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 Soil moisture is one of the most important variables to monitor in agriculture. Its analysis 

gives insights about strategies to utilize better a particular area regarding its use, i.e., 

pasture for cows (or similar), production forests, or even to answer what crops should be 

planted. The vertical structure of the soil moisture plays an important role in several physical 

processes such as vegetation growth, infiltration process, soil – atmosphere interactions, 

among others. Despite a set of tools are currently being evaluated and used to monitor soil 

moisture, including satellite images and in-situ sensor, several drawbacks are still persisting. 

In situ data is expensive for high spatial monitoring and vertical measurements and satellite 

data have low spatial resolution and only retrieval information of soil moisture for the top 

few centimeters of the soil. The present work shows an experiment design for collecting soil 

moisture data in a specific Andean basin with in-situ sensors in different kinds of soils as a 

promising tool for reproducing soil moisture profiles in areas with scarce information, 

employing only surface soil moisture and simple soil characteristics. Collected data is used 

to train machine learning supervised parametric (Multiple Linear Regression - MLR) and 

non-parametric models (Artificial Neural Networks - ANNs and Support Vector Regression 

- SVR) for soil moisture estimation in different depths. Conclusions show that parametric 

methods do not meet goodness of fit assumptions; so, non-parametric methods must be 

considered, and SVR outperforms parametric methods regarding regression accuracy 

allowing to reproduce the soil moisture content profiles. The proposed SVR model represents 

a high potential tool to replicate the soil moisture profiles using only surface information 

from remote sensing or in-situ data. 
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1. Introduction and problem statement  

This paper is an extension of work originally presented in 

CISTI 2020 [1]. Soil moisture is one of the most critical variables 

to be monitored in soils [2]. Understanding the behavior of the 

soil moisture makes it possible to determine the soil use [3], i.e., 

if it is suitable for cropping, for animal’s pastures [4], and even, 

as a critical variable to understand if a particular terrain may be 

considered to real estate projects [5]. Another important 

application of soil moisture analysis belongs to risk management, 

such as landslides prevention and prediction [6]. For hydrologic 

applications, the soil moisture represents one of the most 

important variables controlling the interactions between the 

atmosphere and land through the evapotranspiration and 

evaporation processes. Additionally, the soil moisture represents 

a key variable for the infiltration process and direct surface runoff 

production in hydrological models. 

In that way, different knowledge disciplines, such as 

hydrology [7], environmental management [8], geology [9], 

topography [10], among others, deal with soil moisture to deeply 

study its effects in plenty of different applications. Nonetheless, 

getting information about soil moisture is commonly a difficult 

task: available sources are scarce and are associated with satellite 

images, which causes low resolution regarding spatial distribution 

[11], that is, soil moisture is measured in broad areas and cannot 

be explicitly determined in points. During the last decades satellite 

images have emerged as a powerful tool to retrieve information 

about soil moisture in the superficial soil surface, even though 

data in other depth horizons is mandatory to model the behavior 

in a lot of applications. 
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Given the importance and drawbacks mentioned above, 

several techniques based on Artificial Intelligence (AI) theory are 

currently employed to estimate and predict the soil moisture for 

several engineering and scientific applications. Knowledge-based 

systems that apply AI are considered as easy and user-friendly 

tools [12, 13], as they have advantages in terms of neither 

requiring a pre-defined conceptual relationship between the input-

target parameters nor requiring expensive experimental and field 

measurement apparatus [14]. 

In this sense, several studies have been proposed to determine 

the best Machine Learning (ML) or (AI) model to estimate the soil 

moisture, considering different variables like meteorological data 

and satellite images, among others.  There are two main ML 

models used: Support Vector Regression (SVR) and Artificial 

Neural Networks (ANN) in different configurations.  It is the case 

of [15], three approaches are proposed to generate the SVR 

regression model for soil moisture estimation: in the first 

approach, the authors use the soil moisture and meteorological 

data (air temperature, relative humidity, average solar radiation, 

and soil temperature at five and 10cm) at time step 𝑡 − 1 and 𝑡 for 

predict soil moisture at 𝑡 + 4 and 𝑡 + 7, where 𝑡 is in days. For 

the second approach, they use only the meteorological data, while 

in the third approach, they use only soil moisture at the same time 

step. The results of this study show that the SVR models 

performed better forecasting than a simple ANN model. In the 

same line, [16] proposes the use of SVR for soil moisture 

prediction using remote sensing data coming from 10 sites in the 

Lower Colorado River Basin (US). The data includes backscatter 

and incidence angle from Tropical Rainfall Measuring Mission 

(TRMM), and Normalized Difference Vegetation Index (NDVI) 

from Advanced Very High-Resolution Radiometer (AVHRR).  

The authors trained an SVR with five years of data (time series) 

and tested on three years of data. The results show a Root Mean 

Square Error (RMSE) less than 2%. Additionally, results are 

compared with an ANN and a Multivariate Linear Regression 

Model (MLR), showing that the SVR has a better performance 

than the other models.  

The latest studies show a tendency for the use of deeper ANN 

like shows [17] in their review. The authors classify the use of 

ANN in three categories according to the types of training data. 

For the first category, the ANN is trained with model-generated 

data. For the second category case, the ANN is trained with in-

situ measurements, with the restriction that the spatial scale could 

mismatch between point-scale measurements. Finally, the third 

category encloses the ANN trained with global Land Surface 

Model (LSM) simulations for soil moisture estimation at large 

scales.  

Other useful applications using ANN are related to the 

infilling missing soil moisture records such as the research 

presented in [18], who were using five statistical methods, and 

nine ANN categorized into Feedforward, Dynamic, and Radial 

Basis Network methods estimate missing soil moisture records. 

The obtained values were validated against known values for 13 

soil moisture monitoring stations for three different soil layer 

depths in the Yanco region in southeast Australia. The results 

show that the nonlinear autoregressive neural network performs 

in similar quality than other typical methods such as the rough sets 

method, and monthly replacement. Other studies employing ANN 

for hydrologic variables are [19–22]. 

Although SVR and ANN are the most used techniques, several 

works can be found related to soil moisture prediction that use 

other techniques of AI and ML. Some authors include multiple 

techniques, like, where Classification and Regression Trees 

(CART), Boosted Regression Trees (BRT), Random Forest (RF), 

Multivariate Adaptive Regression Splines (MARS), and Flexible 

Discriminant Analysis (FDA), are tested, all with promising 

results.  In this sence, [14] using several input variables such as 

dielectric constant, soil bulk density, clay content, and organic 

matter for 1155 soil samples, proposed a hybrid Adaptative 

Neuro-Fuzzy Inference System (ANFIS) - Grey Wolf 

Optimization (GWO) intelligent model for simulating soil 

moisture content. The results based on several statistical 

parameters verified the feasibility of these kinds of models 

improving accuracy by around 50% when compared with other 

similar models as ANN, SVR, and standalone ANFIS models. 

