

www.astesj.com 57

Performance Evaluation and Examination of Data Transfer: A Review of Parallel Migration in Cloud

Storage

Mimouna Alkhonaini*, Hoda El-Sayed

Department of Computer Science, Bowie State University, 20715, USA

A R T I C L E I N F O A B S T R A C T

Article history:

Received: 05 November, 2019

Accepted: 21 February, 2020

Online: 09 March, 2020

 Recent years have seen a continued pattern of development in the cloud computing field.

Numerous approaches to maximize file transfer capacity are still completely standing for

use on cloud computing storage; however, they do not maximize the advantage of data

migration scalability and elasticity in cloud storage. One potential problem is that elasticity

takes time; however, the scalability attributes that have not been fully exploited include

multicore chips and parallelization that can further be leveraged to enhance the overall

data transfer performance and efficiency. In that regard, considerable effort has been

directed to multiprocessors. Such systems involve a plurality of processors or functioning

units capable of independent operation to process separate tasks in parallel. Nevertheless,

the penalization is complicated when a task requires several resources or signals to proceed

with meaningful computation. Thus, accommodating equitable priority among tasks further

complicates operations. In this paper, we propose a parallel server to cloud storage

transfer system in which parallelism method can only be utilized in case of transferring a

large number of files and applied in order to increase the transfer throughput. The data is

transmitted into several chunks via TCP network within the same period slot in a single

data path which indicates dataflow on parallelism. Our target in this system is that

increasing number of processors and the problem size will simultaneously maintain the

efficiency of the data transfer system. The proposed model is based on the combination of

dynamic segmentation, CRS, AES, and hashing. In summary, the proposed model shows the

potential to enhance the performance by increasing the data transferability. The

performance of the proposed model will be measured with the help of comparing the

average execution time with the number of processors and speedup of the entire parallel

system.

Keywords:

Parallel

Transfer

Cloud

1. Introduction

The cloud computing involves the provision of on-demand

computing services to the customers. These services are similar to

the usual services that can be obtained by using the physical

computing equipment such as storage devices, servers, networking

and many more. As the realization of the benefits of cloud

computing come to light, many businesses, companies,

organizations, and in stitutions are switching to the cloud services.

Cloud services are provided by the cloud service providers (CSP)

who are responsible for manning all the infrastructures, software,

and the platforms to which the customers subscribe. Performance

remains a significant concern for the consumers who are still

struggling with the decision of moving to the cloud. Though there

are many significant standards in cloud computing, the primary

standard is on the data migration performance from the non-cloud

infrastructure to the cloud. This paper is an extension of the work

which was initially published and presented in IEEE 20th

International Conference on High-Performance Computing and

Communications [1].

ASTESJ

ISSN: 2415-6698

*Mimouna Alkhonaini, COSC Department, 14000 Jericho Park Road, Bowie, MD

20715, 301-860-3964 & alkhonainim0522@student.bowiestate.edu

Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 2, 57-63 (2020)

www.astesj.com

Special Issue on Multidisciplinary Sciences and Engineering

https://dx.doi.org/10.25046/aj050207

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj050207

M. Alkhonaini et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 2, 57-63 (2020)

www.astesj.com 58

Typically, a multiprocessor includes a variety of computational

units, a memory, a control, and at least one I/O processor. The

functions of a job are initiated and processed, sometimes being

moved from one computational unit to another. In the course of

such operations, tasks must be synchronized and, in this regard, a

function may require data from another function supplied through

the I/O processor [2]. Under such circumstances, there is an issue

in increasing number of processors against problem size.

 The features of parallelism have been known since Babbage’s

effort to construct a mechanistic computer [3]. Industrial and

academic researchers have studied every imaginable aspect of

parallel computation. A system becomes slower due to combined

cumbersome computation processes, therefore, there is a need of

using parallel computing to improve and provide high levels of

execution performance efficiency. Moreover, this research also

provides the design and validation of the analytic performance of

the parallel migration to enhance the speed of the system.

Related studies in the fields of data migration via parallelism

have gained focus over the past few years. However, most of the

proposed studies only get the standpoint of either a cloud provider

or cloud consumers, not both. In the present work, the proposed

scheme shall concentrate on allowing the cloud provider and also

the consumer to accomplish data migration efficiently by

exploiting potential improvements found in consumer PC

multicore chips. Moreover, future cloud storage environments will

be primarily designed and built on top of multicore technology.

