
www.astesj.com 100

Web-based Remote Lab System for Instrumentation and Electronic Learning
Jose María Sierra-Fernández*, Agustin Agüera-Pérez, Jose Carlos Palomares-Salas, Manuel Jesús Espinosa-Gavira, Olivia Florancias-
Oliveros, Juan José González de la Rosa

Research group PAIDI-TIC-168, Electronics, University of Cádiz, Algeciras, 11202, Spain

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 02 December, 2020
Accepted: 15 April, 2021
Online: 10 July, 2021

 Lab sessions in Engineering Education are designed to reinforce theoretical concepts.
However, there is usually not enough time to reinforce all of them. Remote and virtual labs
give students more time to reinforce those concepts. In particular, with remote labs, this can
be done interacting with real lab instruments and specific configurations. This work proposes
a flexible configuration for Remote Lab Sessions, based on some of 2019 most popular
programming languages (Python and JavaScript). This configuration needs minimal network
privileges, it is easy to scale and reconfigure. Its structure is based on a unique Reception-
Server (which hosts students database, and Time Shift Manager, it is accessible from the
internet, and connects students with Instruments-Servers) and some Instrument-Servers
(which manage hardware connection and host experiences). students always connect to the
Reception-Server, and book a time slot for an experience. During this time slot, User is
internally forwarded to Instrument-Server associated with the selected experience, so User is
still connected to the Reception-Serer. In this way, Reception-Server acts as a firewall,
protecting Instrument-Servers, which never are open to the internet. A triple evaluation
system is implemented, user session logging with auto-evaluation (objectives accomplished),
a knowledge test and an interaction survey. An example experience is implemented,
controlling a DC source using Standard Commands for Programmable Instruments. This is
an example regarding how systems enable students to interact with hardware, giving the
opportunity of understand real behaviour.

Keywords:
Remote lab
Web Interface
Flex design
Minimal network privileges
Scalable

1. Introduction

In Engineering learning, Lab sessions act as a reinforcement
of theoretical concepts, taking a really important role in student
education, e.g. manipulate diodes in lab, examine threshold and
only positive conduction, gives an additional level of knowledge,
increasing student interest and making putting in order some of
theory studied. However, there is usually not enough time to put
in practice all theoretical concepts, due to time limitations to
access to physical lab sessions. In this line, more experiences can
be offered, expanding lab access time to 24/7, this is Remote Labs.

Sometimes, Remote Lab concept is put together with Virtual
Lab (a simulated experience). When these two options want to be
compared, few concepts should be considered, as stated in [1].
There, cost and effect over learning are studied. Conclusions of
that work postulate that the increase of the cost of Remote Lab is
compensated by the improvement in the learning process, due to

students are more involved when they feel that they are interacting
with real equipment.

Remote labs allow students to access expensive lab
Instruments, and specific configuration, any time, in order to put
in practice concepts studied in theoretical lessons. Remote access
to labs instruments is gaining attention in order to grant access to
students, which cannot be there (medical problems, case of force
majeure, or other excused absence). Nowadays, at 2020 globally
outbreak of COVID-19 is one of those cases of force majeure,
which has turn into remote as more activities as possible.

First option for Remote Labs is to use a commercial equipment,
as VISIR, as stated in [2], [3], which is a matrix of connections
and components, where student can change connections. This
same philosophy can be applied to matrix connections to servers,
for networking lab [4]. In other situations, Remote labs are mixed
with virtual labs, an example is Easy Java Simulations (EJS) as
stated in [5]. This system, designed for simulated experiences

ASTESJ

ISSN: 2415-6698

*Corresponding Author: Jose María Sierra-Fernández, Email:
josemaria.sierra@gm.uca.es

Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 4, 100-109 (2021)

www.astesj.com

Special Issue on Multidisciplinary Sciences and Engineering

https://dx.doi.org/10.25046/aj060412

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj060412

J.M. Sierra-Fernandez et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 4, 100-109 (2021)

www.astesj.com 101

(virtual labs), can be connected with hardware (oscilloscopes,
engines, sensors, etc.) to perform an interactive experience.

There are too non-commercial systems in Remote Labs, e.g.,
as stated in [6], [7], where Labicom, a complete new system was
designed. Server, client, solutions, all ad-hoc solutions are
designed.

Even a compact solution has been developed, all integrated in
a Raspberry Pi, as stated in [8], hosting a webserver, with an
Arduino as sensor interface.

Other implementations, as the stated in [9], proposed a
complete system for flexible Remote Lab testing, based in Lab
Server and Web Server. It is a good approach for distributed
systems, due to all communications are done throw the internet.
However, it requires for each Lab Server, external access, if it is
in a corporate network, it is a complex, or impossible
configuration.

Even there are different approaches for Remote Labs, centred
in collaborative work, as stated in [10]. This work is centred in a
system where few students can work together in the same
experience.

With a general study of the work, as stated in [11], it can be
observed that these solutions are only a part of the problem, and
it is demonstrated that a system structure stable, flexible and
scalable is needed.

However, all reviewed Remote Labs systems are not enough
flexible, due to hardware compatibility are limited, or web
interface are not enough intuitive. The aim of this work is to
design a structure and function of a Remote Lab system for
engineering learning, flexible, in order to be able to connect any
Instrument (with computer interface), scalable (in order to add
nodes) and with the required data security level.

With that objective, servers are designed using the
programming language Python, one of the most popular
programming languages with several libraries, which allows
interacting with almost any device. In addition, it can be set up as
a web server, providing sufficient level of security and
simplifying and ensuring data storage. The user interface is
designed in HTML and JavaScript, introducing a fluid and
asynchronous experience.

