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In this paper, we present an experimental approach that allows a humanoid robot to
effectively plan and execute whole body motions, like climbing obstacles and straight
stairs up or down, besides jumping over obstacles using only on-board sensing.
Reliable and accurate motion sequence for humanoid employed in complex indoor
environments is a necessity for high-level robotics tasks. Using the robot’s own
kinematics will construct complex dynamic motions. A series of actions to pre-
vent the object from being performed on the basis of the identified object from the
database of the robot, obtained using the robot’s own monocular camera. As shown
in real world experiments beside simulation using NAO H25 humanoid, the robot
can effectively perform whole body movements in cluttered, multilevel environments
containing items of various shapes and dimensions.

1 Introduction
Humanoid robots have become a common research platform
because they are considered the future of robotics because of
their creativity. Humanoid robots, however, are fragile me-
chanical robotic systems and the main challenge is to main-
tain the balance of the robot [1]. Human like design and
locomotion require complex motions to be performed by hu-
manoids. Humanoids are well adapted for human-designed
mobile manipulation activities such as walking, reaching var-
ious types of terrain, moving in complex environments such
as environments with stairs and/or narrow passages, navi-
gating in cluttered environments without colliding with any
barriers, etc. Such capabilities would make humanoid robots
perfect assistants to humans,such as disaster management or
housekeeping [2]–[5].

Humanoid service robots need to deal with a variety of
objects. For example, avoiding objects by turning away from
them, stepping over,onto or down an obstacle, climbing up
or down stairs. For any humanoid robot, these are consid-
ered challenging tasks. Humanoids usually perform motion
instructions improperly [2, 3, 6]. That is because they pos-
sess rough odometry estimates; they might slip on the ground
surface depending on the ground friction, as well as the fre-
quency of its joint back-lashing. In fact, their light-weighted
and small sensors are influenced by noise inherently. All these

circumstances can lead to uncertain estimates of pose and/or
inaccurate execution of movement [7, 8]. Nonetheless, there
are other explanations that justify why in practical applica-
tions humanoids are not used often. For example, humanoids
are expensive as they are produced in small quantities and
consist of complex hardware parts [3].

Many researchers use navigation algorithms that use wheel
robots rather than legs, but the disadvantage of this model
is that it does not respect all the collision avoidance capabil-
ities of humanoids; therefore, more appropriate methods are
needed to navigate in cluttered and multilevel circumstances
[3, 9]–[11].

At first, Humanoid research has concentrated on some
variables such as basic walking, but current systems are now
becoming more knotted. Most humanoids already have full
body control prototypes and advanced sensors such as sound,
laser, stereo vision, and touch sensor systems. That provide
the circumstances required and important to deal with com-
plex issues foe instance grasping and walking. Movement
planning is a positive way of dealing with complex issues,
because planning enables the versatility of meeting different
criteria. The design of complex dynamic motions is accom-
plished only by robot kinematics, which transforms from the
common space where the kinematic chains are described into
the Cartesian space where the robot’s manipulators travel and
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vice versa [3, 12]–[14].
As it can be used to plan and execute movements, robot

kinematics is important, it is split into forward and in-
verse kinematics. Forward kinematics corresponds to using
the kinematic equations of the robot to calculate the posi-
tion of the end effector from the specified parameter values
[12, 15, 16]. On the other hand, reverse cinematics corre-
sponds to using the kinematics equations of a robot to deter-
mine the joint parameters that provide the target position of
the end effector. That is clear why kinematics is necessary in
any aspect of complex movement design [12, 14, 16, 17]. The
relationship between inverse and forward kinematics is shown
in Figure 1.

