input: Sensitive_table _query
Output: Created _sensitive_table _query

Begin

Decompose (Sensitive_table _query) ;
Sensitive_table_name:= Extract (Sensitive_table _query);
KT:= KT_Generator (Sensitive_table_name);
Km(T):= Km_Generator (Sensitive_table_name, Database
_name);
Insert into TEST_MANAGEMENT values
(Sensitive_table_name, Used_algo, KT, Km(T));
Insert into MYTABLE_ENCRYPT_OBJET values
(Sensitive_table_name , Used_algo, Encrypt_AES256
(Km(T), KT));
Execute (Sensitive_table _query);
End ;

The execution of the "Algo3" algorithm generates the
following records:

The "Algo4" algorithm represents the functioning of the model
(B). It supports the data encryption inserted by a user. The tables 8
and 9 show the result of inserting four rows in the "agent" table
before and after the encryption.

Algorithm 4: The DB encryption using model (2) and (B).

Algo4

CREATE OR REPLACE TRIGGER Insert_Model_2
BEFORE INSERT ON agent
FOR EACH ROW
DECLARE
KT varchar2(100);
BEGIN

/* Generating Km and seeking KT for each column from
MYTABLE_ENCRYPT_OBJET*/

KT :=Search_Ecrypt_Key('agent');

/* Inserting in table "agent"*/

INSERT INTO agent VALUES (Encrypt_AES256
(KT,:new.idf_agent), Encrypt_AES256 (KT,:new.name_agt),
Encrypt_AES256 (KT,:new.Dose_interne_agt),
Encrypt_AES256 (KT,:new.Dose_superficielle_agt),
Encrypt_AES256 (KT,:new.Dose_profonde_agt),
Encrypt_AES256 (KT,:new.Catégorie_agt));
End ;

Table 6: Records created in the TEST_MANAGEMENT table in the model (2).

C1_OBJECT C2_ALGO C3_KEY C4_MASTERKEY

agent AES256 B33AED8F3134996703DC39F9A7C95783 697C371A913425CF202D15F143D2DAF0

Table 7: Records created in the MYTABLE_ENCRYPT_OBJET table in the model (2).

K_OBJECT_NAME K_ENCRYPT_ALGO K_KEY

agent AES256 736079082547466884631FC41910AB5770A6962367465EC1CB9526A

864367916929D05016D02B96D9B55511854D3AB13

http://www.astesj.com/

K. El bouchti et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 2, 87-94 (2020)

www.astesj.com 92

Table 8: The "agent" table before encryption.

idf_agent name_agt Dose_interne_agt Dose_superficielle_agt Dose_profonde_agt Catégorie_agt

1000 Azzaoui 25 25 25 A

1001 Rachidi 8 11 12 A

1002 Kharmoum 16 05 14 A

1003 Sajid 14 66 65 B

Table 9: The "agent" table after encryption.

idf_agent name_agt Dose_interne_agt Dose_superficielle_agt Dose_profonde_agt Catégorie_agt