In this paper, we propose a parallel migration system that can

be made cost‐optimal by adjusting the number of processors and

the problem size. The parallel migration is achieved by dynamic

distribution for the combination of file slicing, cryptography, fault

tolerance, and hashing.

The remaining paper is structured in a manner that section 2

presents the related works in this field. Section 3 defines and

models how the proposed system achieves parallel migration by

dynamic distribution. Section 4 shows the experimental outcome

and section 5 concludes the paper with some future remarks.

2. Related Works

In this section, we discuss some of the approaches related to

the data migration parallelism as well as increasing file transfer

bandwidth.

HTTP, SFTP, and SCP are the standard data migration

communication protocols for point-to-point transfer. In terms of

elasticity, the improvement is based on the work of [4] that helps

to scale down the repetitive data migration through developing

“checksum comparison” and the work presented in [5] prevents

resource conflict by distinguishing “back-pressure”. However,

still, these approaches have thus far to capitalize on cloud

elasticity. In our method, we aim at matching the amount of

resources allocated to data transfer in parallel mode with the

amount of resources it actually requires, avoiding over-

provisioning or under-provisioning.

In terms of connection speed, the existing odd source to odd

end target data migration speed is usually limited by either cloud

provider settings or limits set by the hardware of physical

connection. Though, one of the solutions to prevent these

restrictions and to expand data migration throughput is to perform

data migration from multiple servers concurrently. Even though,

BTorrent [6] illustrates that this is rational but processing this data

involvement procedure (As It Is) is far from appropriate “for a one-

time point-to-point” migration. However, our parallelization data

migration combines data segmentation and erasure code, AES, and

hash with developing parallel migration capacity and minimizing

data transfer delay.

Multiple data transmission develops the processor’s total

bandwidth; however, it is limited because the “bottleneck” lies in

the specific cloud processor’s bandwidth. One more comparable

system is the parallel transfer where files are prearranged through

several input/output processors to minimize storage bottleneck,

which allows transmission across several TCP connections

concurrently. Another similar system can be applied in cloud

storage, but the overheads to rearranged files across numerous

storages should to be considered in order to improve the file

transmission performance. In our parallelization model,

provisional buffer is created on the cloud machine, and these

buffers are indicted to as the ‘holes’. As the buffer hole is fully

occupied, it is then taken away from the list. The entries of theses

buffer-holes are then tested with the descriptor-list to confirm if

the buffer-hole which has been loaded by the arriving segment is

rejected [1].

In [7], multi-hop and multi-path which are two optimization

techniques to increase the performance of file transmission across

WAN are briefly discovered. In multi-hop path splitting,

throughput was improved by exchanging direct connection

between start and end point via multi-hopping. On other hand,

multi-path technique includes slicing data at the start point and

sending it through various overlapping paths. Chunking and

rebuilding data theoretically cause data corruption, damage or

failure. Thus, our proposed model takes into consideration fault-

protection by applying several Reed-Solomon (RS) code values

along with the data sizes to supplementary explore the impact of

different values.

The authors in [8] propose a cloud-based data management

system targeted for big data science applications running across

large and high geographical environment sites which shows

expectable data transfer management performance in terms of cost

and time. The system automatically implements and adjusts

performance designs for the cloud platform structure for enhancing

data and efficient schedule of the transfer process. Though, it

shows a poor execution performance when compared with our

proposed parallelization model.

Another similar approach [9] is the parallel data transfer where

data are lined across several intermediate nodes that are spawned

in order to avoid the bandwidth limitation, but the overheads to

reallocated data across multiple nodes in source DC and

destination DC have to be taken into attention for performance

improvement on the file transfer.

3. Server to Cloud Parallel Data Transfer Modelling

3.1. General Concept of the Model

In this section, we define the outline of our server-to-cloud

parallel transfer conception and formulate an arithmetic model

constructed on the proposed parallel migration concept. In the rest

of the paper, we then cover the server-to-cloud parallel migration

task as parallel data transfer.

Figure 1 represents the construction overview of our parallel

migration model. The process starts with the data as the input, the

data is then segmented into chunks, every segmented data is

http://www.astesj.com/

M. Alkhonaini et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 2, 57-63 (2020)

www.astesj.com 59

encrypted. Encrypted chunks are migrated to the cloud and then

decrypted. The decrypted chunks are then compared against the

un-encrypted segments on the local server. If they don’t match, the

process is taken back to the segmentation stage. If they match, the

segments are then re-assembled and saved on the cloud server. We

then end the process.