This work is structured as follows: in section II general lines
and objectives of this project are given; then in section III the
system structure is explained, followed in IV, where the relation
with learning and examples are explained, the evaluation methods
for learning outcomes are explained in section V, finally
conclusions are given in section VI.

2. System Objective

The aim of this work is to present a complete Remote Lab
solution which can implement experiences related with
engineering learning. This system must manage user login, and
user data, guaranteeing their privacy, and must have a time shift
manager, in order to create time slots for remote experiences,
allowing users to book them. In addition, networks requirements
needed for the implementation in a complex network must be
minimal, due to University networks are usually really complex.

This proposal must allow students the interaction with Lab
Equipment from anywhere (from the internet). For that, only one
Student can use each lab site at time. With this aim, time-slots are
set, in order to coordinate students access. With this, Lab
Instruments can be used beyond the Lab sessions hours.

2.1. Basic System Design

Experiences offered in remote experinces should be
addequated to lessons. So it should be configurable, with the
posibility to have some experiences in the same lab site, allowing
to offer multiple remote experiences with the same equipments.

In reation with network requirements, learning labs use to be
in complex networks, wich any special requiremnt (as direct
access to a computer from the internet) is a risk for all the network.
For that, only one system would have direct acces from the
internet. This single system would manage user data, login and
book system, at the time proxy conection to lab sites. Systems
connected to lab equipments are in internall network, so it does
no suposse a risk to the network, and only requiere a static IP.

User (student) connects to this single computer, for book a
experince, in a specific time slot, for take the experince, or for
take the evaluation excercises. All user interaction is done via this
computer (connections, forwardings, data transmissions, or other
procedures to connect user with remote lab station), so user seem
to interact always with the same server, in the same web-site.

Aim of this remote lab system is to reinforce of theoretical
knowledge, so test learning result is one fo the most important
things in the process. The most dificult thing is to know if the
experience has been done as designed (without any interaction
problem). Interaction problems cause difficulties in perform
laboratory practice and difficulty in acquiring knowledge, and
aspect as camera quality is essential for a propper interaction. In
order to know if some kind of problem in experince design
(interaction site, software conectors, conection speed, camera
quality, camera ilumination, etc.) could cause problems at taking
the experience, a fast survey must be done for every user after take
an experience.

Moreover, knowledge is evaluated in a multiple way.
Examinig the experince itself (steps accoplished, time taken, total
time in finish experince, tries for step, etc.) and an auto-evaluation
is geenrated. And after the experince, a knowledge test must be
take by user. This test include the knowledges concepts included
in the experince, in order to confirm that experience has helped in
reinforce that knowledge.

For a fair use of the systen, a limit at booking time slots must
be considered. Deppendig on the number of users and time slots
availables for take each experince, more or less condittions should
be applied. It is recommended a limit of only one time slot booked
by user, but sometimes, it should be considered additional limts
as one try for each experince by user (at least until all users have
done that experince). Time slots are created, and number of
remote lab stations are limmited. So this limits are really importat
in some situations.

Time slot sould not be the same for all experinces, and even
some experinces can be done simultaneously, if both use different
equipments connected to the same remote lab station. Roles for

http://www.astesj.com/

J.M. Sierra-Fernandez et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 4, 100-109 (2021)

www.astesj.com 102

that situations are implemented in remote lab stations. Time slots
are calculated according to expriences time length, taking in
consideration that some time is needed among time slots for
intialize instruments.

Remote lab stations have instruments grouped by experinces
compatibility, this is a set of instruments that can be used for many
experiences. They are designed as much flexible as possible, but
with just the needed instruments, in order to create as much as
remote lab stations as possible. This is, a remote lab station can
be done with a controlable DC source, a Fuction generator, a
Multimeter and a Oscilloscope. These equipments can be used for
a huge set of experiences in the areas of electronics (analog and
digital). However, many experiences can be done only with a DC
controlable source and mutimeter, and many others just with a
function generatorn an oscilloscope and a fix DC source. So with
almost same Lab Instruments, two lab stations can be done (for a
lower set of experiences) or one (for a higher set of experinces,
including more complex ones). Deppending on the kind of
experiences wich want to be done, and the number of users,
Instruments are gruped in one way or another.

With that, a clear idea of the system has been given, now a
description of the system implementation is going to be done.

3. System Structure

Proposed remote lab system structure is organized around two
types of servers, as explained before. One single server, which
manage the whole system, and one server per remote lab station.
All of then must have implemented a web-server, for enable the
user web interaction, in addition with the application
programming interface (API) interaction. This is a machine-
machine interaction, via web-request. For this propose, servers
need a back-end programming, and web interface needs a front-
end design and programming.

For the back-end (all procedures and services done by the
server, hidden by the user, as web server itself, camera stream,
user login, data management, etc.), Python language have been
selected. This is a really extended and supported language, in
continuous development, with many packages, which gives many
extra functionalities to it. In particular, a framework for web-
server creation have been selected, Flask, which manage user
login, connections, interactions, and more. This will be explained
in more detail in both server types description.

For front-end (user interaction experience, including
visualization and data interchange with backend), in web sites
HTML and CSS are used for design appearance of websites, and
JavaScript is used for introduce “programming” in web sites.
While HTML and CSS design the content and structure, this
design is static, and only can change at web site refresh.
JavaScript allow elements resize and reorganize at window size
change, update data without refresh all the website, even process
data inside the browser, in the user computer.

