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 Recent years have seen a continued pattern of development in the cloud computing field. 

Numerous approaches to maximize file transfer capacity are still completely standing for 

use on cloud computing storage; however, they do not maximize the advantage of data 

migration scalability and elasticity in cloud storage. One potential problem is that elasticity 

takes time; however, the scalability attributes that have not been fully exploited include 

multicore chips and parallelization that can further be leveraged to enhance the overall 

data transfer performance and efficiency. In that regard, considerable effort has been 

directed to multiprocessors. Such systems involve a plurality of processors or functioning 

units capable of independent operation to process separate tasks in parallel. Nevertheless, 

the penalization is complicated when a task requires several resources or signals to proceed 

with meaningful computation. Thus, accommodating equitable priority among tasks further 

complicates operations. In this paper, we propose a parallel server to cloud storage 

transfer system in which parallelism method can only be utilized in case of transferring a 

large number of files and applied in order to increase the transfer throughput. The data is 

transmitted into several chunks via TCP network within the same period slot in a single 

data path which indicates dataflow on parallelism. Our target in this system is that 

increasing number of processors and the problem size will simultaneously maintain the 

efficiency of the data transfer system. The proposed model is based on the combination of 

dynamic segmentation, CRS, AES, and hashing. In summary, the proposed model shows the 

potential to enhance the performance by increasing the data transferability. The 

performance of the proposed model will be measured with the help of comparing the 

average execution time with the number of processors and speedup of the entire parallel 

system. 
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1. Introduction  

The cloud computing involves the provision of on-demand 

computing services to the customers. These services are similar to 

the usual services that can be obtained by using the physical 

computing equipment such as storage devices, servers, networking 

and many more. As the realization of the benefits of cloud 

computing come to light, many businesses, companies, 

organizations, and in stitutions are switching to the cloud services. 

Cloud services are provided by the cloud service providers (CSP) 

who are responsible for manning all the infrastructures, software, 

and the platforms to which the customers subscribe. Performance 

remains a significant concern for the consumers who are still 

struggling with the decision of moving to the cloud. Though there 

are many significant standards in cloud computing, the primary 

standard is on the data migration performance from the non-cloud 

infrastructure to the cloud. This paper is an extension of the work 

which was initially published and presented in IEEE 20th 

International Conference on High-Performance Computing and 

Communications [1]. 
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Typically, a multiprocessor includes a variety of computational 

units, a memory, a control, and at least one I/O processor. The 

functions of a job are initiated and processed, sometimes being 

moved from one computational unit to another. In the course of 

such operations, tasks must be synchronized and, in this regard, a 

function may require data from another function supplied through 

the I/O processor [2]. Under such circumstances, there is an issue 

in increasing number of processors against problem size. 

 The features of parallelism have been known since Babbage’s 

effort to construct a mechanistic computer [3]. Industrial and 

academic researchers have studied every imaginable aspect of 

parallel computation. A system becomes slower due to combined 

cumbersome computation processes, therefore, there is a need of 

using parallel computing to improve and provide high levels of 

execution performance efficiency. Moreover, this research also 

provides the design and validation of the analytic performance of 

the parallel migration to enhance the speed of the system. 

Related studies in the fields of data migration via parallelism 

have gained focus over the past few years. However, most of the 

proposed studies only get the standpoint of either a cloud provider 

or cloud consumers, not both. In the present work, the proposed 

scheme shall concentrate on allowing the cloud provider and also 

the consumer to accomplish data migration efficiently by 

exploiting potential improvements found in consumer PC 

multicore chips. Moreover, future cloud storage environments will 

be primarily designed and built on top of multicore technology.  

In this paper, we propose a parallel migration system that can 

be made cost‐optimal by adjusting the number of processors and 

the problem size. The parallel migration is achieved by dynamic 

distribution for the combination of file slicing, cryptography, fault 

tolerance, and hashing.  

The remaining paper is structured in a manner that section 2 

presents the related works in this field. Section 3 defines and 

models how the proposed system achieves parallel migration by 

dynamic distribution. Section 4 shows the experimental outcome 

and section 5 concludes the paper with some future remarks.  

2. Related Works 

In this section, we discuss some of the approaches related to 

the data migration parallelism as well as increasing file transfer 

bandwidth. 