Figure 1: Representation of inverse and forward kinematics
Whole body motions that fulfill a variety of constraints are
required for Humanoids to perform complex motions activi-
ties, where the robot has to maintain its balance, avoid self-
collisions and collisions with environmental obstacles. How-
ever, consideration must be given to the ability of humanoids
to move over/ down/ onto objects and maneuver in multi-
level environments. All these restrictions and the high degree
of freedom of the humanoid robot make the whole body mo-
tion planning a challenge [2]. The main goal of whole body
balance motion is to make consistent motions and adapt the
robot’s behavior to new situations [18].
Based on our Knowledge, human-like movements depend on
the characteristics and the objectives of given tasks. A pos-
sible solution to the evolution of human-like motions or atti-
tudes is to investigate and solve a given task with software of
a human robot. In order to reduce these human efforts and
perform more complex tasks, many researchers have studied
another approach based on learning theories. Demonstration
robot programming, also known as learning imitation, tedious
manual programming seemed to automate the manipulation
of robots [19, 20, 14].
For many supported tasks to be performed autonomously and
safely, a robot must be aware of the task restrictions and
must prepare and carry out motions that take into account
these constraints while avoiding obstacles [19, 20]. Such mo-
tion planners, however, typically require manually program-
ming the task constraints, which requires a domain knowl-
edge programmer. On the other hand, methods focused on
learning from demonstrations are highly effective in automat-
ically learning task restrictions and controllers from people
demonstrations without programming knowledge and experi-
ence [20].
Humanoid motion design has been examined thoroughly in
recent years. For example, the approach provided by [7] al-
lows a NAO humanoid to climb spiral staircases efficiently,
fitted with a 2D laser sensor and a monocular camera..
Although [9] proposed a method for locating NAO humanoids
using only on-board sensing in undefined complicated indoor

environments. Approach (Nishiwaki et al.[21] allows NAO to
ascend single steps after manually aligning the robot in front
of them without any sensory information to detect the stairs.
While in [22], the authors provides a three-step action plan
for ascending staircases for HRP-2. Furthermore in [23], the
authors proposed a technique for climbing stairs using effi-
cient image processing techniques with single camera fixed at
the top of the robot at a height of 60 cm.
In addition, Burgetet al. [4] introduce an approach to the
whole body movement design by manipulating interactive
items such as doors and drawers. Their experiments with
a NAO unlocking a drawer, a lock, and carrying up an object
showed their power to solve complicated planning problems.
Gouda et al. [24] proposes another approach to entire body
motion planning for humanoids using only on-board sensing.
NAO humanoid has been used to verify the sequence of ac-
tions posed in order to avoid obstacles, step over acts and step
up or down.
Thus in [3], the researchers developed a motion named T-
step, which helps the robot to move over actions as well as to
parameterize steps on or down actions. The paper presented
by Gouda et al.[1] suggested a NAO humanoids method for
climbing up stairs as well as jumping up or down obstacles
placed on the ground.
Measurement of distance for robots is very important as the
robot needs to go to the exact position to perform additional
tasks, such as playing with a ball, observing the house etc.
The authors in [25] used four different measurement methods
to compare the results. Such methods include the live Asus
Xtion Pro, sonar, NAO-owned cameras for achieving stereo
vision, and NDI for obtaining the 3D coordinate and ground
truth as well. They conclude by selecting an infrared tool
such as Asus Xtion Pro Live for short range calculation of
distance. They also deduced that both sonar and infrared
can be easily used to obtain the depth information without
much intervention, but more studies needs to be done with
stereo vision.
This paper is a major overhaul and extension of earlier [24, 1]
conference versions. We have developed a NAO humanoid
movement system that generates solutions that meet all the
necessary constraints and apply reverse kinematics to joint
chains.
The designed framework allows the robot to intelligently
perform whole body balancing action sequences, involving
walking over, up or down obstacles , as well as climbing
up or down straight stairs in a 3D environment, shown in
Figure 2. Based solely on the on-board sensors and joint
encoders of the robot, we built an effective whole body
movement strategy that performs safe motions to maneuver
robustly in challenging scenes with obstacles on the ground,
as shown in Figure 2. Our approach uses a single camera to
determine the appropriate movement consisting of a series
of actions based on the observed obstacle. As shown in the
practical experiments with a NAO humanoid H25 as well as a
series of simulation experiments using Webots (a simulation
applications for programming, modeling and simulating
robots [26, 27]), our system leads to vigorous whole body
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movements in cluttered multilevel environments comprising
barriers of various sizes and shapes.

Figure 2: The simulated environment similar to the real world environ-
ment

2 Methodology
The obstacle avoidance device problems presented in this pa-
per are generally applied to the humanoid robot of NAO. NAO
robot (shown in Figure 3) is the world’s premier research and
learning humanoid. It is the perfect platform for all forms of
science, technology, engineering and mathematics. [28, 29].