 Moreover, Python and JavaScript are the most popular
languages in 2019 as stated in [12], [13], which grant many
support and community. A schema about languages used are
shown in Figure 1.

3.1. Instrument-Server

First, remote lab station will be examined. These stations are
composed of a set of instruments, components and connections,
and a server, which manage that hardware. That server is named
Instrument-Server, and host remote lab experiences and manage
the communication with instruments, using a module named
Instrument-connector.

Instrument-Server is a web-server with many functions, with
the back-end designed in Python, relation with hardware is done
in an easy way with calls to Instrument-Connector. This module
involves all procedures to communicate with hardware. Python
has libraries for exchange data via GPIB, USB, and LAN, using
VISA protocols, RS-232, and many others, with them, and
Instrument documentation, a set of functions are designed for each
Instrument, for access to all needed functions. Sometimes,
procedures would be a single line, others a set of command
exchange. Finally, from Instrument-Server, Lab Instrument
interaction is done as a single call to Instrument-Connector.

The specific structure of this module depends of the specific
hardware connected, but if we have a GPIB interaction with a
Multimeter, from Instrument-Server there would be an instruction
“read_voltage()”. Inside Instrument-connector, in the address
selected for the instrument, some order are sent (mode voltmeter,
range-auto, read) and then return is taken from GPIB bus from the
address of the Multimeter. All this sequence, with time among
them, watchdogs, and other specifications of GPIB, and error
handle, are managed by the method read_voltage()”, which is
simply called from the Instrument-Server and returns the voltage.

In relation with data, Flask gives a package, called, Flask-
SQLAlchemy, which allows the use of Object-Relational
mapping (ORM) of databases. This is defining a data set as an
object (a programming class), linked with a database. Schema for
tables, interaction instructions, or other database operations are
hidden by the programmer, and a programming object is
manipulated. Moreover, instructions are the same for different
database types, as SQLite, PostgreSQL, MySQL, Oracle, MS-
SQL, Firebird, Sybase and others. That gives freedom to not only
change database server, even change database technology,
without changing code.

In order to provide beautiful, flexible and configurable front-
end, a HTML design, structured with CSS is done for the basic
structure, with JavaScript for content reaction. In order to allow
in-frame video streaming, and variable exchange with the back-
end (with instrument-connector and data storage) without the
needed of refresh the site, "Asynchronous JavaScript and XML"
(AJAX) is used.

JavaScript and, in particular AJAX, allow to implement a
complete program in the user we browser. When this is join with
API interaction with the back-end, experience is half front-end
half back-end. This allows front-end access data, but only with the
filter considered by API, so non-illegal (non-allowed by design)
actions can be done with back-end data or over Instrument-control.

User interaction and functions related are implemented in the
front-end (in JavaScript) and steps (values, validation, sequences,
steps done, etc.) are implemented in back-end. In this way, user

http://www.astesj.com/

J.M. Sierra-Fernandez et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 4, 100-109 (2021)

www.astesj.com 103

cannot modify variables related with the progress or grade of the
experience.

Figure 1: Basic structure of technologies in the Remote Lab system

A lab experience is a set of data in back-end and front-end.
Back-end has all connections needed with hardware, steps, goals
for evaluation, etc. All of them are functions, which can be called
via API, in order front-end can use them. Front-end has the user
interaction web site, with all its functionalities, and use back-end
API to get the data related with the experience and for interact
with the hardware. It is important to understand that some
experiences proposed are similar, (e.g. frequency response
(components, amplifier, filters, etc.) involve function generators
and oscilloscope) so same web interface can be used, only must
be changed the component connected. For these situations, part of
the interface can be parametrized and loaded used parameters
associated with the remote lab experience.

Sometimes, a lab experience only uses part of the instrument
connected to the Instrument-Server. This let free a set of
instruments, and if there exists a remote lab experience which use
only those instruments, there could be interesting give to students
the opportunity of take both experiences at the same time. With
this option, number of user, which can take remote lab sessions,
would be increased. This can be done with an
“instrument/hardware requirement” in any remote lab experience.
At any lab experience booking, instruments associated to that
experience are booked, and rest of experiences are checked. If any
of them are possible, their time slots are let free for booking, in
other case, time slots overlapped with the one booked, are booked,
as “Instrument-Server booked, experience not possible”.

Some remote lab experiences would need test-boards, which
are connected with the Instrument-connector and are controlled as
another instrument, controlling sources, switches, and detecting
its presence or not. Experiences associated to test boards are only
available when test-boards are connected to the system.

As indicated before, requirements for Instrument-Server is a
computation system, which can run Python and can interact with
the Instruments present in that Lab Site. Depending on those
instruments and its requirements, in relation with the
communication, Instrument-Server can be implemented in a
Single-Board Computer as Raspberry pi (Rpi), or ever, using
alternatives to Flask, in a microcontroller as ESP32 with
microPython, but this option is more complex, proposed system
recommends hardware which support Flask. For a usual set of
instruments, taking in consideration that an Instrument-Server has
one client at time (in addition with communication with main
server) a Raspberry-pi V3b has enough computation power and

interfaces to interact via LAN, and USB Instruments, even with
the camera streaming. In relation with computers, there are not
needed for Instrument-Connector a high computational power
system, with at least 2-4GB RAM (depends on the OS), 1 core
with 2 GHz, Windows 10, Linux or OSX works fine.