HTTP, SFTP, and SCP are the standard data migration 

communication protocols for point-to-point transfer. In terms of 

elasticity, the improvement is based on the work of [4] that helps 

to scale down the repetitive data migration through developing 

“checksum comparison” and the work presented in [5] prevents 

resource conflict by distinguishing “back-pressure”. However, 

still, these approaches have thus far to capitalize on cloud 

elasticity. In our method, we aim at matching the amount of 

resources allocated to data transfer in parallel mode with the 

amount of resources it actually requires, avoiding over-

provisioning or under-provisioning. 

In terms of connection speed, the existing odd source to odd 

end target data migration speed is usually limited by either cloud 

provider settings or limits set by the hardware of physical 

connection. Though, one of the solutions to prevent these 

restrictions and to expand data migration throughput is to perform 

data migration from multiple servers concurrently. Even though, 

BTorrent [6] illustrates that this is rational but processing this data 

involvement procedure (As It Is) is far from appropriate “for a one-

time point-to-point” migration. However, our parallelization data 

migration combines data segmentation and erasure code, AES, and 

hash with developing parallel migration capacity and minimizing 

data transfer delay.  

Multiple data transmission develops the processor’s total 

bandwidth; however, it is limited because the “bottleneck” lies in 

the specific cloud processor’s bandwidth. One more comparable 

system is the parallel transfer where files are prearranged through 

several input/output processors to minimize storage bottleneck, 

which allows transmission across several TCP connections 

concurrently. Another similar system can be applied in cloud 

storage, but the overheads to rearranged files across numerous 

storages should to be considered in order to improve the file 

transmission performance. In our parallelization model, 

provisional buffer is created on the cloud machine, and these 

buffers are indicted to as the ‘holes’. As the buffer hole is fully 

occupied, it is then taken away from the list. The entries of theses 

buffer-holes are then tested with the descriptor-list to confirm if 

the buffer-hole which has been loaded by the arriving segment is 

rejected [1]. 

In [7], multi-hop and multi-path which are two optimization 

techniques to increase the performance of file transmission across 

WAN are briefly discovered. In multi-hop path splitting, 

throughput was improved by exchanging direct connection 

between start and end point via multi-hopping. On other hand, 

multi-path technique includes slicing data at the start point and 

sending it through various overlapping paths. Chunking and 

rebuilding data theoretically cause data corruption, damage or 

failure. Thus, our proposed model takes into consideration fault-

protection by applying several Reed-Solomon (RS) code values 

along with the data sizes to supplementary explore the impact of 

different values. 

The authors in [8] propose a cloud-based data management 

system targeted for big data science applications running across 

large and high geographical environment sites which shows 

expectable data transfer management performance in terms of cost 

and time. The system automatically implements and adjusts 

performance designs for the cloud platform structure for enhancing 

data and efficient schedule of the transfer process. Though, it 

shows a poor execution performance when compared with our 

proposed parallelization model. 

Another similar approach [9] is the parallel data transfer where 

data are lined across several intermediate nodes that are spawned 

in order to avoid the bandwidth limitation, but the overheads to 

reallocated data across multiple nodes in source DC and 

destination DC have to be taken into attention for performance 

improvement on the file transfer. 

3. Server to Cloud Parallel Data Transfer Modelling  

3.1. General Concept of the Model  

In this section, we define the outline of our server-to-cloud 

parallel transfer conception and formulate an arithmetic model 

constructed on the proposed parallel migration concept. In the rest 

of the paper, we then cover the server-to-cloud parallel migration 

task as parallel data transfer. 

Figure 1 represents the construction overview of our parallel 

migration model. The process starts with the data as the input, the 

data is then segmented into chunks, every segmented data is 
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encrypted. Encrypted chunks are migrated to the cloud and then 

decrypted. The decrypted chunks are then compared against the 

un-encrypted segments on the local server. If they don’t match, the 

process is taken back to the segmentation stage. If they match, the 

segments are then re-assembled and saved on the cloud server. We 

then end the process.  

The following is the arrangement of status for a single file 

transmission from server to cloud storage. 