Figure 3: Aldebaran NAO H25 [18]

NAO humanoid robot is an integrated, programmable,
medium-sized humanoid experimental platform with five
kinematic chains (head, two arms, two legs) developed by
Aldebaran Robotics in Paris, France. The NAO project
began in 2004. NAO officially replaced Sony’s quadruped
AIBO robot in the RoboCup in August 2007. NAO has
produced many prototypes and several models over the past
few years [18, 14, 30].

Table 1 summarized NAO Humanoid Robot’s technical

specification information, where NAO H25 is about 58
cm in height; 5.2 kg weighs and includes a programming
framework called NaoQi that offers a user-friendly interface
for controlling sensors on the NAO and sending control
commands to achieve higher robot behaviour. The NAO
robot used has 25 degrees of freedom (DOF), each joint is
fitted with location sensors, it has 11 DOF for its lower parts
and 14 DOF for its upper parts [18, 31, 32].

Table 1: Technical specification of NAO Humanoid Robot
NAO’s Descriptions NAO’s Specifications

NAO’s Height 58 cm
NAO’s Weight 5.2 kg

NAO’s Autonomy 90 min const. walk
NAO’s Degree of freedom 25 DOF

NAO’s CPU X86 AMD Geode 500 MHz
NAO’s OS (Built-in) Linux

NAO’s Compatible OS Mac OS, Windows, Linux
NAO’s Programming languages C, C++, .Net, Urbi, Python

NAO’s Vision Two CMOS 640x480 cameras
NAO’s Connectivity WiFi, ethernet

NAO incorporates a variety of sensors that can be used to
identify the face and form with two similar video cameras on
the forehead. Nonetheless, the two cameras do not overlap,
as shown in Figure 4, And each time only one is active and
the view can be switched almost instantly from one to the
other.

Both cameras provide a 640x480 pixel video with a speed of
30 frames per second, which can be used to distinguish visual
items such as goals and balls [18]. Four sonars on the chest
(2 receivers and 2 receivers) allow NAO to detect obstacles
in front of it. Furthermore, NAO has a wealthy torso inertial
system with a 2-axis gyroscope and a 3-axis accelerometer
that can provide real-time information about its instanta-
neous body movements. Two bumpers at each foot’s tip are
basic off/on switches and can provide obstacle information
on foot collisions. There is a set of strength-sensitive resistors
for each foot that support the forces applied to the feet, while
encoders on all stepper motors record the real measurements
of all joints for each moment. [14, 30].

Eventually, a GEODE 500 MHz board with 512 flash
memory and optional extension via a USB bus is the CPU
located in the robot’s head. If necessary, a Wifi connection
connects NAO to any local network or other NAOs. NAO
is powered by Lithium Polymer batteries with time ranging
from 45 minutes to 4 hours depending on their operation
[18, 31].

In general, the robot should be completely symmetri-
cal, but it is noteworthy, according to the manufacturer, that
some joints on the left side differ from the corresponding
joints on the right side [14, 30]. In addition, certain joints
appear to be able to shift within a wide range, the robot’s
hardware controller forbids access to the limits of these
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ranges due to possible NAO shell collisions [14]. Kinematics
is very useful for developers of NAO software because it
can be used to plan and execute these complex movements
[14, 6, 30].

Figure 4: Cameras Location [18].
NAO’s geometric model gives the location of the effector
(X = [Px, Py, Pz, Pwx, Pxwy, Pwz]) relative to an absolute
space according to all the common positions (q = [q1, ..., qn]).

X = f(q) (1)

The direct kinematic model is presented in equation (2),
which is the time derivative of equation (1).

Ẋ =
δ

δt
f(q) q̇ = J(q) q̇ (2)

Where J(q) is the Jacobian matrix. It is necessary to check
the end effector and deduct the joint position, so that the
inverse kinematic model shown in equation (3) is needed.

q̇ = J−1Ẋ (3)

In many cases, J is not explicitly inversible directly (matrix
not square), this problem is solved mathematically using
Moore-Penrose pseudoinverse [18].

Aldebaran Robotics includes shared values in the docu-
mentation of the robot [18]. For each link / joint, the center
of mass is represented by a point in the three-dimensional
space that assumes the joint’s zero pose.