3F843D72B4CF6AF3B

FEDD0F8A73A46DB

03377847D26334CDA6

65F815335C87F9

7012CB55124F226FA2

E530E0D8133F14

7012CB55124F226FA2

E530E0D8133F14

7012CB55124F226FA2

E530E0D8133F14

91B5BD099938E4CE4

DF76529F6740B8A

2D80DCE15D394B765

94AD5E18F3405BE

0B71021170A841DAE

0CB4641C08076CD

0C04B7B8C2A594ED2

D6CE2FCD9EE91FD

52516FBF14B5DB600

CF294F47153C168

CF92FB85EF0E373795

F9C4D57D66ECF1

91B5BD099938E4CE4

DF76529F6740B8A

4CDDFEF4428E61343

AD6C823FF1860A4

DA45B069E89AC7BE4

C2B69EE232EB1A4

0F8913B9B06C772A68

8E9489B13A1124

5C9D1E8240D88EAD

7072C8B7673AB4C1

CC2CCB3C2994CE129

59B9C9B66F478A5

91B5BD099938E4CE4

DF76529F6740B8A

CA80281E0ADBD105C

E371803DD3F575E

EE6099C500334279227

AFA5C27E199FB

CC2CCB3C2994CE129

59B9C9B66F478A5

9B07E13AC87C52956

2187B81CFCD6B2B

EC2F5721D81D6CACE

4C6EA7B9B49ED52

72621DFBF38C674D9

BA24509BDA41160

3.3. Results and discussion

This section introduces data discussion and analysis based on
the findings obtained by implementing the two Km models. They
are summarized as follow:

• The proposed solutions are more practical than the
conventional ones, primarily the Wallet, HSM, and the
security server, where their disadvantages have explained
and revealed in [15]. Our solutions optimize perfectly
additional costs to protect the keys either in terms of
hardware acquisition (case of HSM and security server) or
in human resources (the administrator of the security
server).

• The Wallet solution used in Oracle TDE generates Km,
which protects encryption keys, and stores it within the
Wallet. Here, it is necessary to create the Wallet and its
password as well as a secured location (such as backup
systems) to store the password whenever the Km is newly
created. This operation is mandatory before starting the
process of data encryption/decryption inside DBMS [11]. It
is worthy to mention that the backup system is a critic
component of the Wallet concept. In this vein, the
protection concept of encryption keys based on the
proposed models (1) and (2) is similar to the Wallet solution
in terms of Km generation within the DBMS. However,
with our concept, the Km creation does not require any
Wallet creation to store Km or secured location to store the
password.

• The proposed solution does not require any protection
management of the encryption keys by a security
administrator, DB administrator or another trusted
collaborator, as discussed in [15]. Hence, none of them
knew about the generation of Km or its location. The
probability of attacking keys is almost impossible, even if
the attacker arrives to consult table

MYTABLE_ENCRYPT_OBJET stored in the DB
dictionary.

• The proposed solution does not define the place where
storing Km. Km generation is performed automatically
while defining encryption on a sensitive object (column or
table), precisely during the creation by the DB
administrator. Obtaining a value of Km by attackers
(administrators, internal or external attackers) is almost an
impossible operation.

• It is important to notice that the new concept we have
proposed and implemented enhances the security of
encryption keys. In fact, compared to the Oracle TDE
Column Encryption solution that uses a single master key
to protect all the column keys, the model (1) generates
several Km to protect each column key. The number of Km
generated is equal to the number of sensitive columns. For
example, if a DB contains 20 sensitive columns to encrypt,
we need 20 keys to encrypt data and 20 Km to protect them.

• Our solution can work with any DB encryption models,
obviously with those implementing encryption
granularities at the level of columns and tables. It is well
adapted to free license DBMSs.

• In the model (1) implementation, we focused on to protect
6 encryption keys of the following columns (idf_agent,
name_agt,Dose_interne_agt,Dose_superficielle_agt,Dose_
profonde_agt, Catégorie_agt). Each column key is
protected by encrypting it with its own Km generated by
the model (1). This protection was tested by the
implementation of the model (A). Table 4 shows the
encryption test results of the 6 columns of the "agent" table
deploying the model (1). Likewise, in the model (2)
implementation, one encryption key of the table "agent" has
protected with a single Km generated using this model.
Then, this protection was tested using the model (B). Table

http://www.astesj.com/

K. El bouchti et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 2, 87-94 (2020)

www.astesj.com 93

8 represents the result obtained of encrypting table "agent"
by deploying the model (2).

• The results presented in tables 2 and 3 shows the keys
generation when the "agent" table is created by the
administrator. In table 2, the columns C3_KEY and
C4_MASTERKEY represents, respectively, the encryption
key generated of each column and its associated Km. In
table 3, the column K_KEY, belongs to
MYTABLE_ENCRYPT_OBJET table, represents the
encryption of each column key of the table "agent" using its
associate Km.