 

Figure 1: Overview of parallel transfer mechanism 

• Data Segmentation [10]: Data segmentations split-up the 

bigger data units into smaller controllable data slices. In our 

data segmentation, we will be using an algorithm that will take 

the shortest time possible to segment larger volumes of data 

packets, while optimizing the memory efficiency of the 

working machines. In this algorithm, the system scans the data 

packets to find the size of the whole data to be segmented. The 

total data size is then used as a base for the determination of 

how many segments should be generated from the original data. 

Data size levels are then predefined to allow the categorization 

how a given data set belonging to a given size group is 

segmented. The categorizing of data based on the whole data 

size ensures that we have larger data size, the right 

segmentation size will be obtained in order to make the process 

faster. The data will then be split into smaller equal sized 

chunks of 4MB each. The chunks are assigned a sequence 

number each, according to the order in which they are 

segmented. If we have a larger volume of data, then more 

instances of segmentations will be initiated to make sure that 

less time is taken to process the whole data. The number of 

segmentation instances is dictated by the size of whole data. 

• Error control: The end-to-end transmission of data from the 

server to the destination storage encompasses many steps 

which can be subjected to errors leading to data loss. Error 

control ensures that any error that occurs during the 

transmission of the data is detected and addressed. Reliable 

data transmission implements error detection and correction. 

Error correction enables a system to detect and correct both the 

bit-level and packet-level errors. There are two types of errors 

that can occur during the data transmission: single-bit error, in 

which only one-bit changes from 0 to 1 and vice versa and burst 

error where two or more bits change from 0 to 1 and vice versa. 

Burst-error is known as the packet-level error which results in 

duplication or re-ordering of the data. We are using the 

checksum method for error control which is applied at the 

upper-layer, and it uses the concept of redundancy. There are 

two operations which are being performed in checksum 

technique: Checksum-generator on the server side and 

Checksum-checker on the cloud side while the local server 

makes use of the checksum-generator. The following is the 

procedure for the checksum generation: 

• The data segments are sub-segmented into equal n-

bits.  

• This is followed by adding together the sub-segments 

with the usage of 1’s compliment. 

• The data segment is re-complimented to become a 

checksum. 

• It is then sent alongside the data-unit. 

• Encryption: The system uses an Advanced Encryption System 

(AES) with the RSA key-exchange. The symmetric encryption 

technique requires a proper key exchange to maintain the 

security of communication and minimize the risk of 

eavesdropping during the key exchange phase. RSA-2048 is 

then used for key exchange. The main reason for not choosing 

RSA for encryption is that it needs more processing power and 

is slower than the mighty AES.   

• Hash generation: Hash functions are one-way which means that 

it is impossible to revert from the generated values to the initial 

values. The hash function is used in our system to enhance the 

confidentiality of the data (message). We are using the secure 

hashing algorithm (SHA) which was modeled after MD4 and 

its proposal was made by NIST to offer a more secure hash 

standard (SHS). This will produce a 160 bits hash value. 

• Three-way handshake initialization: Three-way handshake is a 

flow control technique which allows the communicating 

devices to initiate the communication platform. In Figure 2, the 

local server will initiate the three-way handshake by sending 

the cloud server a SYN (synchronization) message. This is a 

way of asking the cloud server if it is ready to communicate. 

The recipient, which is the cloud server sends back a 

SYN/ACK message to the local server telling it that it is ready 

for the communication. The local server then sends an ACK 

(Acknowledgement), and the connection between the two sides 

is established. The data is then transmitted.  

 

Figure 2: Three-way handshake initialization. 

• Hash verification: Hash checks for the integrity of the message. 

The cloud server receives a segment and runs SHA algorithm 

over it, if it matches, then we increment the number of received 

healthy segments by one, we ignore (discard) the rest of the 

segments which do not match. The system waits until receiving 

other segments (we know the total number of segments sender 
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is going to send for us) and see how many of them are healthy 

(their integrity can be verified). 

• Decryption: With the Cipher Block Chaining decryption, 

application of the inverse-cipher function to the first cipher-text 

block results into an output-block which passes through the 

XOR operation with the initialization-vector to allow the 

recovery of the first plaintext block. The inverse-cipher 

function is also applicable to the second cipher-text block 

which provides the output-block which is then XORed with the 

first cipher-text block for the recovery of the second plaintext 

block. Generally, the recovery of any plaintext block (except 

the first plain-text), the inverse cipher-function applies to the 

corresponding cipher-text block, and the output-block is 

XORed with the prior cipher-text block.  