3.2. Reception-Server

In relation with the single server, which manage all the system,
it is named Reception-Server. This server is point where the user
interacts, and all its experience is managed inside this system.
This server is this link among users, out of the University network
and Instrument-Servers, in University Local Network. This server
need special network configuration, due to it must be reachable
from the internet, so it must have a domain or sub-domain
associated, at the same time to it can access any system in the
University Network, in order to reach Instrument-Servers.
Actually, only are exposed common web ports (80, 443) to the
internet.

Reception-Server host the user database and manage the user
login system using the capacities of Flask-User. This extension
manages user authentication, sing up, user validation via email,
and even gives a basic web-interface (customizable) for all steps.
This solves programmer all user related tasks. As all user-logging
systems, passwords are not stored. It is stored in database the
result of a calculation done over the combination of password and
username, called hash.

Reception-Server host the Shift Manager. This is a compound
of databases entries and interactions. Lab technician must create
time slots duration per lab experience, set available experiences,
and Instrument-Servers available time, in order to create available
time slots. When time slots are created, they can be booked, with
the restrictions sets by the fair use rules. Fair use rule ensure that
all users can access all experiences. As indicated before, a basic
fair use rule is a limit of simultaneous booking (one per user).
Depending on the number of users and the number of time slots
available per experiences, a maximum number of tries per user
per experience can be set. That rules can be one or two, or a
complex rule as one until everyone has done the experience, or
one in this time range, giving in a time period the chance to
everyone, and then, giving the chance to any user to repeat an
experience. These rules may seem complex, but they are simple,
having in the database a register of all experiences taken, with date,
user, and other data of interest. Only reading the database with the
proper filters, all conditions can be tested, and every condition
check can be implemented with the condition as a zero limit avoid
its application.

Reception-Server is a manage server, it does not host any
instrument or experience. However, it need to know the
Instrument-Servers, which are present in the network. This
implies the IP address, API commands and related ports (common
for all Instrument-Servers), Instruments and experiences available,
time range in which they can be used, etc. Periodically test
connection is done in order to detect sudden disconnections. As
Reception-Server is designed for manage the whole system, some
configuration of Instrument-Servers can be change from
Reception-Server, as Instruments available, time range in which
system can be used, experiences available, fair use rules, etc.

http://www.astesj.com/

J.M. Sierra-Fernandez et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 4, 100-109 (2021)

www.astesj.com 104

Reception-Server is the endpoint for the user experience in
any moment. User registration, booking time slots, and take tests,
actually is done in Reception-Server. However, remote Lab
experiences are host in Instrument-Servers, whose are not
reachable by users. This is solved with a forward done by
Reception-Server. Instrument-Server associated with the lab
experience shows its web-interface, and Reception-server create
a SSH tunnel, creating a forward of that web-interface to an
Iframe (a web-site object) inside the main interface of the
Reception-Server. With this, user still in Reception-Server, and
can interact with Instrument-Server. SSH port forwarding can be
done with openSSH, and Python has a module to manage it, so
connections can be created easily, and stopped when needed by
the back-end. As no ports want to be open, a redirection to a URL,
under the Reception-Server domain is done.

Users must register in the Reception-Server, and include its
identifier in the Learning Management Systems (LMS), as
Moodle, is it is used in lessons. With this, data can be packed and
prepared to be uploaded to the LMS automatically.

When a user books an experience, data is exchanged with the
related Instrument-Server, and an instrument compatibility check
is done. In that moment, non-compatible experiences are detected,
and all time slots overlapped with the booked one, are booked as
“Instrument-Server booked, experience not possible”, as
indicated before. User booking (time slot, experience, and user
identifier) is registered in Instrument-Server, in order to prepare
the experience, at the booked time.

If a booked time slot is un-booked, a search for “Instrument-
Server booked experience not possible” books in overlapped time
slots, for the same Instrument-Server. For each one, an instrument
compatibility test is done with time slots overlapped with them.
Slots booked as “Instrument-Server booked, experience not
possible” (it could be possible that next or previous time slot of
other experiences are booked, overlaps with tested time slot, and
are not compatible), if results non-compatible, time slot still
booked as “Instrument-Server booked, experience not possible”,
if not, time slot is change to free for be booked.

3.3. General Concepts

One of the most important part of the remote lab experience is
the camera. This implies a live streaming during the experience.
It is important to understand that, depending on the camera quality,
and the frame per second (fps) sent, data flow involved could be
too high. Therefore, it is important to control these two parameters,
and adjust them, according to the experiences. If only slow
changes are expected, 5-10 fps could be enough, but for watch an
Oscilloscope, at least 20 fps are needed. Quality should be revised
for each experience, depending the surface the camera is
recording; in order to information streamed can be read.

Even when SQLAlchemy disconnect partially programming
of database with ORM, database type used could include more or
less options in those ORM. In particular, classical SQL databases
as SQLite, MySQL or Oracle, are pure relational databases. This
implies a strong data relation and order, and a very fix data
structure. All data are organized in tables; each row of each table
has the same number of columns (cells). Each cell is one data, of
one data type. Each one of them has its particularities. However,

there is another database type, PostgreSQL which works as same
as they are, and include a special data type JSON and JSONB,
which are data structures, in a cell, where any number of data
(non-limited to the number of columns), each one labelled with a
key. Moreover, JSONB included search functions, as seen in SQL
instructions for search data in column. This kind of variable is
useful for store interaction logs, tries, goals, steps of experiences,
and other data in a flexible way. Taking one table of experiences,
instead one table per experience. For that reason, PostgreSQL is
the database selected. Actually, this procedure, which is done by
the database engine, can be done in a more basic way, with blob
(binary large object) or text variables, and load there JSON
variables. Then, recover and decrypt the data into a python
variable. Anyway, if a usual relational database wants to be used,
and only relational data want to be stored, data, which is stored in
each step, is fixed and one data model (table) per experience is
introduced.