The following is the arrangement of status for a single file

transmission from server to cloud storage.

Figure 1: Overview of parallel transfer mechanism

• Data Segmentation [10]: Data segmentations split-up the

bigger data units into smaller controllable data slices. In our

data segmentation, we will be using an algorithm that will take

the shortest time possible to segment larger volumes of data

packets, while optimizing the memory efficiency of the

working machines. In this algorithm, the system scans the data

packets to find the size of the whole data to be segmented. The

total data size is then used as a base for the determination of

how many segments should be generated from the original data.

Data size levels are then predefined to allow the categorization

how a given data set belonging to a given size group is

segmented. The categorizing of data based on the whole data

size ensures that we have larger data size, the right

segmentation size will be obtained in order to make the process

faster. The data will then be split into smaller equal sized

chunks of 4MB each. The chunks are assigned a sequence

number each, according to the order in which they are

segmented. If we have a larger volume of data, then more

instances of segmentations will be initiated to make sure that

less time is taken to process the whole data. The number of

segmentation instances is dictated by the size of whole data.

• Error control: The end-to-end transmission of data from the

server to the destination storage encompasses many steps

which can be subjected to errors leading to data loss. Error

control ensures that any error that occurs during the

transmission of the data is detected and addressed. Reliable

data transmission implements error detection and correction.

Error correction enables a system to detect and correct both the

bit-level and packet-level errors. There are two types of errors

that can occur during the data transmission: single-bit error, in

which only one-bit changes from 0 to 1 and vice versa and burst

error where two or more bits change from 0 to 1 and vice versa.

Burst-error is known as the packet-level error which results in

duplication or re-ordering of the data. We are using the

checksum method for error control which is applied at the

upper-layer, and it uses the concept of redundancy. There are

two operations which are being performed in checksum

technique: Checksum-generator on the server side and

Checksum-checker on the cloud side while the local server

makes use of the checksum-generator. The following is the

procedure for the checksum generation:

• The data segments are sub-segmented into equal n-

bits.

• This is followed by adding together the sub-segments

with the usage of 1’s compliment.

• The data segment is re-complimented to become a

checksum.

• It is then sent alongside the data-unit.

• Encryption: The system uses an Advanced Encryption System

(AES) with the RSA key-exchange. The symmetric encryption

technique requires a proper key exchange to maintain the

security of communication and minimize the risk of

eavesdropping during the key exchange phase. RSA-2048 is

then used for key exchange. The main reason for not choosing

RSA for encryption is that it needs more processing power and

is slower than the mighty AES.

• Hash generation: Hash functions are one-way which means that

it is impossible to revert from the generated values to the initial

values. The hash function is used in our system to enhance the

confidentiality of the data (message). We are using the secure

hashing algorithm (SHA) which was modeled after MD4 and

its proposal was made by NIST to offer a more secure hash

standard (SHS). This will produce a 160 bits hash value.

• Three-way handshake initialization: Three-way handshake is a

flow control technique which allows the communicating

devices to initiate the communication platform. In Figure 2, the

local server will initiate the three-way handshake by sending

the cloud server a SYN (synchronization) message. This is a

way of asking the cloud server if it is ready to communicate.

The recipient, which is the cloud server sends back a

SYN/ACK message to the local server telling it that it is ready

for the communication. The local server then sends an ACK

(Acknowledgement), and the connection between the two sides

is established. The data is then transmitted.

Figure 2: Three-way handshake initialization.

• Hash verification: Hash checks for the integrity of the message.

The cloud server receives a segment and runs SHA algorithm

over it, if it matches, then we increment the number of received

healthy segments by one, we ignore (discard) the rest of the

segments which do not match. The system waits until receiving

other segments (we know the total number of segments sender

http://www.astesj.com/

M. Alkhonaini et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 2, 57-63 (2020)

www.astesj.com 60

is going to send for us) and see how many of them are healthy

(their integrity can be verified).

• Decryption: With the Cipher Block Chaining decryption,

application of the inverse-cipher function to the first cipher-text

block results into an output-block which passes through the

XOR operation with the initialization-vector to allow the

recovery of the first plaintext block. The inverse-cipher

function is also applicable to the second cipher-text block

which provides the output-block which is then XORed with the

first cipher-text block for the recovery of the second plaintext

block. Generally, the recovery of any plaintext block (except

the first plain-text), the inverse cipher-function applies to the

corresponding cipher-text block, and the output-block is

XORed with the prior cipher-text block.