• Error correction:  Error correction allows the cloud server 

which receives the data to reconstruct the original data in the 

event that it was corrupted during transmission. Error 

correction is implemented using the hamming code. Hamming 

code is a single-bit error correction method that uses the 

redundant bits. The redundant bits are included on the original 

data and their arrangement is in such a way that any different 

and incorrect bits will lead to the production of various error 

results. The corrupted bits are then identified and upon the 

identification of the corrupted bits, the cloud server which 

receives the data is capable of reversing its values hence, 

correcting the errors. Hamming code applies to any data length 

and makes use of the relationship between the data and the 

redundancy-bits. Checksum-checker: The cloud server makes 

use of the checksum-checker. The following is the procedure 

for the checksum checker: 

• The cloud server which receives the data-unit will divide 

the received data-unit into equal sub-segments.  

• All the sub-segments are then added together using the 

1’s compliment.  

• The outcome is complimented again. If the final result 

is found to be zero, the system accepts the data while 

when it is found to be 1, the data should be rejected and 

considered to have errors. 

• Reassembling of data [11]: After all the data segments have 

arrived and each segment is verified, an algorithm to arrange 

the segments in order according to their sequence numbers will 

be used. This ensures that the data segments will be ordered 

back to their original state before being segmented on the local 

server [12].  In Figure 3, the flowchart diagram shows how the 

model receives the segment and allocates the buffer space for 

each segment. There are more segments in the buffer, by 

comparing the size of the segment with the size of the space 

available in the buffer, the segment is taken back. If there are 

no more data in the buffer, then the data unit is identified, and 

the data unit is bound to the context. It will then check if it is 

occupied by a different data unit. The bound data is then 

updated, and the segment is inserted into the data unit. The 

number of segments is then checked, if there are any remaining 

segments, they will return back to step one. If there are no 

remaining segments, then the header will be updated and the 

data unit will be transmitted. The numbering sequence plays a 

crucial role as it is the sequence number used to arrange back 

the data to its original state [13]. The size of the unencrypted 

segments on the source server is furthermore tested and 

matched with the size of the corresponding decrypted segments 

on the destination server. Re-assembling of data segments will 

only take place after all the previous stages have been 

successfully completed.   

 

Figure 3:Reassembling of segments. 

3.2. Parallel Transfer Algorithm 

Server user may perhaps definitely benefit from the rapid 

growth of multicore systems. The physical server typically holds 

several regular data centers or computer storage, where commodity 

high-performance multicore bunches are employed. Our migration 

algorithm designed for one direction data flow which begins at the 

server storage and ends at the cloud storage. Algorithm 1 shows 

the parallel-serial transmission which starts from a master 

processor acting as a management system. The aim of the master 

processor is to reach the final output by collecting the necessary 

information from the slave processors. In our migration algorithm, 

we will assume that the data is ready for transfer after the four 

stages: data chunks, error control/correction, encryption/ 

decryption with AES-256 and SHA-256 algorithm which is 

identified as the significant component of the integrity process. 

The transfer process will start by taking the ready data list, FList, 

and divides it between the slave processors. Correspondingly, each 

slave processor would obtain blocks of FList. We use single 

program multiple data (SPMD) algorithm where there is a single 

instruction that each processor performs, but on various data. Each 

slave processor would establish its secure channel, port, and buffer. 

Each slave processor will then send its Flist to the cloud buffer 

before the storage stage. The final task of the slave processor is to 

update its Flist by removing the sent chunks from the list. This 

procedure would reflect to have a higher bandwidth transmission 

capacity. Finally, the master processor receives the FList from all 

the slave processors and takes the re-transmission decision. If the 

Flist size=0, it means that all the data chunks have been sent 

successfully. However, if Flist size=!0, it means that the master 

processor will request for the re-transmission of the missing 

chunks by the method explained in [1]. The master processor 

would close the connection after all the re-transmission requests. 

At this phase, the cloud buffer is full of the data that need to be 

checked for integrity, verified and re-build to be stored.  