• In table 6, the columns C3_KEY and C4_MASTERKEY
represents, respectively, the key generated to encrypt the
entire table and its Km. The value of the column K_KEY
in table 7 represents the encryption of the encryption key
using its associate Km. Both tables show the keys
generation when the "agent" table is created by the
administrator.

• As described earlier, tables 4, 5, 8, and 9 show the result of
inserting rows in the "agent" table before and after the
encryption. The encryption results showed that our solution
works perfectly, either when encrypting or decrypting data.
Actually, the encryption process via model (A) or (B)
requires the generation of Km through model (1) or (2),
respectively. Each value of generated Km is used to extract,
from K_KEY column, the real encryption /decryption key.
The process of data decryption follows the same operations.

• Finally, both proposed model works inside DBMS are
summarized according to the algorithm flowchart described
below:

Let’s consider a sensitive table A

Figure 1: Algorithm flowchart specifying the both proposed models.

Conclusion:

Besides the conventional mechanisms deployed to secure
sensitive DB (network protection, authentification, and access
control), data encryption at DBMS level is a strong way that
reinforces the defense in depth of the sensitive data. This process
is strongly linked to the protection of the encryption keys on which
they depend on two main factors: the location where the keys are
stored and users who have access to them.

Our contribution in this article is to implement two solutions
that secure encryption keys within the DBMS. These solutions are
original and well adapted to any encryption model inside a DBMS.
The solution's purpose is to protect DB keys by their encryption
using a master key generated when defining encryption on a table
or column. In forthcoming works, we aim to develop a solution
that covers the protection of encryption keys when encryption is
done on Tablespaces.

Conflict of Interest

This manuscript has not been published and is not under
consideration for publication elsewhere. We have no conflicts of
interest to disclose.

Acknowledgment

I would like to express my appreciation to all my professors,
whom they helped and guided me to realize this work.

References

[1] E. Shmueli, R. Vaisenberg, Y. Elovici, C. Glezer, “Database encryption: an
overview of contemporary challenges and design considerations” ACM
SIGMOD Record, New York, NY, USA, 2010. DOI:
10.1145/1815933.1815940

[2] Hashim, Hassan B, “Challenges and Security Vulnerabilities to Impact on
Database Systems“ Al-Mustansiriyah Journal of Science 29(2), 117-125,2018.
DOI: http://doi.org/10.23851/mjs.v29i2.332

[3] S. Jacob, “Protection cryptographique des bases de données: conception et
cryptanalyse,“ Ph.DThesis, Université Pierre et Marie Curie-Paris VI, 2005.

[4] A.M.Mostafa, F.A. Almutairi, M.M. Hassan, “False alarm reduction scheme
for database intrusion detection system” Journal of Theoretical & Applied
Information Technology., 96(10), 2816-2825. ISSN: 1992-8645

[5] I. Homoliak, J.Guarnizo, Y.Elovici, M.Ochoa, “Insight into insiders and it: A
survey of insider threat taxonomies, analysis, modeling, and countermeasures”
ACM Computing Surveys, New York, NY, USA 2019.
https://doi.org/0000001.0000001

[6] Deepicata. N. Soni, “Database Security: Threats and Security Techniques”
International Journal of Advanced Research in Computer Science and
Software Engineering., 5(5), 621-624, 2015. ISSN: 2277 128X

[7] K. El bouchti, S.Ziti, Y.Ghazali, N.Kharmoum, “Sécurité des Bases de
Données : Menaces principales et solution de chiffrement existantes”, in
Proceedings of the JDSIRT Conference Information Systems, Networks
Telecommunications, Meckness, Morocco, 2018.