Despite the increasing usage of Artificial Intelligence (AI) 

theory tools related to soil moisture estimation, most of the studies 

have the same thing in common; none of them is focused on the 

estimate of the soil moisture at different depths. The data estimate 

corresponds to a depth between 5 and 10 cm approximately or the 

root zone.  Few studies such as [23], employed surface soil 

moisture (0–5 cm) values and Hydrological Soil Groups (HSGs) 

information to perform a Statistical Soil Moisture Profile (SSMP) 

model to transfer the spatial variations of soil moisture profile 

with the change in soil hydraulic properties. The proposed model 

was based on correlation techniques with preceding time steps of 

soil moisture fields.  In another study, [24] employed 

multispectral imagery from Unmanned Aerial Vehicle (UAVs) 

and a method based on the combination of an evolutionary 

algorithm and artificial intelligence called genetic programming 

(GP), to propose a methodology to simulate soil moisture at 

different levels. The results were compared to ANN and SVR 

methods. 

With this idea in mind, the present work shows a methodology 

to fit some ML models with in-situ sensor data, which transmit 

real-time information by using IoT tools and methods to 

overcome limitations associated with the number of sensors to 

determine soil moisture at different depths using surface topsoil 

moisture estimates. The proposed methodology represents a high 

potential tool for reproducing the soil moisture profiles using only 

surface information from satellite or in-situ data for scarce 

information areas. Specifically, we use the most known statistics-

based parametric method: Multiple Linear Regression (MLR) and 

perform the corresponding Analysis of Variance (ANOVA) [25] 

as well as the Goodness of Fit metrics (normality, independence, 

homoskedasticity). We also use two widespread ML non-

parametric methods: SVR and ANN [26, 27]. All the models are 

primarily assessed by a case study, with collected data in the Las 

Palmas basin, at the Andean region, in Medellín, Colombia.  

The rest of this paper is organized as follows: section 2 shows 

a short theoretical framework; section 3 stands the methodology 

and experiment design; section 4 shows the models fitting; in 
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section 5, the analysis over results is carried out. Finally, 

conclusions, future work, acknowledgments, and references are 

presented. 

2. Theoretical framework 

In this section, some key concepts will be defined to understand 

the work better. 

2.1. Soil moisture 

A given portion of soil is composed of solid particles and the 

rest of the voids. A part of the holes is occupied by water and the 

rest by air. The volume occupied by water is measured using the 

soil moisture content, which is defined as θ as in equation (1) : 

𝜃 =
𝑉𝑜𝑙𝑢𝑚𝑒𝑤𝑎𝑡𝑒𝑟

𝑉𝑜𝑙𝑢𝑚𝑒𝑡𝑜𝑡𝑎𝑙
                                (1) 

The study and knowledge of soil moisture are essential due to 

its influence on hydrological processes and energy flows on the 

earth’s surface. It is also critical because of its connection with 

precipitation, runoff generation, nutrient transport, and 

groundwater [28–30]. Recent research identifies that a surplus or 

lack of soil moisture can favor floods or droughts occurrence [31]. 

Likewise, the feedback of soil moisture on evapotranspiration is 

essential for temperature variation and the appearance and 

persistence of heatwaves, as well as for precipitation generation 

and location [32]. Besides, the role of soil moisture in 

photosynthesis, ecosystem dynamics, soil respiration, and the 

terrestrial carbon balance is undeniable. 

Therefore, soil moisture variation is critical in hydrological, 

ecological, and environmental studies [33] and, in particular, as a 

support for agriculture and biomass production [34]. Combinations 

of the factors mentioned above cause variations in spatial and 

temporal soil moisture content, which makes it a significant 

limiting factor for crop growth. Indeed, low crop yields should be 

more often related to insufficient soil moisture than insufficient 

rainfall [35,36], which causes that soil moisture plays a vital role 

as a critical resource for vegetation growth that supports 

agricultural production. In this sense, it is identified that soil 

moisture contributes in a crucial way to understanding the global 

climate system. For this reason, it has been highlighted by the 

Global Climate Observing System (GCOS) as one of the “essential 

climate variables”.  Therefore, monitoring temporal and spatial 

soil moisture variability is essential to estimate water availability 

limits and to quantify its climatic variations sensitivity and human 

pressures [32]. 

2.1.1. Soil moisture sensing technologies 

Currently, several techniques are used to measure soil 

moisture, allowing monitor of humidity on a large scale:  in-situ 

sensors (to take humidity measurements at the site where the 

sensor is located), and remote sensing from towers, aircraft, and 

satellites, using radiometers in the microwave region, 

scatterometers, synthetic aperture radars, and radar combinations-

radiometers. According to [28], the products obtained with passive 

and active sensors have different correlation values around the 

world, when compared with in-situ measurements. 

Although there are many possible sources of information, in 

the case of the tropics and specifically in the study area, there could 

be limitations for the use of satellite information. Some derive 

from the possibility or not of having reliable and spatially coherent 

in situ soil measurements of soil moisture, which makes it 

challenging to carry out a cohesive evaluation of the accuracy and 

information content of remote sensing products. Besides, the use 

of inadequate techniques for downscaling can generate alterations 

in data quality. Another difficulty could arise due to the 

impossibility of obtaining quality data with fair spatial and 

temporal resolution in the study area, primarily due to its 

geographical location, which may limit some sensors use, 

especially optical ones. In this sense, in the visual spectrum, one of 

the significant limitations is the limited surface penetration due to 

high cloudiness. However, visible and infrared sensors and 

microwave sensors are not limited by cloud cover and night 

conditions [35]. Observations can be made at any time of day and 

are not dependent on sunlight [37]. 

Soil moisture in-situ sensing, In Colombia and many other 

tropical regions, there is very little information available on soil 

moisture taken from in-situ monitoring stations that can be used 

to understand the behavior of this variable for different 

applications. Although it is true that in-situ measurements require 

a costly investment and have low coverage of the territory, they 

allow the analysis at a local scale (as is the case of a basin). 

Additionally, they are necessary to validate the data from remote 

sensors that generally have a low spatial resolution. 

The primary function of a soil moisture sensor is to report its 

current state, by using an electric variable (commonly voltage), to 

any acquisition system, i.e., datalogger, or IoT end node. The 

voltage reported is scaled to get the corresponding measurement, 

which is commonly given in cubic meters of water over cubic 

meters of soil material (m3/m3). 

The most used operation principle in soil moisture sensors is 

the variation of capacitance as the moisture changes. Soil acts as a 

dielectric material between two plates, and it changes when this 

variable varies.  However, conductivity sensors are also applied to 

sense moisture. Water content allows flowing electric currents 

between two electrodes, and it is proportional to soil moisture. 

2.2. Parametric and non-parametric methods for data fitting 

To fit some models for regression of moisture data and perform 

the comparison, we have chosen some of the most used methods 

in the literature. MLR, SVR, and ANN algorithms will be reviewed 

in this section. 

2.2.1.  Multiple Linear Regression (MLR) 

MLR is one of the most used parametric strategies for data 

fitting. The general model is shown in equation (2): 

 𝑌̂ =  ∑[𝛽̂𝑖𝑋𝑖] 

𝑛

𝑖=0

+  𝜀 () 

Where 𝑌̂ is the regression value of the dependent variable, 𝛽̂𝑖 

is a set of n+1 predictors (coefficients) which are determined by 

using least-squares optimization, 𝑋𝑖 are n independent (predicting) 

variables, and 𝜀 is the regression error. If a categorical variable is 

in the predictors, a set of dummy variables is included, depending 

http://www.astesj.com/


C. López-Bermeo et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 636-650 (2021) 

www.astesj.com     639 

on the number of levels of the factor. The goal, then, is finding the 

values of each 𝛽̂𝑖 such that the global error 𝜀 is minimal.  