3.3. Time Factor of Parallel Transfer 

The performance of the proposed model will be evaluated by 

computing the average of execution time, the number of 

processors, and the speedup ratio. 
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3.3.1 Data Distribution Time (Segmentation+ CRS+ AES 

+ HashGen) 

Divided into four actions, file chunking, encoding, encryption, 

and hash generation. In order to minimize the delay between 

individual execution time, transferring has to be started directly 

after the segmentation when the exact chunk is ready, without 

waiting for the overall segments process to be completed. Server 

execution time can also be minimized by manipulating the chunk 

size and sequence when the network resource is unutilized. 

3.3.2 Parallel Data Migration Time 

This time factor indicates the transfer from local server to 

buffers in the cloud storage. In order to increase the throughput of 

this phase, the parallelism method can be applied only if the 

transmission files are of a large number. Processor 0 would act as 

the root and starts to define the number of the chunks and divide 

them among the slave processors. As a result, each slave processor 

would collect a block of chunks. Later, they would establish their 

connections and send their chunk lists to the cloud buffers. The 

control would then be passed to TCP in order to finalize the 

transmission task.  

3.3.3 Data Amalgamation Time (HashVerify +AES +CRS 

+Re-Assembling) 

In this time factor, the file reassembling is the prime task. It 

also involves the migration from the cloud buffers to the 

destination storages. This step also contains massive disk 

operations such as the writing process.  

3.4. Model and Evaluation of Parallel Migration 

The parallel performance was analyzed by displaying speedup 

rate and throughput to illustrate the parallel model profit. The 

speedup of parallel operations on P processors is defined as the 

following [14]:  

                          𝑆𝑃 =
𝑇1

𝑇𝑃

                                           (1) 

Where T1 is the sequential execution time using one processor, 

TP is the parallel execution time using P processors, p and 1 are 

indexes as written in equation 1. While Sequential Transfer Time 

equation (T1) is: 

                          𝑇1 =
D𝑠

𝑡𝑒

                                           (2) 

Where D𝑠  is data size in MB, 𝑡𝑒  is transfer speed in MB/s. 

Parallel Transfer Time ( 𝑇𝑃 ) = data distribution time in the server 

+ transfer time + data amalgamation time in the cloud. Hence, the 

speedup rate is acquired as below:  

     𝑆𝑃 =

D𝑠
𝑡𝑒

⁄

𝑇𝑃

𝐷𝑆
𝑡𝑒

⁄ +
𝐷𝑆(1 𝑃⁄ )

𝑡𝑒
⁄

   

Figure 4: Speedup model for parallel transfer, where p is the number of 

processors. 

It can be noticed that the smaller file transfer size (not many 

of small and large files together), a minimum number of parallel 

processors are required to accomplish a speedup. However, when 

trying to parallelize the transfer, there is no prediction of when the 

packet loss rate would begin to increase exponentially which 

causes a critical overhead. Thus, smaller file sizes do not benefit 

from the parallelization. Therefore, Figure 4 shows that the 

speedup rate is steep for the file size of below 4MB.    

For a larger data transfer size, the speedup rate grows as the 

number of parallel processors are increased. However, 

performance gains are hardly worth when each subsequent 

increase in processors number brings a lesser performance profit 

contrasted to the previous increment. 

4. Experimental Evaluation 

This section shows the performance evaluation for our parallel 

migration system on an Infrastructure as a Service (IaaS) cloud 

environment.   
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4.1. Experiment Setup 

We carry out these experiments on two separate VMs (VM 

hardware were identical) hosted on Cray XC40 within two 

locations: Oregon and Amsterdam. Linux Operating System in 

various cores with 8 GB of memory was assembled on the VMs. 

All the encryption /decryption stages are constructed with the help 

of python cryptography 2.1.4.  

Our experiment concentrates on migrating a single file from 

the server to cloud storage. The model is designed in such a way 

that each part of the system is pluggable. Thus, replacing an 

encryption algorithm will not affect the selection of the coding 

algorithm. We have chosen numerous file sizes, starting from .05 

MB to 1900MB and RS parameters (k, m) in range of (1 ≤ m ≤ k 

and k ≤ 256, where m=parity) in order to evaluate the transfer rate. 

For coding layer, we employed PyEClib source on GitHub (1.5.0) 

module with liberasurecode source on GitHub (1.5.0) as Interface 

to erasure back-ends for Reed-Solomon coding. 