The obstacle avoidance model problems suggested in
this work are generally applied to the humanoid robot of
NAO. Since NAO H25 has 25 DOF, it can perform many
complex motions including walking, kicking a ball, going up
and down obstacles, etc. [14, 6].NAO’s walk uses a simple
dynamic model (Linear Inverse Pendulum) which is stabilized
by feedback from its joint sensors, which makes the walk
stable against minor disturbances and absorbs frontal and
lateral torso oscillations [18].
The swing foot can be positioned on the front and 16 cm on
the side at most 8 cm and the peak elevation is 4 cm using
the walking controller given. The robot’s feet are about 16

cm x 9 cm in size. From these statistics, it is clear that NAO
can not perform complex motions such as avoiding obstacles
(excluding turning itself around) using the standard motion
controller as shown in Figure 5 [18, 3, 14].

Figure 5: Clip with maximum outreach [18].
Only the on-board sensor of the robot, the lower camera,
is used in this paper. Another limitation for NAO is its
camera, as the two cameras of NAO do not overlap and
only one of them is active each time and the view can
be switched almost instantly from one to the other [18].
That means that it is not possible to form a 3D image, i.e.
details about the distance between the obstacle and the robot.

In order to avoid obstacles, NAO must identify objects
in the environment if they encounter some, so that it must
first know specific objects by using the Choregraphic Vision
Monitor [31] (Choreography is a graphical device created for
NAO humanoids by Aldebaran Robotics).

Algorithm 1: Recognize objects
while There exist some objects to learn do

capture image using NAO’s cameras ;
draw the contour of the learned object manually ;
give a name and other details to the object ;

end
storing learned images in NAO’s database ;

Object learning is shown in Figure 6 and described in
Algorithm 1. The image should be obtained using NAO’s
cameras as shown in Figure 6a, then the contour of the
learning object is drawn, segment by segment, manually as
shown in Figure 6b. After that, in order to differentiate
between different objects, details about the object like the
name is entered as shown in Figure 6c.

Then a message appears to show the learning process’s
success (see Figure 6d). Photos are stored in NAO’s database
after learning all the necessary items. Once all photos are
placed in NAO’s database, during its active deployment,
NAO will be able to perform object recognition. The method
of recognition is based on visual key points detection and
not on the object’s external form, so NAO can only identify
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objects that have been previously studied.

The recognition method is partly resilient to distance,
varying from half to twice the distance used for learning, and
angles up to an inclination of 50◦ for something observed
facing the camera, rotation and light conditions [18]. Each
key point observed in the current image is matched only with
one of the key points learned in the database. So, if the score
is too small to choose between two items, none of them will
be correlated with the key point. This means that the object
can not be learned twice, because learning the same area
of an object twice reduces its detection rate as the score is
the same for both objects and the object is not recognized [18].

Figure 6: Object learning phase

2.1 Motion design
As shown in Figure 5, it is obvious that NAO can not use its
typical motion controller to perform complex motions (other
than walking) such as moving over/onto/ down obstacles.
In order to allow the robot to overcome these limitations, a
kinesthetic teaching is applied. Here, the humanoid NAO
H25 is programmed using the choreograph [31] and the
python programming language. We implement a special
movement design (described in Algorithm 2), inspired by [3]
and extends the work in [24, 1].

This design allows the robot to walk over iteratively as
well as to climb up or down obstacles (including straight
staircases) depending on the shape of the obstacle. The right
leg’s foot (LR) is positioned in the intended motion at an
angle of 30◦, which is the basis for the other acts. The robot
then shifts his balance to that leg, (LR), (the leg with the
angle 30◦) and moves freely the other leg, left leg (LL). Then
the balance is shifted to LL, then LR moves freely next to LL

and then the balancing is performed on both legs as shown
in Figure 7. The development of such complex dynamic
movements can only be accomplished by using the robot’s
own kinematics [2, 12].

Figure 7: Designed motion step

The motive for using this series of motions is to manipulate,
when stepping forward, the greater lateral foot displacement.
From such a position, the robot can perform step over
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movements to overcome obstacles with an elevation of up
to 5 cm which can not be done with the standard motion
controller.