Once the predictors are determined, an Analysis of Variance 

(ANOVA) must be performed [25], to determine if the means of 

the prediction variables are equal, that is, if all the variables are 

representative for the analysis.  

Finally, to check if the model is statistically valid, some 

goodness-of-fit tests must be performed: normality, by using the 

Kolmogorov-Smirnoff test [38]; autocorrelation, by using Durbin-

Watson test [37]; and homoskedasticity, by using Breusch Pagan 

test [39]. Due to the model usage is limited to the goodness of fit, 

many datasets do not meet this strategy.  

2.2.2. Support Vector Regression (SVR) [40, 41] 

The goal of this supervised learning strategy is to find one (or 

more) hyperplanes that separate previously tagged classes. By 

finding the support vectors, it is possible to predict, in the case of 

regression, the value of a new continuous variable based on a set 

of inputs. Figure 1 shows the geometric concept for two input 

characteristics.  

 

Figure 1: SVR geometric concept 

The objective is to find the hyperplane that separates two 

classes with the maximum margin between them, therefore, 

finding the model is reduced to an optimization problem, where 

the coefficients 𝑤 must be found, as shown in equation (3). 

 
𝑀𝑖𝑛 𝑍 =

1

2
‖𝑊‖2 

() 

 
𝑆𝑡: |𝑦𝑖 − 𝑤𝑖𝑥𝑖| ≤  𝜀  

where yi are the predicted variables, xi are the independent 

variables (or features) and ε is the minimum tolerance between the 

separation hyperplanes and the features. For SVR, a slack variables 

set is added to equation (3), such that, for each value that falls 

outside ε, its deviation is recorded to make it minimal. The 

hyperparameter cost (𝐶) is introduced to penalize said deviations, 

which is tuned through cross-validation. Thus, equation (3) is re-

written, as shown in equation (4) (called the primal problem): 

 
𝑀𝑖𝑛 𝑍 =

1

2
‖𝑊‖2     + 𝐶 ∑|𝜉𝑖|

𝑛

𝑖=0

 (4) 

 
𝑆𝑡: |𝑦𝑖 − 𝑤𝑖𝑥𝑖| ≤  𝜀 + |𝜉𝑖|  

However, in many cases, the classes are not linearly separable, 

for this reason, it is recommended to use kernel functions, 𝐾 [41, 

42], to perform a transformation that increases the number of 

dimensions, allowing separating such classes, as shown in 

equation (5): 

𝐾(𝑥𝑖 , 𝑥𝑗) =  〈𝜙(𝑥𝑖), 𝜙(𝑥𝑗)〉  (5) 

where ϕ is a nonlinear mapping function and 〈, 〉  is the inner 

product operator.  

    The dual problem to the primal problem is given by equation 

(6): 

𝑀𝑖𝑛 
1

2
𝛼𝑇𝑄𝛼  − 𝑒𝑇𝛼 

𝑆𝑡: 
𝑦𝑇𝛼 = 0

0 ≤  𝛼𝑖 ≤ 𝐶, 𝑖 = 1, … , 𝑛
 

(6) 

where  𝑒  is a vector of all ones, 𝑄  is a positive semidefinite 

matrix with 𝑄𝑖𝑗 = 𝑦𝑖𝑦𝑗𝐾(𝑥𝑖 , 𝑥𝑗) and 𝛼𝑖 are the dual coefficients. 

     Using this model, the prediction function of the equation (7) 

is obtained: 

𝑓(𝑥) =  ∑ 𝑦𝑖𝛼𝑖𝐾(𝑥𝑖 , 𝑥) + 𝑏

𝑛/2

𝑖=1

 

(7) 

where 𝑏 is the bias term. 

It is important to remark that the standard SVR model in 

equation (7) considers only real-valued functions [43]. 

Additionally, it is a discriminant method, i.e. produces a mapping 

from the data points to the class labels without computing 

probability distributions, allowing the method to be less 

computationally expensive, but  more sensitive to noise than 

generative methods [44]. . The main advantage of SVR is that can 

deal with sparsity, non-linearity, and high dimensionality of the 

input data [45].  

 Regarding the  SVR hyperparameter tuning (section 4.2), it  is 

performed through cross-validation, and finally, the RMSE that 

exhibits the best results will be chosen. In the same way that MLR, 

if there are categorical variables in the set of X, dummy variables 

can be used. 

2.2.3. Artificial Neural Networks (ANN). [40, 41] 

This bio-inspired strategy is used in a lot of applications, where 

regression and classification are needed. The structure of a neural 

network emulates a meta-heuristic concept, based on interactions 

of neurons within the brain. The most known ANN is known as 

Multilayer Perceptron, and its architecture is shown in Figure 2. 

From this figure,  a set of m input variables (x) in the Input layer 

are used to predict the values of n output variables (y) in the output 

layer. The prediction is achieved by choosing the correct number 

of neurons in different hidden layers h, which are fully connected 

with both previous and next layers. The effects of each connection 

are weighted by a set of constants W, which are determined by an 

optimization iterative method (commonly Gradient Descend).  The 

main advantages of this kind of ANN (feedforward networks) are 

that they do not have a priori assumptions about the relationships 

between the independent and dependent variables [46], their 
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nonlinear modeling capability [47], and their minimal assumptions 

needed about the data [48]. In the same way that MLR, if there are 

categorical variables in the set of X, dummy variables can be used. 

 
Figure 2: Multilayer Perceptron Architecture with backpropagation feedback [49] 

Although using ANN can outperform other methods regarding 

its accuracy, its application must be extensively checked using 

cross-validation, since a common phenomenon known as 

overfitting makes that ANN cannot be a general model sometimes. 

3. Methodology and experiment design 

This section shows the steps to fit the different models. First, a 

measurement phase is proposed, where both instruments and 

locations are chosen. Then, with the set of data from in-situ 

sensors, some models are fitted. Finally, the performance 

evaluation is carried out, choosing the model which exhibits fewer 

regression errors. 

3.1. Measurement phase 

In this section, some considerations regarding the measurement 

are presented. 

3.1.1. Location selection 

Soil moisture is highly influenced by climatic characteristics 

of a region, specifically by rain amount and intensity, 

evapotranspiration [50], vegetation type, topography [51], soil 

properties (apparent density, porosity, organic matter content, 

texture, and structure), among other factors [52]. 

This is how changes in land use and land cover, in interaction 

with soil physical characteristics and climate, play a key role in 

soil moisture variations at different scales [53]. In the Colombian 

case, the soil moisture variability has been less studied and there 

is not enough information to understand its spatial and temporal 

dynamics, and much less has its contribution to water flows 

regulation been quantified. 

This is the case in some areas of the Antioquia region, where 

precipitation is the only source of soil water and recharge of its 

surface layers. Therefore, soil moisture in deep layers cannot be 

replenished with contributions from rain and groundwater. For 

this reason, soil wet front movement study at different depths is 

key to understanding its variability and impact on agricultural 

production and ecosystems in tropical basins. 