• Error correction: Error correction allows the cloud server

which receives the data to reconstruct the original data in the

event that it was corrupted during transmission. Error

correction is implemented using the hamming code. Hamming

code is a single-bit error correction method that uses the

redundant bits. The redundant bits are included on the original

data and their arrangement is in such a way that any different

and incorrect bits will lead to the production of various error

results. The corrupted bits are then identified and upon the

identification of the corrupted bits, the cloud server which

receives the data is capable of reversing its values hence,

correcting the errors. Hamming code applies to any data length

and makes use of the relationship between the data and the

redundancy-bits. Checksum-checker: The cloud server makes

use of the checksum-checker. The following is the procedure

for the checksum checker:

• The cloud server which receives the data-unit will divide

the received data-unit into equal sub-segments.

• All the sub-segments are then added together using the

1’s compliment.

• The outcome is complimented again. If the final result

is found to be zero, the system accepts the data while

when it is found to be 1, the data should be rejected and

considered to have errors.

• Reassembling of data [11]: After all the data segments have

arrived and each segment is verified, an algorithm to arrange

the segments in order according to their sequence numbers will

be used. This ensures that the data segments will be ordered

back to their original state before being segmented on the local

server [12]. In Figure 3, the flowchart diagram shows how the

model receives the segment and allocates the buffer space for

each segment. There are more segments in the buffer, by

comparing the size of the segment with the size of the space

available in the buffer, the segment is taken back. If there are

no more data in the buffer, then the data unit is identified, and

the data unit is bound to the context. It will then check if it is

occupied by a different data unit. The bound data is then

updated, and the segment is inserted into the data unit. The

number of segments is then checked, if there are any remaining

segments, they will return back to step one. If there are no

remaining segments, then the header will be updated and the

data unit will be transmitted. The numbering sequence plays a

crucial role as it is the sequence number used to arrange back

the data to its original state [13]. The size of the unencrypted

segments on the source server is furthermore tested and

matched with the size of the corresponding decrypted segments

on the destination server. Re-assembling of data segments will

only take place after all the previous stages have been

successfully completed.

Figure 3:Reassembling of segments.

3.2. Parallel Transfer Algorithm

Server user may perhaps definitely benefit from the rapid

growth of multicore systems. The physical server typically holds

several regular data centers or computer storage, where commodity

high-performance multicore bunches are employed. Our migration

algorithm designed for one direction data flow which begins at the

server storage and ends at the cloud storage. Algorithm 1 shows

the parallel-serial transmission which starts from a master

processor acting as a management system. The aim of the master

processor is to reach the final output by collecting the necessary

information from the slave processors. In our migration algorithm,

we will assume that the data is ready for transfer after the four

stages: data chunks, error control/correction, encryption/

decryption with AES-256 and SHA-256 algorithm which is

identified as the significant component of the integrity process.

The transfer process will start by taking the ready data list, FList,

and divides it between the slave processors. Correspondingly, each

slave processor would obtain blocks of FList. We use single

program multiple data (SPMD) algorithm where there is a single

instruction that each processor performs, but on various data. Each

slave processor would establish its secure channel, port, and buffer.

Each slave processor will then send its Flist to the cloud buffer

before the storage stage. The final task of the slave processor is to

update its Flist by removing the sent chunks from the list. This

procedure would reflect to have a higher bandwidth transmission

capacity. Finally, the master processor receives the FList from all

the slave processors and takes the re-transmission decision. If the

Flist size=0, it means that all the data chunks have been sent

successfully. However, if Flist size=!0, it means that the master

processor will request for the re-transmission of the missing

chunks by the method explained in [1]. The master processor

would close the connection after all the re-transmission requests.

At this phase, the cloud buffer is full of the data that need to be

checked for integrity, verified and re-build to be stored.

3.3. Time Factor of Parallel Transfer

The performance of the proposed model will be evaluated by

computing the average of execution time, the number of

processors, and the speedup ratio.

http://www.astesj.com/

M. Alkhonaini et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 2, 57-63 (2020)

www.astesj.com 61

3.3.1 Data Distribution Time (Segmentation+ CRS+ AES

+ HashGen)

Divided into four actions, file chunking, encoding, encryption,

and hash generation. In order to minimize the delay between

individual execution time, transferring has to be started directly

after the segmentation when the exact chunk is ready, without

waiting for the overall segments process to be completed. Server

execution time can also be minimized by manipulating the chunk

size and sequence when the network resource is unutilized.