The sequence of motions for ascending and descending
stairs or wooden bar is similar to the sequence of motion for
stepping over actions except for the positioning the swing
foot, as it is positioned closer to the placed foot but at a
different height where the height is changed using reverse
kinematics depending on the recognized item.

The movements designed for full body stability use NAO’s
original kinematics to directly control the effectors in
Cartesian space using an inverse kinematics approach to
solving. The model Generalized Inverse Kinematics is used;
it addresses cartesian and joint power, stability, redundancy,
and role priorities.

This formulation takes into account all the joints of the
robot in a single problem. The obtained motion guarantees
several specified conditions, such as balancing, holding down
one foot, etc. The developed motion system’s capabilities are
then demonstrated in a series of simulation experiments using
Webots (a simulation platform for modeling, programming
and simulating robots [26]) for the NAO robot, as well as
real-world experiments with the real NAO H25 robot.

The main differences between the motion built in this
work and the motions defined by Maier et al. [3] are in the
angle of placement of the robot’s foot. Because our model
movement helps the robot to position its foot at a 30◦ angle,
This allows the robot to achieve the equilibrium in a shorter
time and more securely than the motion given by Maier
et al. [3], while Maier et al. [3] equals 90◦ to the robot’s
positioning angle.

Our work further expands the work outlined in [1] as it
executes the entire scenario starting with walking in search of
a target, including avoiding obstacles by ascending straight
stairs, climbing up stairs as well as walking over, on or down
obstacles until the goal is reached.

3 Experimental Evaluation
The developed framework allows the robot to robustly
execute entire body balancing action sequences, including
stepping over and ascending or descending obstacles, as well
as ascending or descending straight stairs in a 3D environ-
ment, shown in Figure 2. Based solely on the onboard sensors
and joint encoders of the robot, we built an effective whole
body movement strategy that performs safe movements to
maneuver robustly in demanding scenes with obstacles on
the ground as shown in Figure 2.
Our method uses monocular camera to determine the
appropriate motion consisting of a series of actions based
on the detected obstacle. As shown in practical experi-

ments with a NAO humanoid H25 as well as a series of
simulation experiments using Webots, the framework results
in efficient motions for the whole body in congested mul-
tilevel environments with artifacts of various shapes and sizes.

The scenario consists of a world in which the humanoid
has to navigate through arbitrarily cluttered obstacles (see
Figure 2). The robot is going to navigate the environment
until it reaches the goal of recognizing the cane.

The target is far from the robot’s reachable space at
the start of the experiment. The robot starts to walk in
quest of its target to avoid obstacles. Once the obstacle is
in front of the robot, the entire body movement must be
carried out in order to prevent the robot from colliding with it.

It’s worth noting that if the robot gets lost and en-
counters items that it hasn’t learned instead of locating the
previously learned objects or target, it’s going to notify a
message that notifies it is lost and stop walking.

Figure 8: The main process of our experimentation on NAO H25

Figure 8 illustrates the main process that describes our
approach. The robot must move three steps forward in the
experiments presented, then stop moving and pitch his head
down at an angle of 30◦ and switch to lower camera in his
head to look for obstacles on the ground in front of his feet.
The object recognition module will be activated until an
obstacle is detected; then the robot must take three more
steps forward. In the case of an obstacle being recognized,
the robot compares the object being recognized with the
objects being observed and stored in its database.

If it is the robot’s goal, it must stop moving and alert
a voice message that notifies it reaches its goal; otherwise
it will execute stable whole body motions to deal with the

www.astesj.com 279

http://www.astesj.com


W. Gouda et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 1, 274-284 (2020)

recognized object and then move three steps forward and so
on until the goal is achieved. If the robot does not know
the object, it triggers a voice message notifying that it is
approaching an object that it has not previously known or
seen and then stops moving.

Figure 9 shows the operation of choreographic [31] identi-
fication of items [31], the top right of the photo shows a
video monitor showing what the robot actually sees. It is
clear that through the robot’s vision recognition module, the
robot can recognize the long wooden bar previously taught
and saved in NAO’s database. The vision recognition module
returns the name of the recognized object to the next stage
when a match occurs to take an action based on the object.
Figure 10 Is the action module expansion shown in Figure 9,
where the robot has to perform step by step sequence of
motions to overcome this barrier when the wooden bar is
recognized.