In different studies [54–56] it has been found that drought 

conditions affect variations in soil moisture content, while 

topography and vegetation type are the dominant factors that 

control the humidity in different soil layers. Specifically, soil 

water storage is mainly affected by topography at shallow depths, 

while in deep soil layers it is mainly controlled by vegetation type. 

Considering the above, for the present study Las Palmas basin 

was selected, which has as characteristics of interest that it is in 

the tropical Andean zone of the municipality of Envigado, 

Antioquia, Colombia (coordinates: 6 ° 11'26.1 "N 75 ° 31'47.6" 

W), and which has undergone processes of change in land use and 

land cover, among which transition from crops and pastures to 

recreational and commercial uses stands out. There are also some 

small fragments of forest and secondary vegetation. This basin has 

an area of 31.31 km2, with elevations from 2,500 to 2,600 meters 

above sea level and its predominant climate is cold humid to very 

humid and with an average annual rainfall of 2781 mm. 

The basin also has different soil associations (Figure 3), 

which determine physical characteristics, as well as different 

depths in soil profiles [57]. The Tequendamita Association (TE) 

is found mainly in the Basin, formed by deep to moderately deep 

soils, well-drained, with medium textures, low to moderate 

fertility, mild to moderate erosion. A characteristic of these soils 

is that they are formed by metamorphic rocks (schists, gneisses) 

covered with volcanic ash. Soil samplings were made, and results 

were verified with previous studies such as the "General Study of 

Soils and Zoning of Lands of the Department of Antioquia” [58], 

and the" Semi-detailed study of soils in zone 13 of the 

municipality of Envigado for potential use purposes" [59]. 

Considering that the soil moisture content suitable for plant 

growth depends on the type of soil [60] and the physical 

explanation mentioned above related to the main variables 

affecting the soil moisture variability through the soil layers 

(vegetation, soil type, topography, among others), such 

parameters were considered to determine the sites where soil 

moisture monitoring stations were installed. Therefore, three 

types of vegetation cover representative of the basin (pastures, 

crops, and forest) were selected and combined with three different 

phases of the Tequendamita Association and one phase of the La 

Ceja Association (see Table 1). It is important to mention that the 

sensors were located having the characterization of soil profiles in 

the basin, which allowed determining the average depth of same, 

in each of the points where the monitoring stations were located. 

This means that an edaphological criterion was used for the 

location of each of the sensors. Additional criteria used to 

guarantee that the data collected were representative are the 

following: i) The points were located near access roads and 

agricultural areas located toward the higher part of the catchment 

where installation and security could be achieved with lower cost, 

ii) availability of connection to the telecommunications network 

to transmit data in real-time, iii) accessibility. 

3.1.2. IoT end nodes  

Soil moisture stations were designed and built using IoT tools 

and methods. Four stations are installed in the upper part of the 

basin, where a mobile network operator offers full 2G/3G 

coverage. At each point, three soil moisture sensors were put into 
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operation at different depths, depending on land cover (crops, 

pastures, and forest), and soil physical properties. The first layer, 

the depths per sensor, according to land cover, are shown in Table 

1. Installed sensors are from the brand Meter Group, reference 

EC-5, measurement range from 0 up to 100%, with a resolution 

of 0.001 m3/m3 of Volumetric Water Content (VWC) and 

accuracy of ±0.02 m3/m3. Sensor output is voltage, from 0 up to 2 

Vdc, and is collected by a microcontroller unit ESP32, with an 

Analog-to-Digital Converter of 12-bit resolution. To ensure that 

the measurements are stable to be transmitted, the next 

conditioning protocol is used: i) take n measures from the sensor, 

ii) arrange samples from the lowest to highest, ii) extract the 

samples in the positions n/2 and 1+n/2, and iii) take the mean. 

Engineering units are scaled from ADC units to VWC by using a 

two-point scheme, by comparing readings of moisture in both 

water and air and using a Meter Group EM-50 as a calibration 

pattern. In-situ end-nodes are depicted in Figure 4. 

 
Figure 3: Study area location in Antioquia and Colombia and soil associations 

present in the Las Palmas basin 

After collecting measurements, data is sent to an IoT backend 

by using the protocol Message Queue Telemetry Transport 

(MQTT). The chosen IoT platform is Ubidots [61], and it also 

helps to store information and to provide a frontend user interface 

to visualize real-time indicators, as shown in Figure 5.  

Table 1: Soil moisture sensor depths according to soil use 

Land 

Cover 

Soil association Sensor 1 

depth 

range 

(cm) 

Sensor 2 

depth 

range (cm) 

Sensor 3 

depth 

range 

(cm) 

Crop La Ceja 

Consociation 

(LCb) 

0-23 23-37 >37 

Pasture 

1 

Tequendamita 

Association 

(Ted2) 

0-22 22-33 >33 

Pasture 

2 

Tequendamita 

Association 

(Ted3) 

0-33 33-60 >60 

Forest Tequendamita 

Association 

(Ted) 

0-16 16-35 >35 

 

(a)                                                   (b) 

 

             (c)                                               (d) 

Figure 4: IoT soil moisture end nodes in (a) crops, (b) pasture type 1, (c) pasture 
type 2 and (d) forest 

 

Figure 5: IoT backend / frontend platform [61] 

3.2. Model fitting phase 

First, all data is extracted from the Ubidots platform, using a 

temporal window from December of 2019 to June 2020, with an 

equi-temporal sampling rate of 15 minutes.  All data is put 

together into a unique database table, including timestamp, 

moisture values per sensor, depths per sensor, and soil type. The 

models are fitted to output a moisture value at a particular depth, 

regarding the readings of the other two sensors, their 

corresponding depths, and the soil use. 

To fit all the models, R Studio V 1.2.5019 was used. All the 

basic statistics measurements were inspected: quartiles, means, 

medians, and standard deviations (for continuous data), and 

counters (for categorical data). Regression expressions were 

adapted with dummy variables to allow that the categorical 

variable soil type could involve all the factors with different 

coefficients. Then, a preprocessing phase for continuous variables 

was carried out with two different strategies, according to the 

equations (8) and (9): 
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𝑥𝑖
′ =

𝑥𝑖 − 𝑥̅

𝑠2
 

(8) 

𝑥𝑖
′ =

𝑥𝑖 − min(𝑥)

max(𝑥) − min (𝑥)
 

(9) 

 
where 𝑥𝑖

′ is the ith transformed sample, xi is the ith sample of the 

continuous variable x from the dataset, 𝑥̅ is the mean of x, s2 is the 

standard deviation of x, min(x) is the minimum value of x, and 

max(x) is the maximum value of x. 

Finally, the model fitting for MLR, SVN, and ANN was 

performed according to the corresponding method. The database 

has 77848 observations and is split into two sets, with a pseudo-

random strategy: training (70%, that is, 54493 examples) and test 

(30%, that is, 23355 examples). Moreover, some additional tests 

were run for MLR, to ensure goodness of fit: Kolmogorov-

Smirnov [38], Durbin-Watson [37], and Breusch Pagan [39]. 