Instrument-Server usually have direct connections with Lab
Instruments, as USB, or GPIB. This kind of Instrument-Servers
are not hot swap. However, if connections with all Instruments are
done via LAN, Instrument-Server could have a redundant copy,
and, in case of fail, change the destination for forwarding from the
main system to the backup one. Most Usual situation is the first
one, so a periodical complete backup of all systems for all
Instruments Servers is highly recommended.

In relation with the Reception-Server, this server has not any
specific hardware connected, so a redundant server can be
connected, with a periodical copy of the database. If the main
Reception-Server disconnect from the network, the redundant one
takes its place. For Instrument-Servers, this rule could be
implemented in Reception-Server, but in this case, we need a
previous server, which redirect the data, or implement routing
rules.

With all presented, a stable and scalable system is obtained, it
is easy to configure (almost all configuration in Reception-Server,
even of Instrument-Servers) and programming, with a base of
required programming languages. General system structure and
data flow is shown in Figure 2.

Figure 2: System global structure and data flow.

As indicated before, user traffic ends at Reception-Server and
is Reception-Server that reaches Instrument-Servers. Reception-
Server only has opened ports 80/443, so it is safe against attacks.

http://www.astesj.com/

J.M. Sierra-Fernandez et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 4, 100-109 (2021)

www.astesj.com 105

System cannot be properly defined as free of use or non-
proprietary, even when all languages and packages in the core are
free of use and distribute, due to Instrument-Connector may
require privative drivers. Designed system core has not copyright
lock or charge, all modules are free of use (some of them “”as is”,
without modifications), including author references or copyright.

4. Integration in Engineering Sessions

In engineering teaching, there are too much knowledge to
communicate to students, but as technical teaching, many of that
knowledge is related with real world aspects, interactions, cause
and consequence. In engineering, it explains how things work,
including how the physical laws on which the function of those
things are based work. Even in most situations complex
mathematics support those explanations, real examples can be
done in Labs, and students can see a real world example of those
theoretical concepts that they are been studding, only supporting
by numbers.

This is the reason of Lab sessions in university education, give
students real examples of theoretical concepts studied. However,
an engineering student must study many concepts, and this
implies more theoretical hour than lab session hours. In addition,
in a two hours’ theoretical session, many concepts can be
explained, and in a two hours’ Lab session, only few concepts can
be put in practise, due to they must be examined careful with Lab
experiences.

For all explained before, there is not enough time to put in
practise all concepts explained in lessons, and that is not the best
for students. Searching a learning improvement, more lab time is
needed, but there is not available lab time or professors. This can
be solved with remote lab experiences. Even when students are
not touching hardware, it has been proved in [1] that remote lab is
a better solution than simulated lab, when no access to lab is
possible.

Moreover, in special situations, as seen with the globally
outbreak of COVID-19, even programmed physical lab session
may not be possible, or may be reduced. For those situations,
remote lab experiences are a great option.

The point is to configure a lab station, for work all time as
remote lab station, and even lab stations used for lab sessions,
could be set to remote lab stations out of Lab session hours. This
requires a configuration, which must be done for the Lab
technician. With these options, students can take remote lab
experiences any time, with a station exclusively remote, or only
out of lab hours, with flexible lab stations. As same as the fair use
rules, this depends on the number of students, and instruments and
stations available.

As indicated before, remote labs stations are designed for a set
of experiences, due to in most areas of engineering, same set of
instruments are needed for take all experiences in a subject, or in
a part of a subject. E.g. in electronics, if DC bias point is studied,
a controllable DC power source, Voltmeters and Amp meters are
needed for almost any test. This kind of experience could be
behaviour of a capacitor or inductor in DC, in bias point, resistor
V-I response, amplification of a transistor without polarization
(beta calculation), polarization of a transistor, amplification of an
Operational Amplifier in DC, etc. With a Function generator,

constant level DC power sources (5V, 12V), and an Oscilloscope,
AC response can be studied, with experiences as amplification in
AC of an Operational Amplifier, amplification of a polarized
transistor, frequency responses of filters, frequency response of
components. In addition, mixing, VCO (voltage controller
oscillator), limits of Operational Amplifier in relation with feed
voltage, effect in transistor amplification of polarization voltage,
etc.

As seen, in electronics, there are few equipment, very common
in many experiences, and there are others, as pulse generators,
clocks, counters, which can give other experiences. The
difference among experiences are the components connected to
them and the configuration (connections among instruments)
needed. A common design can be done for all experiences and
Instruments. Creating experience boards, where only instruments
must be connected, and a connection with Instrument-Server, in
order Instrument-Connector can detects it and make available
experiences.

4.1. Experience Board

An example of that common design is done, throw the
schematic design of a board for an experience with an Operational
Amplifier (LM358), as inverter with variable gain, and switchable
to open loop.

First, common elements must be described, starting with the
computer communication capacity of the board are shown in
Figure 3.

Figure 3: Communication system of test board.

Chip ATtimy85 is a low cost DIP-8 chip, which can be
configured with a special bootloader for load Arduino code from
USB, without the needed of a USB-RS232 conversion chip, even
a serial communication. This chip works with 5V, so even with
the USB power can be feed, so only with the elements required
for the safe connection for the data transfer (1 pull-up resistor,
zener protection diodes, and current limit resistors) chip can be
connected with a USB connector.