3.3.2 Parallel Data Migration Time

This time factor indicates the transfer from local server to

buffers in the cloud storage. In order to increase the throughput of

this phase, the parallelism method can be applied only if the

transmission files are of a large number. Processor 0 would act as

the root and starts to define the number of the chunks and divide

them among the slave processors. As a result, each slave processor

would collect a block of chunks. Later, they would establish their

connections and send their chunk lists to the cloud buffers. The

control would then be passed to TCP in order to finalize the

transmission task.

3.3.3 Data Amalgamation Time (HashVerify +AES +CRS

+Re-Assembling)

In this time factor, the file reassembling is the prime task. It

also involves the migration from the cloud buffers to the

destination storages. This step also contains massive disk

operations such as the writing process.

3.4. Model and Evaluation of Parallel Migration

The parallel performance was analyzed by displaying speedup

rate and throughput to illustrate the parallel model profit. The

speedup of parallel operations on P processors is defined as the

following [14]:

 𝑆𝑃 =
𝑇1

𝑇𝑃

 (1)

Where T1 is the sequential execution time using one processor,

TP is the parallel execution time using P processors, p and 1 are

indexes as written in equation 1. While Sequential Transfer Time

equation (T1) is:

 𝑇1 =
D𝑠

𝑡𝑒

 (2)

Where D𝑠 is data size in MB, 𝑡𝑒 is transfer speed in MB/s.

Parallel Transfer Time (𝑇𝑃) = data distribution time in the server

+ transfer time + data amalgamation time in the cloud. Hence, the

speedup rate is acquired as below:

 𝑆𝑃 =

D𝑠
𝑡𝑒

⁄

𝑇𝑃

𝐷𝑆
𝑡𝑒

⁄ +
𝐷𝑆(1 𝑃⁄)

𝑡𝑒
⁄

Figure 4: Speedup model for parallel transfer, where p is the number of

processors.

It can be noticed that the smaller file transfer size (not many

of small and large files together), a minimum number of parallel

processors are required to accomplish a speedup. However, when

trying to parallelize the transfer, there is no prediction of when the

packet loss rate would begin to increase exponentially which

causes a critical overhead. Thus, smaller file sizes do not benefit

from the parallelization. Therefore, Figure 4 shows that the

speedup rate is steep for the file size of below 4MB.

For a larger data transfer size, the speedup rate grows as the

number of parallel processors are increased. However,

performance gains are hardly worth when each subsequent

increase in processors number brings a lesser performance profit

contrasted to the previous increment.

4. Experimental Evaluation

This section shows the performance evaluation for our parallel

migration system on an Infrastructure as a Service (IaaS) cloud

environment.

0

1

2

3

4

5

6

0 200 400 600 800 1000 1200 1400 1600 1800 2000

S
p

ee
d

U
p

File Size MB

p=2 p=4 p=8 p=12 p=16 p=32

http://www.astesj.com/

M. Alkhonaini et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 2, 57-63 (2020)

www.astesj.com 62

4.1. Experiment Setup

We carry out these experiments on two separate VMs (VM

hardware were identical) hosted on Cray XC40 within two

locations: Oregon and Amsterdam. Linux Operating System in

various cores with 8 GB of memory was assembled on the VMs.

All the encryption /decryption stages are constructed with the help

of python cryptography 2.1.4.

Our experiment concentrates on migrating a single file from

the server to cloud storage. The model is designed in such a way

that each part of the system is pluggable. Thus, replacing an

encryption algorithm will not affect the selection of the coding

algorithm. We have chosen numerous file sizes, starting from .05

MB to 1900MB and RS parameters (k, m) in range of (1 ≤ m ≤ k

and k ≤ 256, where m=parity) in order to evaluate the transfer rate.

For coding layer, we employed PyEClib source on GitHub (1.5.0)

module with liberasurecode source on GitHub (1.5.0) as Interface

to erasure back-ends for Reed-Solomon coding.

4.2. Preliminary test

To evaluate the actual performance, we first examined the

performance of our algorithm by measuring the execution time in

the server (source) and cloud storage (destination) processes for a

data, depending on the file size and variability of RS parameters k

and m.