3.3. Results analysis phase 

After the models were fitted, the regression was carried out 

with each model, by using the test set. An initial graphical 

inspection was performed, and three performance metrics are 

used: RMSE (Root Mean Square Error), Index of Agreement 

(Willmott), and R2. These metrics and the graphical 

approximation served to determine the accuracy of the models 

regarding field measurements. The pertinent analysis was 

developed.  

4. Model fitting 

For the sake of clearness, we will adopt the following notation: 

Mi is the ith sensor, Di is the depth of ith sensor, i is an integer 

index to identify the sensor position (i = 1 is the superficial sensor, 

i = 2 is the middle sensor, and i = 3 is the deepest sensor), and P1, 

P2, and F are dichotomic dummy variables for representing the 

factors pasture type 1, pasture type 2 and forest, in the categorical 

variable soil type. All the processes are executed in a laptop 

Lenovo G40, with a processor Intel Core i7 4500 @ 1.8 GHz and 

RAM = 12 GB. 

A previous graphical inspection is performed to qualitatively 

behold if there are relationships among different moistures, as 

shown in Figure 6. Some statistical metrics are presented in Table 

2. 

 

Figure 6. Trends of moisture data. M1 is the superficial sensor, M2 is the middle 

sensor, and M3 is the deepest sensor. Index interval from 0 up to 21.000 

corresponds to crops, from 21.000 to 44.000 corresponds to pasture 1, from 44.000 

up to 64.000 corresponds up to pasture 2, and from 64.000 up to 79.000 

corresponds to the forest. 

From Figure 6, it can be noticed that effectively there is a 

relationship between the moistures at different depths since when 

an external variable, i.e., rainfall, causes a perturbation, each 

moisture varies. Moreover, according to Table 2, medians and 

means of moistures are arranged from M1 to M3 from the least to 

the greater, indicating that the deep the soil is, the high VWC is. 

It also can be noticed that the standard deviation of M3 is the least, 

supporting that more superficial moisture changes in a wider 

range than the others, so external variables (rainfall or solar 

radiation) affect the most to the moistures closer to the soil 

surface. To validate the hypothesis of correlation among 

moistures, by using the Pearson correlation coefficient, the next 

results are obtained: cor(M1,M2)= 0.85; cor(M1,M3)= 0.91; 

cor(M2,M3)= 0.97. 

Table 2: Statistical metrics for soil moistures 

 M1 D1 M2 D2 M3 D3 

Min 0.047 0.08 0.1918 0.255 0.117 0.33 

Q1 0.27 0.11 0.332 0.275 0.382 0.33 

Median 0.312 0.115 0.388 0.3 0.425 0.37 

Mean 0.3308 0.1215 0.3772 0.3321 0.4322 0.4212 

Q3 0.383 0.165 0.457 0.465 0.508 0.6 

Max 0.552 0.165 0.553 0.465 0.582 0.6 

SD 0.0786 0.029 0.0786 0.085 0.0735 0.113 

 

4.1. MLR 

Taking into account that there is a direct correlation among 

soil moistures, MLR can be fitted according to the process in 

section 2.2.1. So, the general model in equation (2) is re-written 

to the particular dataset, as shown in equation (10): 

 

𝑀̂2 = 𝛽̂0,2 + 𝛽̂1,2𝑀1  + 𝛽̂2,2𝐷1 + 𝛽̂3,2𝐷2 + 𝛽̂4,2𝑃1

+ 𝛽̂5,2𝑃2 + 𝛽̂6,2𝐹 + 𝜀2 
(10) 

𝑀̂3 = 𝛽̂0,3 + 𝛽̂1,3𝑀1  + 𝛽̂2,3𝐷1 + 𝛽̂3,3𝐷3 + 𝛽̂4,3𝑃1

+ 𝛽̂5,3𝑃2 + 𝛽̂6,3𝐹 + 𝜀3 
 

where all the 𝛽̂ are the model estimators, and 𝜀 is the error model. 

Note that, in the first instance, it is needed to fit two models for 

M2 and M3, depending on the variables associated with the 

superficial moisture and the soil type. However, due to the high 

correlation between M2 and M3, it is essential to find the optimal 

𝛽̂ values, the strategy of minimization of least squares is  applied 

[62], searching for a hyperplane that minimizes the cumulative 

errors from measurements and the predicted variable. The R 

function lm is used, getting the results in Table 3, for training data 

without preprocessing, and with the preprocessing strategies in 

the equations (8) and (9). From this table, the dichotomic 

coefficients 𝛽̂4,2, 𝛽̂5,2, 𝛽̂4,3, and 𝛽̂5,3  are not determined, due to 

there are a multicollinearity effect with the other variables; that is, 

such variables explain the effects thoroughly without needing the 

inclusion of the variable soil type if it is a crop, pasture 1, or 

pasture 2. The multicollinearity effect is tested by using the alias 

method proposed in [63]. This method shows how a collinear 

variable is explained by the others, as shown in Table 4. 
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According to Table 4, for example, the coefficient  𝛽̂5,2 (which 

corresponds to the binary variable P2, pasture type 2) is explained 

by the others, being D1 (superficial moisture sensor depth), the 

variable that explains the most the behavior of P2. A similar 

analysis can be performed for other variables.  

Table 3: Regressor values for the model in equation (8). P-values less than 0.05 
indicate that the regressor is significative 