This chip has few terminals, most interesting ones, I2C
communication. This kind of communication allows connection
of some devices to a single port (two wires, with pull-up).
Nowadays there are digital elements, as ADC, digital
potentiometers, DAC, current meters, and some wind of sensors,
with I2C interface; so many elements can be integrated. Use of
external ADC and DAC instead internal of ATtiny85 make easy
the design, in order some of them have an analogue level and a
digital level, so they can communicate with chip in 5V, and

http://www.astesj.com/

J.M. Sierra-Fernandez et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 4, 100-109 (2021)

www.astesj.com 106

operate in 20V. This is the case of the digital potentiometer
selected for this board, which will be explained later.

In relation with lab instruments connections, as seen in Figure
4, most commons instruments in electronics are DC controlled
power source, Function Generator and Oscilloscope. DC source
has two outputs, each out with two connections type banana,
Function Generator has an output type BNC connector, and
Oscilloscope has two inputs type BNC.

Figure 4: Connections to Instruments of test board.

This connections, join with the ATtiny85 are the base of most
test boards (unless other instruments are required, as counters or
pulse generators, but those are special experiences, special boards
are created, with more connections).

Figure 5: Inverting amplifier with Operational Amplifier experience.

Figure 5 shows the components related to the specific
experience, a digital potentiometer, with I2C communication,
which can work up to ±18 V, and a LM358 Operational Amplifier,
with a maxima power feed of ±16 V. As positive and negative
voltage want to be controlled, both DC inputs are used, one for
positive and the other for negative voltage. With that objective,
negative output of DC1 and positive output of DC2 are connected
together to GNDA (analogue ground). Now DC1 controls positive
voltage and DC2, negative voltage.

As DC power source can generate more than ±16 V, voltage
is limited with zener diodes, to that level, protecting the board.
Digital potentiometer requires that digital ground be in the range
of analogue voltage, so a resistor divider is done, from limited
voltage, and the middle point is connected to the digital ground.

As LM358 has two Operational Amplifiers, one is used as
input buffer, and then, as input resistor a constant resistor is used.
Digital potentiometer has a limit of ±12.5mA, and input resistance
(R1) is the one, which set the current. Fixing the current to a level
under the limit, for the extreme input, system is stable. Digital
potentiometer is used as feedback resistor (R2), and its impedance
could be from 0 to 10kOhms, taking negative amplifications

(inverting) lower and upper to one. Digital potentiometer can
disconnect terminals, so feedback resistor can be removed,
examining Operation amplifier in open loop. For ensure a proper
measure a load resistor is included.

As seen this board structure is flexible in its design, and can
be change to many electronics experiences, even integrating some
in the same board. A price evaluation is done, showing in Table 1
common elements for some experiences, and in Table 2 specific
elements for this experience.

Table 1: Price related to common elements

Element €/unit Units €

ATtiny85 1 1 1

USB connector 0.5 1 0.5

Diodes 0.16 2 0.32

Resistors 0.03 5 0.15

Banana
connectors

2 4 8

BNC connectors 2 3 6

Total 15.97

Table 2: Price related to specific experience elements

Element €/unit Units €

LM358 0.6 1 0.6

MCP45H51 1.31 1 1.31

Diodes 0.16 2 0.32

Resistors 0.03 5 0.15

Total 2.38

As seen in tables, whole experience, including common and
specific elements does not require expensive elements, being all
needed components 18,35€. However, as common elements can
be used for some different experiences, edge connectors can be
included between common and specific part, creating a test
system, with a common part, and a changeable experience. In this
situation, experience must identify itself for the computer, and it
is done including an EEPROM memory, with I2C communication,
in the test board. Edge connector has a cost of 3€ (only one is
needed, male edge connector is part of the board and EEPROM
chip has a cost of 0.1€. With this increase, and minimal design
changes, same interface board to PC and instruments (the most
expensive part) can be used to some experiences board. At the
same time, this change allows to replace interface board or
experience board, if any of them fails, and is not needed to replace
the whole board.

PCB design for higher frequencies must be done carefully, in
order not to introduce coupled effects. Some experiences, as the
one proposed in this board, are designed for frequencies up to
1MHz. This make them sensitive to track routes, even to track
shapes. This point is the actual develop point, ensure no

http://www.astesj.com/

J.M. Sierra-Fernandez et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 4, 100-109 (2021)

www.astesj.com 107

interaction is done, in interface board (for all Oscilloscope or
Function Generator frequency range) and in experience board (for
all frequency required in the experience).

This is an iteration process, due to each new design must be
implemented and tested, and take some time. For that, this line of
test board will not be implemented jet, up to all test finished.

4.2. Experience example

Remote lab experience which has been implemented as example
is a DC power supply control using Standard Commands for
Programmable Instruments (SCPI) (the base of the VISA
protocol), connected with the General-Purpose Instrumentation
Bus (GPIB). Communication with many lab instruments ends in
a VISA commands exchange, throw different busses. This
experience gives to students the chance to experience and
understand this communication. As indicated before, the camera
streaming is the base of the remote lab experience, an in this
situation is recording the front panel of the DC power supply.
Whit that, students can see in any moment the reaction of the
Instrument to any command sent to it (errors, changes in display,
changes in operation mode, etc.). For this remote lab experience,
simple interaction page has been designed, which in seen in
Figure 6.