In Table 1 below, we showed the average operating time for

the source and destination for each process. It is quite apparent that

the source average is mainly estimated by the slicing process

because it involves additional parameters and computations than

the other internal operations.

Table 1: Average execution time in the source/destination.

OPERATIONS TIME (ms) SUM

CRS Coding 691.99

1,089.74 AES Encryption 116.78

SHA Hash 280.97

SHA Verify 277.39

487.55 AES Decryption 119.53

CRS Decoding 90.63

The throughput define as that is the amount sum of processed

data that execute in a period of time (processed data /second) [15].

It is concluded as the following relation:

 𝑃𝑛 =
𝑊

𝑇𝑃

 (3)

Where W is indicated as the workload, TP as the execution time

required to accomplish the calculation using P processors [16], p

is index as written in equation (3). From equation 3, the throughput

for each location is shown in the Table 2. Table 2 depicts the

comparison between the average throughputs of transmitting many

file sizes between Oregon and Amsterdam locations. The transfer

throughput gained for Oregon and Amsterdam is ~.9, .7 MB/ms

respectively. The range of throughput achieved when transferring

the file is astonishingly large. It was observed that the throughput

rate does not follow a certain way; the variation seems to arise

randomly.

Table 2: Locations Transfer Throughput.

File sizes
Oregon TO

Amsterdam

Amsterdam

TO Oregon

0.05 0.005101482 0.001007

0.10 0.009208418 0.001696

0.55 0.038767525 0.008251

1.00 0.019112421 0.011328

17.00 0.041170096 0.073851

142.00 0.086551034 0.263185

339.00 0.093888415 0.333905

750.00 0.107918311 0.442913

1,100.00 0.102385909 0.468758

1,500.00 0.109188015 0.502546

1,900.00 0.114588619 0.579061

4.3. Result

Figure 5 and Figure 6 are linearly dependent features and are

just shown for further clarification. It is verifiable that by choosing

bigger fault tolerance rate in the coding stage (smaller k in

proportion to m) the final transfer time increases rapidly. It is

shown that transferring bigger files with no-error tolerance (k =m)

added in the coding stage, the system will exhibit the best

performance, especially in case of bigger file sizes. Choosing k

such that it covers 10-15% error correction without the need for

data retransmission in smaller file sizes less than 24MB, the impact

on transmission time is noticeably less than the profit it brings.

Figure 5: Average execution time in source side.

Figure 6: Average execution time in destination.

http://www.astesj.com/

M. Alkhonaini et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 2, 57-63 (2020)

www.astesj.com 63

In Figure 7, we portray a 2D graph of the speedup rate against

data size for a different number of processors. It can be noted that

analogous to our model, speedup cannot be obtained for the data

migration that is below 0.5GB by using 2, 4, 8, and 16 parallel

processors. The overall note is steady with our approach, the

speedup is extremely poor for small file size, but increases for

bigger file size.

Although the speedup rate is not computed yet in the real

environment, we found an independent argument that can be used

in our model to compute the speedup in the real environment.

Based on our observation, the independent argument is close to

0.47. Hence, we are certain about the fact that when the count of

parallel processors is greater than 8 and the data size is bigger than

1GB, the speedup will be achieved.

Figure 7: Comparing actual speedup and our model for parallel transfer, where p

is the number of processors.

5. Conclusion and Future Work

This paper concentrated on explaining and exhibiting a parallel

design for data transmission in cloud environment. First, we

demonstrated the proposed model. Next, we presented the

implementation and evaluation of the proposed model. Though our

parallel transfer model shows a prospect to enhance the

performance, however, our implementation exposed that there is

an independent argument that should be considered. This study

also suggests that there are overhead factors that can affect the

parallel transfer performance, such as initialization, chunking the

data file, and transfer time. Thus, those overhead effects should be

investigated in order to reach maximum performance. In brief, we

should consider the computation of hardware power and

processors I/O’s speed that is assigned by the CSP to design the

parallel migration model.

Conflict of Interest

The authors declare no conflict of interest.

References

[1] M. Alkhonaini and H. El-Sayed, "Optimizing Performance in Migrating Data
between Non-cloud Infrastructure and Cloud Using Parallel Computing,"
2018 IEEE 20th International Conference on High Performance Computing
and Communications (HPCC), Exeter, United Kingdom, 2018, pp. 725-732.