Raw data 

Coefficient Estimate Std. Error p-value 

𝛽̂0,2 0.6537 0.0019 <2 x 10-16  

𝛽̂1,2 0.2615 0.1395 <2 x 10-16  

𝛽̂2,2 -17.6344 0.0691 <2 x 10-16  

𝛽̂3,2 5.6271 0.0203 <2 x 10-16  

𝛽̂4,2 N/A N/A N/A 

𝛽̂5,2 N/A N/A N/A 

𝛽̂6,2 -0.4906 0.0015 <2 x 10-16  

𝛽̂0,3 0.5464 0.0014 <2 x 10-16  

𝛽̂1,3 0.3519 0.0010 <2 x 10-16  

𝛽̂2,3 -8.8458 0.0356 <2 x 10-16 

𝛽̂3,3 2.1546 0.0074 <2 x 10-16 

𝛽̂4,3 N/A N/A N/A 

𝛽̂5,3 N/A N/A N/A 

𝛽̂6,3 -0.3496 0.0011 <2 x 10-16 

Max/Min preprocessing 

Coefficient Estimate Std. Error p-value 

𝛽̂0,2 0.2479 0.0008 <2 x 10-16  

𝛽̂1,2 0.3660 0.0019 <2 x 10-16  

𝛽̂2,2 -4.1683 0.0162 <2 x 10-16  

𝛽̂3,2 3.2853 0.0118 <2 x 10-16  

𝛽̂4,2 N/A N/A N/A 

𝛽̂5,2 N/A N/A N/A 

𝛽̂6,2 -13634 0.0044 <2 x 10-16  

𝛽̂0,3 0.1363 4.6 x 10-4 <2 x 10-16  

𝛽̂1,3 0.3834 0.0011 <2 x 10-16  

𝛽̂2,3 -1.6136 0.0064 <2 x 10-16 

𝛽̂3,3 1.2485 0.0042 <2 x 10-16 

𝛽̂4,3 N/A N/A N/A 

𝛽̂5,3 N/A N/A N/A 

𝛽̂6,3 -0.7496 0.0024 <2 x 10-16 

SD/Mean preprocessing 

Coefficient Estimate Std. Error p-value 

𝛽̂0,2 1.1298 0.0037 <2 x 10-16  

𝛽̂1,2 0.2608 0.0013 <2 x 10-16  

𝛽̂2,2 -6.6737 0.0261 <2 x 10-16  

𝛽̂3,2 6.0411 0.0217 <2 x 10-16  

𝛽̂4,2 N/A N/A N/A 

𝛽̂5,2 N/A N/A N/A 

𝛽̂6,2 -6.2131 0.0201 <2 x 10-16  

𝛽̂0,3 0.8646 0.0029 <2 x 10-16  

𝛽̂1,3 0.3761 0.0010 <2 x 10-16  

𝛽̂2,3 -3.6 0.0144 <2 x 10-16 

𝛽̂3,3 3.3201 0.0113 <2 x 10-16 

𝛽̂4,3 N/A N/A N/A 

𝛽̂5,3 N/A N/A N/A 

𝛽̂6,3 -4.7565 0.0157 <2 x 10-16 

 
Table 4: Alias test for checking multicollinearity of non-determined coefficients 

in MLR 

 𝛽̂0,2 𝛽̂1,2 𝛽̂2,2 𝛽̂3,2 𝛽̂6,2 

𝛽̂4,2 -3.2352 0 58.8235 -11.7647 1.5294 

𝛽̂5,2 -9.3529 0 388.2353 -117.6471 8.2941 

 𝛽̂0,3 𝛽̂1,3 𝛽̂2,3 𝛽̂3,3 𝛽̂6,3 

𝛽̂4,3 -3.2352 0 47.0588 -5.8823 1.5294 

𝛽̂5,3 -9.3529 0 270.5882 -58.8235 8.2941 

Once MLR models are fitted, an Analysis of Variance must be 

performed for the raw data and the two preprocessing strategies 

in the equations (8) and (9), to check if all the variables are 

significant. This analysis is carried out by using the R function 

ANOVA, obtaining the results in Table 5, showing that hypothesis 

tests performed to validate that all the model variables are 

significant, excepting the soil type for crops, pasture type 1, and 

pasture type 2.  

Table 5: ANOVA for MLR in (a) estimation for M2 and (b) estimation for M3  

(a) 

Raw data 

Variable Df 

Sum  

squares 

Mean  

square F value p-value 

M1 1 244.84 244.8495 125163 <2 x10-16 

D1 1 54.990 54.9909 281105 <2 x10-16 

D2 1 9.8928 9.8928 50570 <2 x10-16 

soil type 1 18.6491 18.6491 95331 <2 x10-16 

Residuals 54488 10.6591 0.000195   

Max-Min preprocessing 

Variable Df 

Sum  

squares 

Mean  

square F value p-value 

M1 1 1881.34 1881.34 125387 <2 x10-16 

D1 1 422.75 422.75 281755 <2 x10-16 

D2 1 76.29 76.29 50829 <2 x10-16 

soil type 1 144.07 144.07 96022 <2 x10-16 

Residuals 54488 81.75 0   

SD / Mean preprocessing 

Variable Df 

Sum  

squares 

Mean  

square F value p-value 

M1 1 39213     39213 124894 <2 x10-16 

D1 1 8779 8779 279632 <2 x10-16 

D2 1 1594 1594 50777 <2 x10-16 

soil type 1 3005 3005 95714 <2 x10-16 

Residuals 54488 1711 0   
(b) 

Raw data 

Variable Df 

Sum  

squares 

Mean  

square F value p-value 
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M1 1 240.583 240.5830 230668 <2 x10-16 

D1 1 37.9458 37.9458 363820 <2 x10-16 

D2 1 0.3932 0.3932 70.236 <2 x10-16 

soil type 1 9.4532 9.4532 90636. <2 x10-16 

Residuals 54488 5.6830 0.0001043   

Max Min preprocessing 

Variable Df 

Sum  

squares 

Mean  

square F value p-value 

M1 1 1115.72 1115.72 234484 <2 x10-16 

D1 1 174.04 174.04 365759 <2 x10-16 

D2 1 1.78 1.78 3750 <2 x10-16 

soil type 1 43.53 43.53 91487 <2 x10-16 

Residuals 54488 25.93 0   

SD / Mean preprocessing 

Variable Df 

Sum  

squares 

Mean  

square F value p-value 

M1 1 39213     39213 124894 <2 x10-16 

D1 1 8779 8779 239632 <2 x10-16 

D2 1 1594 1594 50777 <2 x10-16 

soil type 1 3005 3005 95714 <2 x10-16 

Residuals 54488 1711 0   

To assess the best preprocessing strategy, we calculate the R2, 

the RMSE and the Index of Agreement for each model with the 

training data, for both M2 and M3 (Table 6). Because the 

preprocessing strategies change the scale of the measurements, it 

is evident that the R2 and the Index of Agreement are similar for 

all the subsets, however, the RMSE is less for the raw data, since  

all the moistures are in the range 0.2 up to 0.6 m3/m3, and because 

the standard deviations are  from 0.029 to 0.113 (Table 2), the 

span of the transformed sets is higher than the raw data, according 

to equations (8) and (9).  

Table 6: Performance metrics for the sets of raw and preprocessed data  for  (a) M2 

and (b) M3 

(a) 

 R2 RMSE Index of Agreement 

Raw data 0.9685 0.14 0.9217 

Max / Min 0.9685 0.0387 0.9217 

SD / Mean 0.9683 0.177 0.9217 

(b) 

 R2 RMSE Index of Agreement 

Raw data 0.9808 0.0101 0.9401 

Max / Min 0.9808 0.0218 0.9402 

SD / Mean 0.9807 0.1387 0.94 

 

4.2. SVR 

An SVR  is trained to perform the regression of M2 and M3, 

based on M1, D1, D2 or D3, F, P1, and P2. Three types of kernels 

are tested: linear, polynomial, and Radial Basis Function (RBF) 

[64]. A cross-validation process is carried out to determine which 

of the kernels exhibits better performance, by using the function 

tune in R Studio, considering the inverse of the regularization 

parameter cost, known as lambda (λ) and kernel width (γ)  as 

hyperparameters. Since predictions with linear and polynomial 

kernels did not exhibit acceptable errors, we selected the RBF 

kernel to show the regressor tuning process. The steps developed 

to tune the SVR are as follows (for each preprocessing scheme): 

i) split raw data and preprocessed data into training and test sets, 

ii) configure a 2D grid with the values of the hyperparameters λ = 

(0.0001, 0.001, 0.01, 0.1, 1, 10, 100) and γ = (0.001, 0.01, 0.1, 1, 

10, 100), iii) determine an SVR model for each subset of 

hyperparameters, iv) evaluate the regression errors of each model, 

and v) choose the model with the least regression error. After 

tuning all the SVRs, we found the best hyperparameters 

configuration. Regarding the training sets, Figure 7(a) shows the 

regression errors for the raw data of M2 (which exhibited the least 

regression error = 4.36 x 10-6), considering the hyperparameters  

λ =1 x 10-7 and γ = 0.001, and Figure 7(b) shows the regression 

errors for the  raw data of M3 (which exhibited the least regression 

error = 1.59 x 10-6), considering the hyperparameters λ =1 x 10-5 

and γ = 0.1. Besides, the regression errors for each preprocessing 

configuration (for the training sets) are shown in Table 7. Finally, 

for M2, we obtained R2= 0.985, RMSE = 0.0115, and Index of 

Agreement = 0.9422. Similarly, for M3, we obtained R2= 0.9885, 

RMSE = 0.0078, and Index of Agreement = 0.9542.  