Power supply connected in this situation is Agilent E3646A
DC power supply, and it can be seen in the camera-streaming box,
al left. This experience has steps, oriented as questions, which can
be answered in any order. Those questions are listed in the combo-
box under the camera streaming, and the selected one is the one,
which must be answered. Depending on the question, should be
answered in the proper answer box (at the right of the question
combo-box), or interacting with the proper SCPI command with
the instrument.

 “Instrument Bus” text box is the point where the user must
write the instructions to be sent to the Instrument, when the button
“SEND” is clicked. In this field, responses taken from the
instrument, when “RECEIVE” button is clicked, are shown too,
being the SCPI interaction point. When “SEND” and “RECEIVE”
are clicked, in addition to interact with “Instrument bus”, Output

Status is updated. This value indicated communication status,
related to data send process (if information has been delivered, if
Instrument can be reached, if there are data to be read, after an
instruction with data return, in the instrument and another
instruction has been sent), in other words, indicated
communication OK, or ERROR (with ERROR specifier).

In case of ERROR for instructions, there are two options,
“CLEAR ERROR” erase error vector in the Instrument, clearing
error indicator in front panel. Other option is “RESET”
completely the Instrument, clearing errors and putting all settings
to defaults values. If ERROR is related not to be able to reach
instrument, maybe GPIB configuration, which can be configured
in “CONFIG” should be revised. There, GPIB address of the
instrument, and for the controller should be set. Bus has to be
“INITIALIZE”, at experience start, or after each configuration
change.

There only left “HELP” where a popup with information
related with experience interaction and with the experience,
procedure and steps are explained. In addition,
“PROGRAMMING MANUAL”, where a popup is opened which
the programming manual of the Instrument, with all instructions
needed for the experience.

When a proper answer has been done for a step (with the
proper interaction with the Instrument or with the proper answer
in the answer box), the background for it turn into green in the
combo-box. When all steps are green, experience finished with a
pop-up, but Instrument-Server still connected during reserved
time-slot, for interaction with the Power Source.

With this, experience is explained. Evaluation is detailed in
following section.

5. Learning Results

As part of experience design, goals are defined (pass all steps
in experience time, pass steps with less than n tries, take less than
a specific time in pass the whole experience, take at least two tries
in at least three steps, for ensure student is not copy another
student answers, etc.). Those goals can indicate a mark, related to
experience evolution, as same as a when students fill a form with

Figure 6: Main web interface GPIB SCPI experience

http://www.astesj.com/

J.M. Sierra-Fernandez et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 4, 100-109 (2021)

www.astesj.com 108

measures and answering questions in Lab sessions. This is an
auto-evaluation, during the remote Lab session, which is
complemented with evaluation activities.

First, it is vital to know if there has been any problem or
difficulty in user interaction with the remote system. For that, a
quick survey, related to remote interaction is done, where “Easy
to use”, “Camera quality”, “Response time” and “Proper time slot
for experience” are asked, and must be evaluated in the range of:
Not work, Very Poor, Poor, Adequate, Good, Very Good. In any
moment, if system receive some Poor or Very Poor in an area, a
warning is raised to administrator, in order to revise the
experience or connection. If “Not work” is marked, an Error is
raised to user experience register, in order to mark as not valid this
try, and open an additional one. In addition, this must not be an
anonymous survey, due to in case of Very Poor or even Poor,
difficulties could be get to develop the experience, and that should
be considered.

Auto-evaluation, gives information about how students
follows experience steps. However, Lab experiences and remote
Lab experiences, are oriented in reinforce theoretical concepts.
Proper succeed in remote Lab experience is ensure those concepts
has been understood. With that objective, a fast knowledge quiz
is take by students, after take the remote Lab experience, related
with the concepts reinforced in the experienced. This test is used
for set the mark of the experience, joint to the auto-evaluation.
Moreover, it is an indication for evaluate the experience, if none
student passes this quiz, experience should be re-designed, due to
it is not reinforcing the concept as desired.

As time during which can be in connection with Instrument-
Server is limited by time-slots, survey and quiz could be a
problem, due to they take time of experience. For that reason,
these exercises are implemented in Instrument-Server, due to they
are related to the remote Lab experience, but users perform them
in Reception-Server. When experience ends, this is when user
pass all steps, or time slot ends, Instrument-Server send to
Reception-Server evaluation activities. From this moment, user
can perform them during an assigned time (by default 1 day),
without the needed of connection with Instrument-Server.

With all that, evaluation is take in two levels, during the
experience, automatically, and after the experience, with survey
and quiz. At the same time, student evaluation helps for the
evaluation of the experience itself, detecting point to change or
improve, or in the other hand, validating the functionality of the
experience. With all these, remote lab experience is continuously
evaluated, by survey, and using student’s marks.

Additionally, all Student interactions with remote lab
experience, are logged and saved in order to revise auto evaluation
protocols, or if needed to manual revision.

6. Conclusions

A remote lab system has been designed, with the capacity of
interact with almost any hardware, due to Instrument-Connector
can be designed for interact with almost any kind of protocol or
driver. It is easy to scale, adding or removing Instrument-Servers,
with a simple enter in the Reception-Server, the single
administration Server. Even the management of the system,

composed with many servers, have been simplified, and almost
all of it is done in the Reception-Server.

In relation with remote experiences, as Instrument-Connector
can interact with almost any hardware and the combination of
HTML+JavaScript can create a huge set of visual experiences in
the web browser, almost any experience can be implemented.