Figure 9: Wooden bar is recognized

Figure 10: Step over actions are executed

The key challenge is to accurately determine the distance
from NAO to the obstacle. As mentioned earlier, the NAO
camera does not provide the distance between the robot and
the obstacle. The robot’s vision recognition module is also
partly robust to distance the robot from the target, as it
ranges from half to twice the distance used to learn [18]. It
is also based on the identification of visual key points, not
on the object’s external shape, which means that if the robot
recognizes the wooden bar, it will perform step-over activities
regardless of the distance between them.

If the distance between his feet and the target is not
sufficient, the robot may struggle to overcome the obstacle.
The distance between the robot and the obstacle is not known
because the camera of the robot has a limitation in providing
depth information. If the obstacle is placed below the correct
margin of the robot, the robot will strike the obstacle while
moving its leg, resulting in a shift in the angle of the foot,
disrupting its balance and the robot will fall. A further
situation if the obstacle is placed at a distance greater than
a suitable distance, the robot can put his swing foot on the
bar, which will also cause a disturbance in his balance and fall.

A simple solution to this problem is to allow the robot
to learn the image of the wooden bar on the floor at a
distance near his head as shown in Figure 11a, and learn the
image of the floor in the learning phase near the robot’s feet
as shown Figure 11b.

If the wooden bar is located at a large distance in front of the
robot as shown in Figure 11d and Figure 11c, both the floor
image and the long wooden bar image will be recognized by
the vision recognition module. But as the vision recognition
module gives high visual key points to the floor over the long
wooden bar, it will return the floor as the recognized object.
In this situation, the robot pushes three steps forward, until
the long wooden bar’s visual key points are higher than the
floor’s, which means the robot is now close to the wooden bar
and must be avoided. In deciding the distance between NAO
and the barrier, this solution proves to be very efficient.

(a) Long bar learning (b) Floor learning

(c) Floor Detection (d) Floor Detection 2

Figure 11: Learning floor image
The experiments are conducted on: (a) the robot stepping
over a 40 cm wide wooden bar, 3.5 cm high and 2 cm deep;
see Figure 12, (b) Step on a wooden bar 40 cm wide, 2 cm
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high and 40 cm deep; see Figure 14, and (c) move down to
the ground from that bar as shown in Figure 15. Figure 16’s
first raw shows the process of climbing up a single step of a 40
cm wide, 4 cm high and 20 cm deep straight staircase. The
second row shows the remaining four steps of the staircase
climbing up. Similarly, Figure 17’s first row shows the
process of climbing down a single step of a 40 cm wide, 4
cm high and 20 cm deep straight staircase. The second row
demonstrates the descent down the staircase’s remaining four
steps.

These figures show still frames of a video sequence where
our robot successfully walks up or down a wooden bar and a
straight staircase climbs up or down.

Figure 12: NAO steps over a 3.5 cm height and 2 cm depth wooden
obstacle using planned whole body movement

Figure 13: Simulated NAO walking over a 2 cm depth and 3.5 cm height
wooden obstacle using expected whole body movement

Figure 14: NAO step 2 cm high and 40 cm deep on a wooden obstacle
using the expected whole body movement

Figure 15: NAO descending from a 2 cm height and 40 cm depth wooden
obstacle using the expected whole body movement

Figure 16: NAO ascending 4 cm high and 20 cm deep stairs using the
expected entire body movement

Figure 17: NAO descending 4 cm high and 20 cm deep stairs using the
expected whole body movement
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The algorithm applied for all motions is the same. The only
exception is the height of the leg of NAO and the position
of the swing foot, as in the case of walking up or down
stairs and walking on or down obstacles, the swing foot is
positioned closer to the standing foot. The justification for
reducing the angle of positioning of the foot is the time and
the opportunity to comfortably carry out more actions.

Our work performs a whole scenario starting with walking
in search of a goal, including avoiding obstacles by climbing
down straight stairs, climbing up stairs, as well as climbing
over, on / down obstacles, until the goal is reached.