[8] K. El bouchti, N. Kharmoum, S. Ziti, F. Omary, “A new approach to prevent
internal attacks on Database encryption keys” Proceedings of the International
Conference Scientific Days Applied Sciences, Larache, Morocco, 2019

[9] E. Shmueli, R. Vaisenberg, E. Gudes, Y. Elovici, “Implementing a database
encryption solution, design and implementation issues” Computers &
security, 44, 33-50, 2014. DOI: ORG/10.1016/J.COSE.2014.03.011

[10] K. El Bouchti, S. Ziti, F. Omary, N. Kharmoum, “A New Database Encryption
Model Based on Encryption Classes” Journal of Computer Science., 15(6),
844.854, 2019. DOI: 10.3844/jcssp.2019.844.854

[11] Oracle (2016), Oracle® Database Advanced Security Administrator’s Guide
11g Release 2 (11.2)[online] Technical Document:

[12] S. Mukherjee, “Popular SQL Server Database Encryption Choices”
International Journal of Computer Science and Engineering, arXiv preprint
arXiv: 1901.03179, 2018. ISSN: 2231 – 2803

[13] MySQL Server Documentation. MySQL 5.7 Reference Manual Online
[14] A. K. Maurya , A.Singh, U.Dubey, S.Pandey, U. N.Tripathi, “Protection of

Data Stored in Transparent Database System using Encryption” Journal of

If EGL=’Table’
If
EGL=’Column’

Generate Km for each sensitive
column of table A (use of the model

Generate Kc for each sensitive
column of table A from

MYTABLE_ENCRYPT_OBJET

Encrypt sensitive columns using Kc
values generated (use of the model

Store encrypted data inside Database

End

Generate Km of table A (use of the
model 2)

Generate KT of the table A from
MYTABLE_ENCRYPT_OBJET

Encrypt sensitive table A using KT
value generated (use of the model B)

Store encrypted data inside Database

Start

Inserting data in table A by a user

Which
Encryption
Granularity

Level (EGL) is

http://www.astesj.com/
http://doi.org/10.23851/mjs.v29i2.332

K. El bouchti et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 2, 87-94 (2020)

www.astesj.com 94

Computer and Mathematical Sciences., 10(1), 190-196, 2019. ISSN 2319-
8133.

[15] K. El bouchti, S.ZITI, F.OMARY, “A new approach to protect encryption
keys in Database Management System”, Proceedings of the International
Conference Modern Intelligent Systems Concepts, Rabat, Morocco, 2018.

[16] V.V.Galushka, A.R.Aydinyan, O.L.Tsvetkova, V.A.Fathi, D.V.Fathi,
“System of end-to-end symmetric database encryption” In International
Conference Information Technologies in Business and Industry, 2018.
Doi :10.1088/1742-6596/1015/4/042003.

[17] Elovici, Y., Vaisenberg, R., & Shmueli, E. (2018). U.S. Patent No. 9,934,388.
Washington, DC: U.S. Patent and Trademark Office.

[18] Itamar, E., & Rotem, A. (2018). U.S. Patent Application No. 15/570,775.
[19] L.Bouganim, Y.Guo, Database encryption. In Encyclopedia of Cryptography

and Security, Springer US, 2011
[20] S.Sesay, Z. Yang, J.Chen, D. Xu, “A secure database encryption scheme”

In Consumer Communications and Networking Conference, CCNC. 2005
Second IEEE, Las Vegas, NV, USA, 2015.
DOI: 10.1109/CCNC.2005.1405142

http://www.astesj.com/
https://doi.org/10.1109/CCNC.2005.1405142

	2. Definition of the proposed solution
	2.1. Proposed models of Km
	2.2. The common objects of each model implementation
	2.3. Principle of the encryption/decryption process
	2.4. Case study: the dosimetric monitoring of agents

	3. Implementation of the proposed models
	3.1. Implementation of the model (1)
	3.2. Implementation of the model (2)
	3.3. Results and discussion
	Conflict of Interest
	Acknowledgment
	References