Special network requirements (the most complicated part in
complex infrastructure network) are only needed in Reception-
Server, where external access are needed, with a domain and
common web ports opened (80 and 443). Instrument-Servers only
need to be in the same network than the Reception-Server.

As educational experience, evaluation system is designed, as
a multi-step evaluation. First, goals are set during the experience,
and that implies an auto-evaluation, join to a log of the user
interaction with the experience. This is used to revise possible
errors in steps or auto-evaluations. At experience ends, two fast
exercises must be taken. One is a fast survey, about user
interaction, in order to detect possible problems in camera quality,
latency, time associated to the experience, information done, etc.
The other one is a short quiz related to the theoretical concepts
related with the experience, in order to confirm that experience
has been useful and has reinforce those concepts.

Conflict of Interest

The authors declare no conflict of interest.

Acknowledgment

The Spanish Ministry of Economy, Industry and Competitiveness
[Grant No. supported this work TEC2016-77632-C3-3-R]. The
authors would like to thank the Andalusian Government for
funding the Research Unit PAIDI-TIC-168 in Computational
Instrumentation and Industrial Electronics (ICEI) and the
University of Cádiz.

References
[1] K. Jona, R. Roque, J. Skolnik, D. Uttal, D. Rapp, “Are Remote Labs Worth

the Cost? Insights From a Study of Student Perceptions of Remote Labs,”
International Journal of Online and Biomedical Engineering (IJOE), 7(2),
48–53, 2011, doi:10.3991/ijoe.v7i2.1394.

[2] I. Evangelista, J.A. Farina, M.I. Pozzo, E. Dobboletta, G.R. Alves, J. García-
Zubía, U. Hernández, S.T. Marchisio, S.B. Concari, I. Gustavsson, “Science
education at high school: A VISIR remote lab implementation,” in
Proceedings of 2017 4th Experiment at International Conference: Online
Experimentation, exp.at 2017, Institute of Electrical and Electronics
Engineers Inc.: 13–17, 2017, doi:10.1109/EXPAT.2017.7984378.

[3] J. Garcia-Zubia, J. Cuadros, V. Serrano, U. Hernandez-Jayo, I. Angulo-
Martinez, A. Villar, P. Orduna, G. Alves, “Dashboard for the VISIR remote
lab,” in Proceedings of the 2019 5th Experiment at International Conference,
exp.at 2019, Institute of Electrical and Electronics Engineers Inc.: 42–46,
2019, doi:10.1109/EXPAT.2019.8876527.

[4] S. Rigby, M. Dark, “Designing a flexible, multipurpose remote lab for the
IT curriculum,” in Proceedings of the 7th ACM SIG-Information
Technology Education Conference, SIGITE 2006, ACM Press, New York,
New York, USA: 161–164, 2006, doi:10.1145/1168812.1168843.

[5] L. De La Torre, M. Guinaldo, R. Heradio, S. Dormido, “The ball and beam
system: A case study of virtual and remote lab enhancement with Moodle,”
IEEE Transactions on Industrial Informatics, 11(4), 934–945, 2015,
doi:10.1109/TII.2015.2443721.

[6] I. Titov, “Labicom.net - The on-line laboratories platform,” in IEEE Global
Engineering Education Conference, EDUCON, 1137–1140, 2013,
doi:10.1109/EduCon.2013.6530251.

[7] I. Titov, A. Glotov, Y. Andrey, V. Petrov, “Labicom labs: Remote and virtual
solid-state laser lab, RF & microwave amplifier remote and virtual lab:
Interactive demonstration of Labicom labs in winter 2016,” in Proceedings

http://www.astesj.com/

J.M. Sierra-Fernandez et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 4, 100-109 (2021)

www.astesj.com 109

of 2016 13th International Conference on Remote Engineering and Virtual
Instrumentation, REV 2016, Institute of Electrical and Electronics Engineers
Inc.: 336–338, 2016, doi:10.1109/REV.2016.7444496.

[8] M.D. Da, “Rasberry Pi Based Remote Lab Implementation,” International
Journal of Scientific & Engineering Research, 7(8), 2016.

[9] W. Farag, “An Innovative Remote-Lab Framework for Educational
Experimentation An Innovative Remote-Lab Framework for Educational
Experimentation,” International Journal of Online and Biomedical
Engineering (IJOE), 13(02), 68–86, 2017, doi:10.3991/ijoe.v13i02.6609.

[10] S. Odeh, E. Ketaneh, “A REMOTE ENGINEERING LAB FOR
COLLABORATIVE EXPERIMENTATION,” International Journal of
Online and Biomedical Engineering (IJOE), 9(3), 10–18, 2013,
doi:10.3991/ijoe.v9i3.2500.

[11] I. Angulo, L. Rodriguez-Gil, J. Garcia-Zubia, “Scaling up the Lab: An
Adaptable and Scalable Architecture for Embedded Systems Remote Labs,”
IEEE Access, 6, 16887–16900, 2018, doi:10.1109/ACCESS.2018.2812925.

[12] 10 top Programming Languages in 2019 for Businesses.
[13] Top 10 Programming Languages of the World – 2019 to begin with… -

GeeksforGeeks.

http://www.astesj.com/

	2. System Objective
	2.1. Basic System Design

	3. System Structure
	3.1. Instrument-Server
	3.2. Reception-Server
	3.3. General Concepts

	4. Integration in Engineering Sessions
	4.1. Experience Board
	4.2. Experience example

	5. Learning Results
	6. Conclusions
	Conflict of Interest
	Acknowledgment

	References