Table 2: Comparison between the proposed approach and other ap-
proaches

Motion
Design

Foot
Place-
ment

Average
Time

Obstacle
Avoided

Vision

Maier
et al.
[3]

90◦ 2 min. small bar,
large bar

Depth Cam-
era

Gouda
et al.
[24]

60◦ 43 sec. Long bar,
Wide bar

Monocular
Camera

Designed
Motion

30◦ 29 sec. Long bar,
Wide bar,
straight
staircase

Monocular
Camera

The discrepancy between the suggested approach and the [3]
approach is shown in the table 2. Declining foot displace-
ment angle reduces the time as well as the robot’s ability to
perform more safely actions. The angle of the displacement
of the foot can no longer be reduced as after 30◦, since the
robot could not perform actions.

The robot steps over it when a long bar is recognized
and transfers his leg to the ground after the obstacle.
Whereas the robot steps on/down the bar or stairs in the
case of a broad or staircase and lifts his leg on or down it.
The period for all motions to be performed is quite close. It
takes the robot 30 seconds to execute step over movement,
29 seconds to execute step on / down movement, and 28
seconds to ascend one step up or down.

We perform a systematic evaluation of our approach to
correctly walking over/onto / down an obstacle and climbing
up stairs. Only on-board sensors are used to determine the
success rate of these actions. In ten real world runs on our
straight staircase consisting of four steps, approximately 96%
of the straight staircase was successfully climbed up / down
by the robot. Only one of the climbing steps contributed to
the robot’s crash.

The robot also successfully moved a total of eight sub-
sequent times over/onto/down the wooden bar. The joints
are then heated for an extended period of time by applying a

stress on them. Joint overheating changes the parameters of
the joints, especially rigidity, which affects the robot’s bal-
ance; thus movements can no longer be performed effectively
and the robot does not overcome the obstacle and sometimes
falls. Through reducing the time spent in critical positions
or setting stiffness to 0 after each operation, it is possible to
reduce the heating in the joints.

Another problem is the execution time of the motion,
as the robot must have enough time to reach balance after
each action is performed in the motion or it will fall. The
robot will not be able to finish the action it is doing in the
event of the time being too short, so equilibrium will not be
achieved and the robot will crash. However, if the execution
time is too long to allow the robot to finish the preforming
operation, its joints may easily get hot and may not be able
to keep their balance in each position for a long time, so it
may also fall.

These results show that our method makes it possible
for the humanoid NAO H25 to climb up or down reliably four
subsequent steps of straight staircases that are not visually
detectable easily. In addition, by stepping over/onto/down
them efficiently, the robot can avoid colliding with ground
obstacles.

4 Conclusion
Throughout this research, we presented an innovative ap-
proach that allows a humanoid robot, particularly NAO H25,
to design and implement entire body stability set of actions
such as stepping over and overcoming obstacles, as well as
ascending or descending a staircase using only on-board
sensing. NAO is capable of walking on multiple floor surfaces
such as carpets, tiles and wooden floors, it is capable of
walking between these surfaces.

Large obstacles, however, can still cause him to fall be-
cause it assumes that the ground is more or less flat. The
construction of complex dynamic movements can only be
accomplished by using the own kinematics of the robot.
Based on the recognized object obtained from the robot’s
database using the robot’s own monocular camera (using
NAO’s vision recognition module), a sequence of actions to
avoid the object is being executed.

One of NAO’s most important challenges is to accu-
rately identify the proper sequence of motions that help it
to safely avoid obstacles without colliding with them. NAO
is not able to use its standard motion controller to perform
complex motions such as obstacle avoidance, two motion
designs are investigated and presented to overcome this
limitation.

Another difficulty is to assess the distance between the
robot and the obstacle. To robots, distance measurement is
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very important as the robot has to go to the exact position
to perform additional tasks, such as playing with a ball,
controlling the room, etc.

The robot’s vision recognition module is partly reliable
as it varies from half to up to twice the distance used for
learning to distance between the robot and the target. The
camera of the robot also has the limitation that it can not
provide the distance between the robot and the obstacle;
in order to overcome this limitation, a simple solution is
implemented to allow the robot to learn images for the object
on the floor in a place close to the robot’s feet in the learning
phase next to images for the floor itself. In deciding the
distance between the robot and the obstacle, this solution
proves to be very efficient.

This work is a major extension of the work discussed
in [24, 1]. Shown in the simulation as well as actual world ex-
periments with NAO H25 humanoid, in congested, multilevel
environments with obstacles of different shapes and sizes, the
robot can effectively execute whole-body movements.
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