 
(a) Raw data for M2 

 

(b) Raw data for M3 

Figure 7: Hyperparameters selection for M2 and M3 for the training subset 
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Table 7: Regressor errors for each preprocessing scheme  for the training subset 

M2 

Preprocessing Regressor error 

Raw 1.43 x 10-5 

Max/min 4.36 x 10-6 

SD/Mean 5.0387 x 10-6 

M3 

Preprocessing Regressor error 

Raw 1.59 x 10-6 

Max/min 7.47 x 10-6 

SD/Mean 0.00032046 

 

 
(a) 

 
(b) 

 
(c) 

Figure 8: ANN regression performance for each preprocessing scheme for 

(a) R2, (b) RMSE, and (c) Index of Agreement (Willmott) for M2 

4.3. ANN 

An ANN is proposed to predict soil moisture. Two multilayer 

perceptrons are trained to perform the regressions of M2 and M3, 

based on M1, D1, D2 or D3, F, P1, and P2. A cross-validation 

process was carried out aiming to tune the hyper parameters of the 

ANN, i.e., i) best number of hidden layers, taking into account a 

tradeoff between low estimation error and simplicity, ii) weights 

values for each connection and iii) activation function the neurons 

(binary step, linear, sigmoid, tanh and Rectified Linear Unit -

RELU- were considered). We have followed the next procedure 

to choose the best configuration: i) take raw data, or preprocessed 

data with the equations (8) or (9) and divide them into training 

(70%) and test (30%) sets, ii) train a perceptron with a hidden 

layer and a number of neurons from 2 up to 10, and a decay from 

0 up to 1 with steps of 0.1, iii) for each pair of hyperparameters, 

evaluate  R2, RMSE and the Index of Agreement (Willmott) for 

the training set, iv) inspect  and select the best preprocessing 

scheme, v) plot errors for the selected preprocessing scheme 

according to the set of hyperparameters chosen, and vi) select the 

configuration of the neural network. Figure 8 and Figure 9 show 

different regression errors for the different preprocessing schemes 

for M2 and M3. 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 9: ANN regression performance for each preprocessing scheme for 

(a) R2, (b) RMSE, and (c) Index of Agreement (Willmott) for M3 

From Figure 8 and Figure 9, it can be seen that all the 

configurations of ANNs have better performance with raw data, 

since R2  and Index of Agreement are close to 1, and RMSE is 

close to 0. Thus, we selected the raw data to get the best ANN 

configuration, as shown in  Figure 10 and Figure 11.  
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(b) 

 
(c) 

Figure 10: ANN regression performance for raw data for (a) R2, (b) RMSE, 

and (c) Index of Agreement (Willmott) for M2 

 

 
(a) 

 
(b) 

 
(c) 

Figure 11: ANN regression performance for raw data for (a) R2, (b) RMSE, 

and (c) Index of Agreement (Willmott) for M3 

From Figure 10, we obtained the best ANN configuration for 

M2 as follows: an input layer with six neurons, a hidden layer with 

eight neurons, an output layer with one layer, and a decay = 0 

(R2=0.9781, RMSE=0.0116, and Index of Agreement=0.9414). 

Similarly, for M3, we found the best configuration with a hidden 

layer of 7  neurons and a decay = 0  (R2=0.9884, RMSE=0.0079, 

and Index of Agreement=0.9534). The ANNs’ configurations are 

depicted in Figure 12. 

 

 
(a) 

 

(b) 

Figure 12: Multilayer perceptron ANN for (a)M2 estimation and (b) M3 
estimation 

In Figure 12, the darker and broader the line between two 

neurons is, the greater the weight is, which represents the relative 

importance (positive) of such connection. On the other hand, the 

grayer and broader the line between two neurons is, the lesser the 

weight is, which represents the relative importance (negative) of 

such connection. The tuned weights are shown in Table 8. 

Table 8: Tuned weights for neurons connections of the ANN. Table (a) shows the 

weights from the input layer to the hidden layer for M2 estimation, table (b) shows 
the weights from the hidden layer to the output for M2 estimation, table (c) shows 

the weights from the input layer to the hidden layer for M3 estimation, table (d) 

shows the weights from the hidden layer to the output for M3 estimation. 

(a) 

 B1 I1 I2 I3 I4 I5 I6 

H1 0.54 -2.61 0.15 -0.90 4.58 -8.25 1.71 

H2 -5.51 -5.17 -0.63 -2.37 4.15 -6.48 -0.29 

H3 11.76 -49.2 2.19 5.04 -9.21 8.75 0.46 

H4 13.42 -54.7 1.68 2.96 -7.80 -11.8 0.25 

H5 2.61 10.10 -0.60 -0.37 -2.94 -9.21 -5.50 

H6 -13.4 52.54 -2.25 -6.89 14.50 -16.1 -0.90 

H7 1.84 -2.64 0.86 1.68 -5.57 5.91 3.73 

H8 -12.6 49.26 -2.26 -4.89 -5.09 -8.00 -0.66 

(b) 

 B2 H1 H2 H3 H4 H5 H6 H7 H8 

O1 -2.9 7.86 -2.07 17.10 -7.78 2.27 -7.57 -14.44 16.95 
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(c) 

 B1 I1 I2 I3 I4 I5 I6 

H1 4.40 -6.37 0.81 1.36 -2.21 -0.84 0.66 

H2 -1.44 -36.24 -0.70 -0.80 5.94 -0.48 2.11 

H3 5.53 -24.60 0.78 4.76 -1.36 9.97 0.05 

H4 15.28 -45.70 1.70 6.19 4.33 3.73 -4.13 

H5 -4.00 17.68 -0.98 -2.84 2.12 -5.66 0.38 

H6 0.14 11.19 0.51 -2.04 -8.67 -7.35 4.88 

H7 2.07 -1.97 0.64 0.63 -9.89 -3.19 0.51 

(d) 

 B2 H1 H2 H3 H4 H5 H6 H7 

O1 1.47 2.42 -11.36 -1.99 -0.28 -3.38 5.10 -6.77 

Table 9: Performance metrics for regression models (test set) ANN, SVR and 

MLR 

 R2 RMSE Index of 

Agreement 

Test set ANN M2 0.978 0.0116 0.9411 

Test set MLR M2 0.9686 0.014 0.9217 

Test set SVR M2 0.9786 0.0115 0.9423 

Test set ANN M3 0.988 0.008 0.9551 

Test set MLR M3 0.9885 0.01 0.9411 

Test set SVR M3 0.9808 0.007 0.9542 

 

 
Figure 13: Absolute errors for the test set of M2 

 

Figure 14: Absolute errors for the test set of M3 

5. Results 

After fitting the parametric and non-parametric methods, some 

performance metrics will be applied to test what method could be 

used with better results to represent the soil moisture variability 

toward the soil profile for different type of soil and land cover 

configurations. It will indicate what model could be applied to 

extrapolate the soil moisture profiles toward areas with scarce 

information.  To evaluate the models’ performances, R2 , RMSE, 

and the Index of Agreement are proposed, as shown in Table 9. It 

can be noticed that, at first glance, the general performance of the 

methods is almost the same with slightly worse results for the 

MLR method for the sites presented. A deeper analysis can be 

carried out from the error dispersions of each method, as depicted 

in Figure 13 and  Figure 14, where it can be noticed that error 

dispersion is higher for MLR, and the absolute error performances 

of ANNs and SVR are similar. Furthermore, when plotting the 

time-series (Figure 15 and Figure 16), it can be noticed that a 

deeper analysis should be carried out regarding the soil types.  
 