[2] Hesham El-Rewini, Hesham H. Ali, and Ted Lewis. 1995. Task Scheduling
in Multiprocessing Systems. Computer 28, 12 (December 1995), 27-37. DOI:
https://doi.org/10.1109/2.476197

[3] S. Razdan, Fundamentals of Parallel Computing. New Delhi: Alpha Science
International, 2014.

[4] “rsync(1) - Linux man page.” [Online]. http://linux.die.net/man/1/rsync.
2015.

[5] H. Pucha, M. Kaminsky, D. G. Andersen, and M. A. Kozuch, “Adaptive File
Transfers for Diverse Environments,” in USENIX 2008 Annual Technical
Conference on Annual Technical Conference, Berkeley, CA, USA, 2008, pp.
157–170.

[6] Bram Cohen, “The BitTorrent Protocol Specification.” [Online].
http://www.bittorrent.org/beps/bep_0003.html. 2015.

[7] G. Khanna et al., “Multi-hop Path Splitting and Multi-pathing Optimizations
for Data Transfers over Shared Wide-area Networks Using gridFTP,” in
Proceedings of the 17th International Symposium on High Performance
Distributed Computing, New York, NY, USA, 2008, pp. 225–226.

[8] R. Tudoran, A. Costan, R. Wang, L. Bouge, and G. Antoniu, “Bridging Data
in the Clouds: An Environment-Aware System for Geographically
Distributed Data Transfers,” in Cluster, Cloud and Grid Computing (CCGrid),
2014 14th IEEE/ACM International Symposium on, 2014, pp. 92–101.

[9] C. B. M. Lek, O. B. Yaik and L. S. Yue, "Cloud-to-cloud parallel data transfer
via spawning intermediate nodes," TENCON 2017 - 2017 IEEE Region 10
Conference, Penang, 2017, pp. 657-661. doi:
10.1109/TENCON.2017.8227943

[10] M. Alkhonaini and H. El-Sayed, "Minimizing Delay Recovery in Migrating
Data between Physical Server and Cloud Computing Using Reed-Solomon
Code," 2018 IEEE 20th International Conference on High Performance
Computing and Communications (HPCC), Exeter, United Kingdom, 2018,
pp. 718-724.

[11] M. Alkhonaini and H. El-Sayed, "Migrating Data Between Physical Server
and Cloud: Improving Accuracy and Data Integrity," 2018 17th IEEE
International Conference On Trust, Security And Privacy In Computing And
Communications/ 12th IEEE International Conference On Big Data Science
And Engineering (TrustCom/BigDataSE), New York, NY, 2018, pp. 1570-
1574.
doi: 10.1109/TrustCom/BigDataSE.2018.00226.

[12] "Sequence data submission and accession numbers", FEBS Letters, vol. 360,
no. 3, pp. 322-322, 1995.

[13] C. Diot and F. Gagnon, "Impact of out-of-sequence processing on the
performance of data transmission", Computer Networks, vol. 31, no. 5, pp.
475-492, 1999.

[14] Roosta, S. " Parallel Processing and Parallel Algorithms: Theory and
Computation ", ISBN: 0-387-98716-9, Springer Verlag, 2000.

[15] Kermarrec, A.; Bougé, L.and Priol, T. "Euro-Par 2007 Parallel Processing ",
13th International Euro-Par Conference: Lecture Notes in Computer Science,
ISBN 978-3-540-74465-8, Vol. 4641, 2007.

[16] Hwang, K. and Xu, Z. (1998). Scalable Parallel computing. New York:
McGraw-Hill.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.00 0.50 1.00 1.50 2.00

S
p

ee
d

U
p

File Size GB
p=2 p=4 p=8 p=16
model p=2 model p=4 model p=8 model p=16

http://www.astesj.com/
https://doi.org/10.1109/2.476197
http://www.bittorrent.org/beps/bep_0003.html.%202015

	2. Related Works
	3. Server to Cloud Parallel Data Transfer Modelling
	3.1. General Concept of the Model
	3.2. Parallel Transfer Algorithm
	3.3. Time Factor of Parallel Transfer
	3.3.1 Data Distribution Time (Segmentation+ CRS+ AES + HashGen)
	3.3.2 Parallel Data Migration Time
	3.3.3 Data Amalgamation Time (HashVerify +AES +CRS +Re-Assembling)
	3.4. Model and Evaluation of Parallel Migration

	4. Experimental Evaluation
	4.1. Experiment Setup
	4.2. Preliminary test
	4.3. Result

	5. Conclusion and Future Work
	Conflict of Interest
	References