4.2. Preliminary test 

To evaluate the actual performance, we first examined the 

performance of our algorithm by measuring the execution time in 

the server (source) and cloud storage (destination) processes for a 

data, depending on the file size and variability of RS parameters k 

and m. 

In Table 1 below, we showed the average operating time for 

the source and destination for each process. It is quite apparent that 

the source average is mainly estimated by the slicing process 

because it involves additional parameters and computations than 

the other internal operations. 

Table 1: Average execution time in the source/destination. 

OPERATIONS TIME (ms) SUM 

CRS Coding 691.99 

1,089.74 AES Encryption 116.78 

SHA Hash 280.97 

SHA Verify 277.39 

487.55 AES Decryption 119.53 

CRS Decoding 90.63 

 

The throughput define as that is the amount sum of processed 

data that execute in a period of time (processed data /second) [15].  

It is concluded as the following relation: 

                            𝑃𝑛 =
𝑊

𝑇𝑃

                                    (3) 

Where W is indicated as the workload, TP as the execution time 

required to accomplish the calculation using P processors [16], p 

is index as written in equation (3). From equation 3, the throughput 

for each location is shown in the Table 2. Table 2 depicts the 

comparison between the average throughputs of transmitting many 

file sizes between Oregon and Amsterdam locations. The transfer 

throughput gained for Oregon and Amsterdam is ~.9, .7 MB/ms 

respectively. The range of throughput achieved when transferring 

the file is astonishingly large. It was observed that the throughput 

rate does not follow a certain way; the variation seems to arise 

randomly.  

Table 2: Locations Transfer Throughput. 

File sizes 
Oregon TO 

Amsterdam  

Amsterdam 

TO Oregon     

0.05 0.005101482 0.001007 

0.10 0.009208418 0.001696 

0.55 0.038767525 0.008251 

1.00 0.019112421 0.011328 

17.00 0.041170096 0.073851 

142.00 0.086551034 0.263185 

339.00 0.093888415 0.333905 

750.00 0.107918311 0.442913 

1,100.00 0.102385909 0.468758 

1,500.00 0.109188015 0.502546 

1,900.00 0.114588619 0.579061 

4.3. Result 

Figure 5 and Figure 6 are linearly dependent features and are 

just shown for further clarification. It is verifiable that by choosing 

bigger fault tolerance rate in the coding stage (smaller k in 

proportion to m) the final transfer time increases rapidly. It is 

shown that transferring bigger files with no-error tolerance (k =m) 

added in the coding stage, the system will exhibit the best 

performance, especially in case of bigger file sizes. Choosing k 

such that it covers 10-15% error correction without the need for 

data retransmission in smaller file sizes less than 24MB, the impact 

on transmission time is noticeably less than the profit it brings.  

 

 

Figure 5: Average execution time in source side. 

 

Figure 6: Average execution time in destination. 
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In Figure 7, we portray a 2D graph of the speedup rate against 

data size for a different number of processors. It can be noted that 

analogous to our model, speedup cannot be obtained for the data 

migration that is below 0.5GB by using 2, 4, 8, and 16 parallel 

processors. The overall note is steady with our approach, the 

speedup is extremely poor for small file size, but increases for 

bigger file size.  

Although the speedup rate is not computed yet in the real 

environment, we found an independent argument that can be used 

in our model to compute the speedup in the real environment. 

Based on our observation, the independent argument is close to 

0.47. Hence, we are certain about the fact that when the count of 

parallel processors is greater than 8 and the data size is bigger than 

1GB, the speedup will be achieved. 

 

 

Figure 7: Comparing actual speedup and our model for parallel transfer, where p 

is the number of processors. 

5. Conclusion and Future Work 

This paper concentrated on explaining and exhibiting a parallel 

design for data transmission in cloud environment. First, we 

demonstrated the proposed model. Next, we presented the 

implementation and evaluation of the proposed model. Though our 

parallel transfer model shows a prospect to enhance the 

performance, however, our implementation exposed that there is 

an independent argument that should be considered. This study 

also suggests that there are overhead factors that can affect the 

parallel transfer performance, such as initialization, chunking the 

data file, and transfer time. Thus, those overhead effects should be 

investigated in order to reach maximum performance. In brief, we 

should consider the computation of hardware power and 

processors I/O’s speed that is assigned by the CSP to design the 

parallel migration model.   
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