 

Figure 15: Regression results for the test set of M2. Index interval from 0 up to 

6.500 corresponds to crops, from 6.501 to 13.100 corresponds to pasture 1, from 

13.101 up to 19.100 corresponds up to pasture 2, and from 19.101 up to 23.355 

corresponds to the forest 

 

Figure 16: Regression results for the test set of M3  . Index interval from 0 up to 

6.500 corresponds to crops, from 6.501 to 13.100 corresponds to pasture 1, from 

13.101 up to 19.100 corresponds up to pasture 2, and from 19.101 up to 23.355 

corresponds to the forest. 

It can be noticed that the methods (ANN, MLR, and SVR) 

exhibit similar results for the crop, pasture 1, and pasture 2 in 

terms of average variability of the soil moisture  (Figure 15 and 

Figure 16). Nonetheless, SVR outperforms the other two methods 

in terms of high variability when comparing versus the measured 

data. In the case of the forest, it is more evident that SVR can 

better predict the real values of both M2 and M3. On the other hand, 

none of the methods are accurate enough to predict behaviours in 

pasture 2. Due to this visual inspection, RMSE, R2, and Index of 

Agreement are recomputed but segmented by each soil type, as 

shown in Table 10.   

Table 10: Performance metrics for regression models ANN, MLR, and SVR 

differenced by soil type 

Soil type 

– 

Moisture 

Performance 

metric 

R2 RMSE Index of 

Agreement 

Crop M2 Test ANN 0.8095 0.0425 0.7922 

 Test MLR 0.8129 0.0424 0.8027 

 Test SVR 0.6542 0.1168 0.6031 
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Crop M3 Test ANN 0.9307 0.0044 0.8725 

 Test MLR 0.9325 0.0043 0.8782 

 Test SVR 0.9344 0.0044 0.8993 

Pasture 1 

M2 

Test ANN 0.8176 0.0583 0.7722 

 Test MLR 0.8174 0.0588 0.7695 

 Test SVR 0.8246 0.0049 0.7715 

Pasture 1 

M3 

Test ANN 0.8439 0.0077 0.7824 

 Test MLR 0.8444 0.0081 0.7902 

 Test SVR 0.8585 0.0074 0.8136 

Pasture 2 

M2 

Test ANN 0.2836 0.0551 0.2526 

 Test MLR 0.2770 0.0551 0.2468 

 Test SVR 0.3386 0.0196 0.3121 

Pasture 2 

M3 

Test ANN 0.3749 0.0125 0.3185 

 Test MLR 0.3560 0.0128 0.3054 

 Test SVR 0.4419 0.0119 0.4112 

Forest 

M2 

Test ANN 0.8247 0.0785 0.8063 

 Test MLR 0.8245 0.0795 0.7985 

 Test SVR 0.8264 0.0079 0.8111 

Forest 

M3 

Test ANN 0.8247 0.0185 0.7954 

 Test MLR 0.3245 0.0796 0.2212 

 Test SVR 0.9207 0.0059 0.8924 

 

It can be noted, according to Table 10, that SVR outputs better 

results in most of the cases, excepting for M2 in the crop, where 

MLR fits better data with the test set. In the rest of the cases, ANN 

outperforms MLR. Since the R2 value depends on the individual 

standard deviations, it is possible that the segmentations 

conducted for analyzing the individual performance regarding the 

soil type present different fitting values than the case of the whole 

dataset. 

For the sake of statistical validity, some goodness-of-fit tests 

must be carried out for the parametric method (MLR): normality, 

autocorrelation, and homoskedasticity. All the tests are calculated 

using residual errors. For normality, the Kolmogorov Smirnov 

test [38] is applied, obtaining a p-value = 2 x 10-16, so residuals 

are not normal. For autocorrelation, the Durbin test is applied, 

obtaining a DW = 0.02. According to [37], if the value is too far 

from 2, there is a autocorrelation. Finally, for homoskedasticity, 

the Breusch Pagan test [39] is carried out, obtaining a p-value=2 

x 10-16, which means that residuals are heteroskedastic. Because 

there is no normality, correlation, nor homoskedasticity, the linear 

regression model could not be applied. 

6. Conclusions 

In this paper, a comparison between parametric and non-

parametric methods for fitting soil moistures in Las Palmas 

Andean Basin. This research was motivated due to scarce 

information from satellite images and in-situ measurements 

toward the tropical areas where the soil moisture plays an 

important role in climate variability, so more in-depth soil 

moisture research is not possible.  

The proposed methodology based on parametric and non-

parametric methods employing a database collected from three 

typical land covers: crop, pasture, and forest, and typical soil types 

demonstrated that there are high correlations between superficial 

and intermediate soil moistures, as well as superficial and deepest 

soil moistures, so it is possible to propose prediction models to 

avoid the need to install many instruments per point or even the 

high ability of the proposed method to use surface information 

from satellite data to obtain soil moisture profiles.  

A model fitting using MLR, SVR, and ANN was carried out, 

aiming to predict the soil moisture, by using as predictor variables 

the superficial soil moisture, its depth, the depth of the soil 

moisture that wants to be predicted, and the soil type. All models 

offer similar performance metrics, except for forest, where the 

SVR outperforms the other methods. However, goodness-of-fit 

tests are not met by residual errors of the MLR model, so it cannot 

be used with statistical validity. In that way, SVR is the best model 

to fit moistures based on superficial soil moisture.  

Finally, it is important to state that the traditional hydrological 

models had been calibrated employing few information of the full 

complex and non-linear hydrological rainfall runoff 

transformation process (normally flow in specific points), 

avoiding the understanding of the spatial variability along the full 

catchment and imposing calibration parameters representing just 

a small part of the physical phenomenon. The inclusion of 

distributed spatial parameters in the calibration process such as 

infiltration parameters or soil moisture profiles can increase 

strongly the quality of the results obtained along the full 

catchment or even increase the understanding of the physics 

involved. In this direction the proposed methodology represents 

an important contribution to several engineering and hydrological 

applications.  

7. Future work 

We are planning to install two additional soil moisture stations 

in another forest, and residential soil uses, to better tune the 

models. 
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